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Compactness criteria for the weak convergence
of vector measures in locally convex spaces

By JUN KAWABE (Nagano)

Abstract. We give some compactness and sequential compactness criteria for a
set of Radon vector measures in certain locally convex spaces with respect to the weak
convergence of vector measures. Our results contain Prokhorov–LeCam’s criteria for
real measures and apply to the cases which are not covered by März–Shortt’s criteria for
vector measures in a Banach space. Especially, our criteria apply to the cases that vector
measures take values in the space S of all rapidly decreasing, infinitely differentiable
functions, the space D of all test functions, and the strong duals of those spaces.

1. Introduction

In 1956, Yu. V. Prokhorov [15] gave a compactness criterion for a
set of finite non-negative measures on a complete separable metric space
with respect to the weak convergence of measures. This criterion was ex-
tended by LeCam [12] to real measures on a completely regular space
whose compact subsets are all metrizable (see also Varadarajan [20],
Smolyanov and Fomin [16], and Vakhania et al. [19]). These results
still play an important roll in the study of stochastic convergence in prob-
ability theory.

Recently, Dekiert [4] introduced the notion of weak convergence of
vector measures, and März and Shortt [14] gave sequential compactness
criteria for Banach space valued vector measures on a metric space.
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The purpose of this paper is to give some compactness and sequen-
tial compactness criteria for a set of Radon vector measures in certain
locally convex spaces, which contain Prokhorov–LeCam’s criteria for real
measures and apply to the cases which are not covered by März–Shortt’s
criteria for vector measures in a Banach space. Especially, our criteria
apply to the cases that vector measures take values in the space S of all
rapidly decreasing, infinitely differentiable functions, the space D of all
test functions, and the strong duals of those spaces.

In Section 2 we prepare notation and definitions, and recall some nec-
essary results concerning vector measures and an integral of scalar func-
tions with respect to vector measures.

In Section 3 we give a general compactness criterion for a set of vector
measures, which take values in a sequentially complete locally convex space
and are defined on an arbitrary completely regular space. In the case that
vector measures take values in a semi-reflexive space or a semi-Montel
space, we show that the relative compactness of a set of Radon vector
measures follows from that of the corresponding set of real measures. In
this case, we also show that the same is true of the sequential completeness
for the space of all Radon vector measures.

In Section 4, using the criteria in Section 3, we show that a set of
Radon vector measures is relatively sequentially compact if the correspond-
ing set of real measures is uniformly bounded and uniformly tight under
an additional assumption of separability.

In this paper, all the topological spaces and topological linear spaces
are Hausdorff, and the scalar fields of topological linear spaces are taken
to be the field R of all real numbers.

2. Notation and preliminaries

Let S be a completely regular space. Denote by B(S) the σ-field of
Borel subsets of S and by C(S) the Banach space of all bounded, continu-
ous real functions on S with the norm ‖f‖ ≡ sups∈S |f(s)|. Denote by χA

the indicator function of a set A. Let X be a locally convex space and X∗

the topological dual of X. Denote by 〈x, x∗〉 the natural duality between
X and X∗.

A finitely additive set function µ : B(S) → X is called a vector mea-
sure if it is countably additive for the original topology of X, i.e., for any
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sequence {En} of pairwise disjoint subsets of B(S), we have µ(
⋃∞

n=1 En) =∑∞
n=1 µ(En), where the series is unconditionally convergent with respect

to the original topology of X.
If µ is a vector measure and x∗ ∈ X∗, then x∗µ defined by (x∗µ)(E) =

〈µ(E), x∗〉, E ∈ B(S), is a real measure. Conversely, a theorem of Orlicz
and Pettis ensures that a finitely additive set function µ : B(S) → X is
countably additive if so is x∗µ for every x∗ ∈ X∗.

We say that a vector measure µ : B(S) → X is Radon if for each
x∗ ∈ X∗, x∗µ is Radon, i.e., for any ε > 0 and E ∈ B(S), there exists a
compact subset K of E such that |x∗µ|(E −K) < ε, where |x∗µ| denotes
the total variation of x∗µ. Denote by Mt(S;X) the set of all Radon
vector measures µ : B(S) → X. When X = R, we write Mt(S) instead of
Mt(S;R). Then, Mt(S) is a Banach space with the total variation norm
‖m‖ ≡ |m|(S), and is isometrically embedded into C(S)∗ by the natural
embedding θ defined by

(2.1) θ(m)(f) =
∫

S

fdm, m ∈Mt(S), f ∈ C(S)

(this can be proved by a similar argument in a proof of Theorem IV.6.2 of
Dunford and Schwartz [6]).

Let {mα} be a net in Mt(S) and m ∈ Mt(S). We say that {mα}
converges weakly to m, and write mα

w−→ m, if for every f ∈ C(S), we have
∫

S

fdmα →
∫

S

fdm.

In what follows, we always equip Mt(S) with the topology determined by
this weak convergence and call it the weak topology of measures.

A subset V of Mt(S; X) is said to be uniformly bounded if
supµ∈V |x∗µ|(S) < ∞ for every x∗ ∈ X∗. Then, the principle of uni-
form boundedness (see Corollary II.3.21 of [6]) ensures that V is uniformly
bounded if and only if supµ∈V |

∫
S

fdx∗µ| < ∞ for every x∗ ∈ X∗ and
f ∈ C(S). For further information on vector measures see Diestel and
Uhl [5], Lewis [13], and Kluvánek and Knowles [11].

In this paper, we need an integral of measurable real functions with
respect to vector measures. Let µ : B(S) → X be a vector measure. A
Borel measurable real function f on S is said to be µ-integrable if (a) f is
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x∗µ-integrable for each x∗ ∈ X∗, and (b) for each E ∈ B(S), there exists
an element of X, denoted by

∫
E

fdµ, such that

〈∫

E

fdµ, x∗
〉

=
∫

E

fdx∗µ

for every x∗ ∈ X∗. This type of integral is defined by Lewis [13], and we
refer the reader to [13] and [11] for the properties of the integral. We note
here that (1) the integral is linear in f , (2) if f is µ-integrable, then the
indefinite integral λ(E) =

∫
E

fdµ is a vector measure on B(S), and (3)
if X is sequentially complete, then every bounded, Borel measurable real
function on S is µ-integrable.

3. Compactness criteria

We introduce the notion of weak convergence of vector measures. As-
sume that X is a sequentially complete locally convex space. Let {µα} be
a net in Mt(S; X) and µ ∈Mt(S; X). We say that {µα} converges weakly
to µ, and write µα

w−→ µ, if for every f ∈ C(S), we have

(3.1)
∫

S

fdµα →
∫

S

fdµ for the original topology of X.

When the convergence (3.1) is valid for the weak topology σ(X,X∗) of X,
we say that that {µα} converges σ-weakly to µ, and write µα

σw−−→ µ.
The topologies determined by the weak convergence and the σ-weak

convergence are called the weak topology of vector measures (for short,
WTVM) and the σ-weak topology of vector measures (for short, σ-WTVM),
respectively. These topologies are natural analogies of that defined by
Dekiert [4] for vector measures in Banach spaces, and coincide with the
usual weak topology of measures in the case that X = R (see [15], [12],
[20], and [19]).

The following theorem gives a general compactness criterion for a set
of Radon vector measures with respect to the σ-WTVM.

Theorem 1. Let S be a completely regular space and X a sequentially

complete locally convex space. Assume that V ⊂ Mt(S; X) satisfies the

following two conditions (a) and (b):
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(a) For each x∗ ∈ X∗, the set x∗(V) ≡ {x∗µ : µ ∈ V} is relatively compact

in Mt(S).

(b) The set
{∫

S
fdµ : f ∈ C(S), ‖f‖ ≤ 1, µ ∈ V}

is relatively weakly com-

pact in X.

Then, V is relatively compact in Mt(S;X) with respect to the σ-

WTVM.

To prove Theorem 1, we need a type of Riesz representation theorem
for weakly compact operators. Let µ ∈ Mt(S; X). If X is sequentially
complete, then we can define a continuous linear operator Tµ : C(S) → X

by

(3.2) Tµ(f) =
∫

S

fdµ, f ∈ C(S),

which is called the operator determined by µ. Recall that a linear operator
T : C(S) → X is said to be weakly compact if it maps every bounded
subset of C(S) into a relatively weakly compact subset of X. If S is
compact, every weakly compact operator from C(S) into X is represented
by a Radon vector measure with values in X (see Theorem 3.1 of [13] and
also Proposition 1 of [10]). The following proposition is an extension of
this representation theorem to the case that the underlying space S is not
necessarily compact.

Proposition 1 (cf. [1], [13], [10], [16], [9]). Let S be a completely

regular space and X a locally convex space. Assume that a weakly compact

operator T : C(S) → X satisfies the following condition (∗): For each

ε > 0 and x∗ ∈ X∗, there exists a compact subset K of S such that

|〈T (f), x∗〉| ≤ ε‖f‖ for all f ∈ C(S) with f(K) = 0.

Then, there exists a vector measure µ : B(S) → X such that

(a) µ is Radon,

(b) the closed absolutely convex hull of the range R(µ) ≡ {µ(B) : B ∈
B(S)} of µ is weakly compact,

(c) every bounded, Borel measurable, real valued function on S is µ-

integrable,

(d) T (f) =
∫

S
fdµ for all f ∈ C(S), and

(e) T ∗x∗ = θ(x∗µ) for all x∗ ∈ X∗, where θ : M(S) → C(S)∗ is the

natural embedding defined by (2.1).
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Conversely, if a vector measure µ : B(S) → X satisfies (a), (b) and

(c), then (d) defines a weakly compact operator which satisfies (∗) and (e).
Further, µ is uniquely determined by (a) and (d). If X is quasi-complete,

then (b) and (c) are automatically satisfied for all vector measures.

Proof. Because of the lack of a reference in a convenient form, we
prove Proposition 1 using Theorem III.2.1 of [3] and an idea in the proof
of Theorem 3.1 of [13].

Let T : C(S) → X be a weakly compact operator. By Proposi-
tion 17.2.4 of Jarchow [8], the second adjoint T ∗∗ maps C(S)∗∗ into X,
and is an extension of T .

For each bounded, Borel measurable real function g on S, we put

(3.3) ĝ(θ(m)) =
∫

S

gdm, m ∈Mt(S).

Since the natural embedding θ : Mt(S) → C(S)∗ defined by (2.1) is an
isometric isomorphism, it is easy to see that ĝ is a bounded linear functional
on the linear subspace θ(Mt(S)) of C(S)∗. Therefore, by Hahn–Banach
theorem, there exists an extension g̃ ∈ C(S)∗∗ of ĝ such that ‖g̃‖ = ‖ĝ‖.

Fix x∗ ∈ X∗ for a moment. By (∗), for each ε > 0, there exists a
compact subset K of S such that

|〈f, T ∗(x∗)〉| = |〈T (f), x∗〉| ≤ ε‖f‖

for all f ∈ C(S) with f(K) = 0. Since T ∗(x∗) ∈ C(S)∗, by Theorem III.2.1
of [3] we can find a m∗

x ∈Mt(S) such that

〈T (f), x∗〉 = 〈f, T ∗(x∗)〉 =
∫

S

fdm∗
x

for all f ∈ C(S), so that we have

(3.4) T ∗(x∗) = θ(m∗
x)

for all x∗ ∈ X∗.
Define the set function µ : B(S) → X by

(3.5) µ(E) = T ∗∗(χ̃E)
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for all E ∈ B(S). Then, it is well-defined, i.e., if ˜̃χE is another extension
of χE , then we have T ∗∗(χ̃E) = T ∗∗( ˜̃χE). For, by (3.4) we have T ∗X∗ ⊂
θ(Mt(S)). Hence, for each x∗ ∈ X∗, we have

〈T ∗∗(χ̃E), x∗〉= 〈T ∗(x∗), χ̃E〉= m∗
x(E)=

〈
T ∗(x∗), ˜̃χE

〉
=

〈
T ∗∗( ˜̃χE), x∗

〉
,

which implies that T ∗∗(χ̃E) = T ∗∗( ˜̃χE).

By (3.3)–(3.5), for each x∗ ∈ X∗ and E ∈ B(S), we have

m∗
x(E) = χ̃E(θ(m∗

x)) = 〈T ∗(x∗), χ̃E〉 = 〈T ∗∗(χ̃E), x∗〉
= 〈µ(E), x∗〉 = (x∗µ)(E),

and this implies

(3.6) x∗µ = m∗
x.

Since x∗ ∈ X∗ is arbitrary, (e) follows from (3.4) and (3.6). The countable
additivity of µ follows from (3.6) and Theorem 1.1 of [13]. Since m∗

x

is Radon for each x∗ ∈ X∗, (a) follows from (3.6). The proof that µ

satisfies (b), (c), and (d) is exactly the same as the corresponding proof of
Theorem 3.1 of [13].

Conversely, suppose that µ satisfies (a), (b), and (c). Then, the proof
of the weak compactness of the operator defined by (d) is the same as the
proof of Theorem 3.1 of [13]. Condition (∗) follows from (a).

Assume that X is quasi-complete. Then, X is sequentially complete,
so that (c) follows. Since the range R(µ) is weakly compact, the closed
absolutely convex hull of R(µ) is also weakly compact by Krein’s theorem
(see Theorem IV.11.4 of Schaefer [17] and Remark of Tweddle [18]).

Finally, the proof of the uniqueness of µ follows from Corollary 2 to
Proposition I.3.8 of [19]. ¤

Proof of Theorem 1. For each µ ∈Mt(S;X), we define a continuous
linear operator Tµ : C(S) → X by

Tµ(f) =
∫

S

fdµ, f ∈ C(S).

Then it follows from (b) of Theorem 1 that Tµ is weakly compact for every
µ ∈ V. Let Xσ be the space X with the weak topology σ(X,X∗). Denote
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by L(C(S), Xσ) the space of all continuous linear operators from C(S)
into Xσ, and by Ls(C(S), Xσ) the same space with the topology of simple
convergence. We also denote by XC(S) the set of all mappings from C(S)
into X. Put H = {Tµ : µ ∈ V} and denote by H1 the closure of H in
XC(S) for the topology of simple convergence. Then, it follows from (b)
and Tychonoff’s theorem that H1 is compact in XC(S) for the topology
of simple convergence. To prove that H is a relatively compact subset
of Ls(C(S), Xσ), we have only to show that H1 ⊂ L(C(S), Xσ). Since
(b) implies that the set {〈Tµ(f), x∗〉 : µ ∈ V} is bounded for each x∗ ∈
X∗ and f ∈ C(S), it follows from Banach–Steinhaus theorem (see, e.g.,
Theorem III.4.2 of [17]) thatH is an equicontinuous subset of L(C(S), Xσ).
ThenH1 ⊂ L(C(S), Xσ) by Theorem III.4.3 of [17]. Thus, we have finished
the proof of the relative compactness of H, so that for any net {µα} of
V, we can find a subnet {µα′} of {µα} and an operator T ∈ L(C(S), Xσ)
such that

(3.7) 〈T (f), x∗〉 = lim
α′

〈
Tµα′ (f), x∗

〉
= lim

α′

〈∫

S

fdµα′ , x
∗
〉

for all x∗ ∈ X∗ and f ∈ C(S).
Now we shall prove that T is weakly compact and satisfies assumption

(∗) of Proposition 1. Put D = {f ∈ C(S) : ‖f‖ ≤ 1}. Then it follows from
(b) of Theorem 1 that the set

⋃
α′ Tµα′ (D) is relatively weakly compact in

X. On the other hand, by (3.7) it is easy to see that T (D) is contained in
the closure of

⋃
α′ Tµα′ (D) for the weak topology σ(X, X∗). Thus, T (D) is

relatively weakly compact in X, and this implies that T is weakly compact.
Next we show that T satisfies assumption (∗) of Proposition 1. Fix

ε > 0 and x∗ ∈ X∗. By (3.7), we have

(3.8) |〈T (f), x∗〉| = lim
α′

∣∣∣∣
〈∫

S

fdµα′ , x
∗
〉∣∣∣∣ = lim

α′

∣∣∣∣
∫

S

fdx∗µα′

∣∣∣∣

for all f ∈ C(S). On the other hand, by (a) of Theorem 1, there exists a
further subnet {mα′′} of {x∗µα′} and a m ∈Mt(S) such that

(3.9) mα′′
w−→ m.

Since m is Radon, there exists a compact subset K of S such that

(3.10) |m| (S −K) < ε.
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Fix f ∈ C(S) with f(K) = 0. Then, it follows from (3.8), (3.9) and (3.10)
that

|〈T (f), x∗〉| = lim
α′′

∣∣∣∣
∫

S

fdmα′′

∣∣∣∣ =
∣∣∣∣
∫

S

fdm

∣∣∣∣

=
∣∣∣∣
∫

S−K

fdm

∣∣∣∣ ≤ ‖f‖ · |m| (S −K) ≤ ε‖f‖,

and this implies that T satisfies assumption (∗) of Proposition 1. Thus,
by Proposition 1, we can find a vector measure µ ∈Mt(S; X) such that

T (f) =
∫

S

fdµ

for all f ∈ C(S). Hence by (3.7), for each x∗ ∈ X∗ we have

lim
α′

〈∫

S

fdµα′ , x
∗
〉

=
〈∫

S

fdµ, x∗
〉

,

and this implies the relative weak compactness of V. ¤

We say that M ⊂ Mt(S) is uniformly tight if for each ε > 0, there
exists a compact subset K of S such that |m|(S −K) < ε for all m ∈ M .
Then it is well-known that every uniformly bounded and uniformly tight
subset M ofMt(S) is relatively compact inMt(S) (see [16], [12], and [20]).

A locally convex space X for which X = X∗∗ (more precisely for
which the canonical embedding of X into X∗∗ is surjective) is said to be
semi-reflexive. It is known that bounded sets in a semi-reflexive space
are relatively weakly compact, and every semi-reflexive space is quasi-
complete, and hence sequentially complete (see IV.5.5 and Corollary 1 to
IV.5.5 of [17]). We say that a locally convex space X is a semi-Montel
space if every bounded subset of X is relatively compact. In such a space,
σ(X,X∗) and the original topology of X coincide on bounded sets, so
that X is in particular quasi-complete with respect to the weak topology
σ(X,X∗). Hence it is semi-reflexive by IV.5.5 of [17].

The following contains Prokhorov-LeCam’s compactness criteria for
real measures and applies to the cases that vector measures take values
in S, D, and the strong duals of those spaces, which are important exam-
ples of semi-Montel spaces.
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Corollary 1. Let S be a completely regular space and X a semi-

reflexive locally convex space. Let V ⊂ Mt(S;X) and assume that for

each x∗ ∈ X∗, x∗(V) is relatively compact in Mt(S) (this condition is

satisfied if, for instance, x∗(V) is uniformly bounded and uniformly tight).

Then, V is relatively compact in Mt(S; X) with respect to the σ-WTVM.

When X is a semi-Montel space, V is relatively compact with respect to

the WTVM.

Proof. Put W =
{∫

S
fdµ : f ∈ C(S), ‖f‖ ≤ 1, µ ∈ V}

. Since x∗(V)
is relatively compact for each x∗ ∈ X∗, for every f ∈ C(S) we have

sup
µ∈V

∣∣∣∣
∫

S

fdx∗µ
∣∣∣∣ < ∞,

so that it is easy to see that the set W is a bounded subset of X. Thus, it
follows form Theorem 1 that V is relatively compact with respect to the
σ-WTVM.

Assume that X is a semi-Montel space. Since every semi-Montel space
is semi-reflexive, V is relatively compact with respect to the σ-WTVM.
Consequently, for any net {µα} in V there exist a subnet {µα′} of {µα}
and a µ ∈Mt(S; X) such that for every f ∈ C(S), we have

∫

S

fdµα′ →
∫

S

fdµ for the weak topology σ(X,X∗) of X.

In the case that ‖f‖ ≤ 1, the set {∫
S

fdµα′} is contained in the bounded
subset W of X. Since X is a semi-Montel space, we have

∫

S

fdµα′ →
∫

S

fdµ for the original topology of X

(see, e.g., [8, p. 230]), and we conclude that V is relatively compact with
respect to the WTVM. For general f , we have only to consider f/‖f‖
instead of f . ¤

We say that Mt(S) is sequentially complete if it is sequentially com-
plete with respect to the usual weak topology of measures. As an appli-
cation of Corollary 1, we have a criterion for sequential completeness of
vector measures.
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Corollary 2. Let S be a completely regular space and X a semi-

reflexive locally convex space. If Mt(S) is sequentially complete (this is

satisfied, if S is a R-space in the sense of Dalecky–Smolyanov–Fomin [3]),
then Mt(S;X) is sequentially complete with respect to the σ-WTVM.

When X is a semi-Montel space, the same conclusion holds with respect

to the WTVM.

Proof. We give a proof only in the case that X is a semi-Montel
space. A proof of the case that X is semi-reflexive is similar.

Assume that X is a semi-Montel space. Let {µn} be a Cauchy se-
quence in Mt(S; X) with respect to the WTVM, and put V = {µn}.
Then, for each x∗ ∈ X∗, the sequence {x∗µn} is Cauchy in Mt(S). Since
Mt(S) is sequentially complete by assumption, x∗(V) = {x∗µn} converges
in Mt(S), so that it is relatively compact in Mt(S). It follows from Corol-
lary 1 that V is relatively compact in Mt(S; X). Therefore, the closure of
V in Mt(S;X) is compact and hence sequentially complete. Thus {µn}
converges in Mt(S;X) and the proof is complete. ¤

4. Sequential compactness criteria

In this section, we turn our attention to sequential compactness cri-
teria for vector measures with values in a semi-reflexive space or a semi-
Montel space. The following theorem contains Prokhorov–LeCam’s se-
quential compactness criteria for real measures (see [15], [12], and [16])
and applies to the following cases which are not covered by März–Shortt’s
criteria [14]: (1) The topological space S on which the vector measures are
defined is not necessarily metrizable; and (2) the locally convex space X

in which the vector measures take values is not necessarily normable.

Theorem 2. Let S be a completely regular space whose compact

subsets are all metrizable. Let X be a semi-reflexive space whose topo-

logical dual X∗ has a countable set which separates points of X. Let

V ⊂ Mt(S; X) and assume that for each x∗ ∈ X∗, x∗(V) is uniformly

bounded and uniformly tight. Then, V is relatively compact and metriz-

able, so that it is relatively sequentially compact in Mt(S;X) with respect

to the σ-WTVM. When X is a semi-Montel space, the same conclusion

holds with respect to the WTVM.
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Remark 1. It is routine to check that the condition that X∗ has a
countable set which separates points of X is equivalent to X∗ being sepa-
rable for the weak topology σ(X∗, X).

Remark 2. Theorem 2 extends Corollary 1.6 of [14] to the cases that
vector measures take values in a semi-reflexive space or a semi-Montel
space, though we assume an additional assumption of separability. How-
ever, it should be remarked that the proof of Corollary 1.6 of [14] requires
the following type of uniform tightness condition: Let X be a Banach
space. V ⊂ Mt(S;X) is uniformly tight if for each ε > 0, there exists a
compact subset K of S such that supµ∈V ‖µ‖(S − K) < ε, where ‖µ‖ is
the semivariation of µ defined by ‖µ‖(E) = sup‖x∗‖≤1 |x∗µ|(E), E ∈ B(S).

To prove the theorem, we need the following lemma:

Lemma 1. Let S be a space as in Theorem 2 above and X a locally
convex space. Let V ⊂ Mt(S; X) satisfy conditions in Theorem 2. Then,
for each x∗ ∈ X∗, there exists a countable subset I of C(S) which satisfies
the following condition: For any ε > 0 and f ∈ C(S), we can find a
function g ∈ I such that

(4.1)
∣∣∣∣
∫

S

(f − g)dx∗µ
∣∣∣∣ ≤ ε (|x∗µ|(S) + 2‖f‖+ ε)

for all µ ∈ V.

Proof. Fix x∗ ∈ X∗. By assumption, there exists a sequence {Kn}
of compact subsets of S such that

(4.2) sup
µ∈V

|x∗µ|(S −Kn) <
1
n

.

Since each Kn is metrizable, C(Kn) is separable. Fix n ≥ 1 for a moment,
and let {gi,n}∞i=1 be a countable dense subset of C(Kn). Then, each gi,n

has an extension g̃i,n ∈ C(S) such that

(4.3) ‖g̃i,n‖ = ‖gi,n‖Kn ≡ sup
s∈Kn

|gi,n(s)| .

Put I = {g̃i,n}∞i,n=1. Fix f ∈ C(S) and ε > 0, and choose n0 such that
1/n0 < ε. We set fn0 = f¹Kn0

(the restriction of f onto Kn0) ∈ C(Kn0),
then there exists a gi0,n0 ∈ C(Kn0) such that

(4.4) ‖fn0 − gi0,n0‖Kn0
<

1
n0

,
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since {gi,n0}∞i=1 is dense in C(Kn0).
On the other hand, by (4.3) and (4.4) we have

‖f − g̃i0,n0‖ ≤ ‖f‖+ ‖g̃i0,n0‖ = ‖f‖+ ‖gi0,n0‖Kn0

≤ ‖f‖+
(

1
n0

+ ‖fn0‖Kn0

)
≤ 2‖f‖+

1
n0

.

By (4.2), (4.4), and the inequality above, for each µ ∈ V we have

∣∣∣
∫

S

(f − g̃i0,n0)dx∗µ
∣∣∣≤

∣∣∣
∫

Kn0

(fn0− gi0,n0)dx∗µ
∣∣∣+

∣∣∣
∫

S−Kn0

(f − g̃i0,n0)dx∗µ
∣∣∣

≤ |x∗µ|(Kn0) · ‖fn0 − gi0,n0‖Kn0
+ |x∗µ|(S −Kn0) · ‖f − g̃i0,n0‖

≤ 1
n0
|x∗µ|(S) +

1
n0
‖f − g̃i0,n0‖ ≤

1
n0
|x∗µ|(S) +

1
n0

(
2‖f‖+

1
n0

)

≤ ε (|x∗µ|(S) + 2‖f‖+ ε) .

Hence, the proof of Lemma 1 is complete if we put g = g̃i0,n0 ∈ I. ¤

Proof of Theorem 2. Denote by τ the σ-WTVM on Mt(S; X). Let
V1 be the τ -closure of V. Then, by Corollary 1, V1 is τ -compact in
Mt(S; X), so that we have only to show that the relative topology of τ

onto V1, denoted by τ1, is metrizable. For this end, we show that there ex-
ists a metric topology on V1 which is coarser than τ1 (see, e.g., Lemma I.5.8
of [6]).

Note that for each x∗ ∈ X∗, x∗(V1) is the closure of x∗(V) in Mt(S).
Hence it follows from Proposition 11 of [2], Chapter IX, §5, no. 5, V1 itself
satisfies conditions in Theorem 2. Then, we have the following

Lemma 2. For each x∗ ∈ X∗, there exists a semi-metric d∗x on V1

which satisfies the following two conditions (a) and (b):
(a) The relative topology τ1 on V1 is finer than the topology generated

by d∗x.

(b) Let µ1, µ2 ∈ V1. Then, d∗x(µ1, µ2) = 0 implies that x∗µ1 = x∗µ2.

Proof. Fix x∗ ∈ X∗. Let I = {gm}∞m=1 be a countable subset
of C(S) in Lemma 1. Let {x∗l }∞l=1 be a countable subset of X∗ which
separates points of X.
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Define a semi-metric d∗x on V1 by

d∗x(µ1, µ2) =
∞∑

l=1

∞∑
m=1

1
2l
· 1
2m

·
∣∣〈∫

S
gmdµ1 −

∫
S

gmdµ2, x
∗
l

〉∣∣
1 +

∣∣〈∫
S

gmdµ1 −
∫

S
gmdµ2, x∗l

〉∣∣

for all µ1, µ2 ∈ V1.
It is easy to prove (a), so that we prove (b). Assume that d∗x(µ1, µ2)=0,

µ1, µ2 ∈ V1. Then we have
〈∫

S

gmdµ1 −
∫

S

gmdµ2, x
∗
l

〉
= 0

for all l ≥ 1 and m ≥ 1. Since {x∗l }∞l=1 separates points of X, we have

(4.5)
∫

S

gmdµ1 =
∫

S

gmdµ2

for all m ≥ 1.
Fix f ∈ C(S) and ε > 0. By Lemma 1, there exists a gm0 ∈ I such

that

(4.6)
∣∣∣∣
∫

S

(f − gm0)dx∗µ
∣∣∣∣ ≤ ε (|x∗µ|(S) + 2‖f‖+ ε)

for all µ ∈ V1. Thus, by (4.5) and (4.6) we have

∣∣∣∣
∫

S

fdx∗µ1−
∫

S

fdx∗µ2

∣∣∣∣ ≤
∣∣∣∣
∫

S

(f − gm0)dx∗µ1

∣∣∣∣

+
∣∣∣∣
∫

S

gm0dx∗µ1−
∫

S

gm0dx∗µ2

∣∣∣∣ +
∣∣∣∣
∫

S

(gm0 − f)dx∗µ2

∣∣∣∣
≤ ε (|x∗µ1|(S) + 2‖f‖+ ε) + ε (|x∗µ2|(S) + 2‖f‖+ ε) .

Since ε is arbitrary, we have
∫

S

fdx∗µ1 =
∫

S

fdx∗µ2

for all f ∈ C(S). Since x∗µ1 and x∗µ2 are Radon, it follows from Corol-
lary 2 to Proposition I.3.8 of [19] that x∗µ1 = x∗µ2. ¤
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We complete the proof of Theorem 2. Let {x∗n}∞n=1 be a countable
subset of X∗ which separates points of X. Put dn = dx∗n for simplicity
and define a semi-metric d on V1 by

d(µ1, µ2) =
∞∑

n=1

1
2n
· dn(µ1, µ2)
1 + dn(µ1, µ2)

for all µ1, µ2 ∈ V1. Then, it is easy to verify that τ1 is finer than the
topology generated by the semi-metric d. To prove that d is actually a
metric, we assume that d(µ1, µ2) = 0, µ1, µ2 ∈ V1. Then, dn(µ1, µ2) = 0
for all n ≥ 1, so that by (b) of Lemma 2, we have x∗nµ1 = x∗nµ2 for all
n ≥ 1. Since {x∗n} separates points of X, we conclude that µ1 = µ2, and
the proof of Theorem 2 is complete in the case that X is semi-reflexive.

Assume that X is a semi-Montel space and denote by ξ the WTVM
on Mt(S; X). Let V2 be the ξ-closure of V. Then, the same argument as
is used above shows that V2 is ξ-compact and the relative topology of ξ

onto V2 is metrizable. Consequently, V is relatively compact with respect
to the WTVM. ¤

The following result gives a sequential compactness criterion for vector
measures with values in S, D, and the strong duals S ∗

β and D∗β .

Corollary 3. Let S be a completely regular space whose compact

subsets are all metrizable. Let Φ be a Fréchet–Montel space or the strict

inductive limit of an increasing sequence of Fréchet–Montel spaces or the

strong duals of those spaces. Let V ⊂ Mt(S;Φ) and assume that for

each x∗ ∈ Φ∗, x∗(V) is uniformly bounded and uniformly tight. Then, V
is relatively compact and metrizable, so that it is relatively sequentially

compact in Mt(S; Φ) with respect to the WTVM.

Proof. It is well-known that Φ is a Montel space.
By Corollary V.1.18 of [7], Φ and Φ∗β are Suslin spaces, so that they are
separable by Theorem III.1.2 of [7]. Thus, Φ∗β has a countable subset which
separates points of Φ. Consequently, the relative sequential compactness
of V follows from Theorem 2. ¤
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