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Functions (j, k)-symmetrical and functional
equations

with iterates of the unknown function

By PIOTR LICZBERSKI (ÃLódź) and JERZY POÃLUBIŃSKI (ÃLódź)

Abstract. In the present paper we give a method of obtaining some solutions
for functional equations in which the unknown function occurs in the form of its own
iterates. We reduce the equation to one of the type we have solved in [2] using properties
of (j, k)-symmetrical functions, which are collected in [1].

1. Introduction

Let D ⊂ C be a nonempty set. For a function ϕ : D → D and every
integer n from the set N of all positive integers, by ϕ(n) we will denote the
n-th iterate of the function ϕ on the set D; in addition we assume that
ϕ(0) = idD, (the identity on D).

Let k ∈ N, k > 2, be arbitrarily fixed. We will consider the following
functional equation

∑
m1,...,mk−1

am1,...,mk−1(z)
(
ϕ(1)(z)

)m1 · . . . ·
(
ϕ(k−1)(z)

)mk−1

= 0, z ∈ D,

where ϕ is an unknown function, m1, . . . ,mk−1 ∈ N ∪ {0}, the coefficients
am1,...,mk−1 are polynomials and the multiple sum includes only finitely
many components.

Since z = ϕ(0)(z), we can write the above equation in the form

(1.1) P
(
ϕ(0)(z), ϕ(1)(z), . . . , ϕ(k−1)(z)

)
= 0, z ∈ D,
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where ϕ is an unknown function and P (x0, x1, . . . , xk−1) is a given poly-
nomial of complex variables x0, x1, . . . , xk−1.

Before we reduce this equation to one of the type we have solved in [2]
we give the following definition.

Definition 1 ([1]). Let k ∈ N, k > 2, be arbitrarily fixed and let
ε := exp(2πi/k). A nonempty subset U of the complex plane C will be
called k-symmetrical if εU = U . The family of all k-symmetrical sets will
be denoted by Sk.

The main result of the paper consists in reducing the problem of
solving equation of the form (1.1) to finding the solutions of the functional
equation

(1.2) P
(
f(ε0w), f(ε1w), . . . , f(εk−1w)

)
= 0, w ∈ U,

with an U ∈ Sk and the unknown function f , and proving that we can get
some solutions ϕ for (1.1) from the solutions f of (1.2).

We will need the following definition.

Definition 2 ([1]). Let U ∈ Sk and j belongs to the set Z of all integers.
A function f : U → C will be called (j, k)-symmetrical if f(εw) = εjf(w)
for each w ∈ U . The family of all (j, k)-symmetrical functions f : U → C
will be denoted by F j

k(U).

Obviously, F j
k(U) = F j+mk

k (U) for all j, m ∈ Z. Because of this we
can restrict our considerations to F j

k(U), where j = 0, 1, . . . , k − 1.
Further on we will use the following results.

Lemma 1 ([1]). Let U ∈ Sk. For every function f : U → C there
exists exactly one sequence of functions f0, f1, . . . , fk−1 such that fj ∈
F j

k(U), for j = 0, 1, . . . , k − 1 and

f =
k−1∑

j=0

fj .(1.3)

Moreover

fj(w) =
1
k

k−1∑

l=0

ε−jlf(εlw), w ∈ U.

In view of the uniqueness of the above decomposition, the functions
fj will be called (j, k)-symmetrical parts of f .
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Theorem 1 ([2]). Let U ∈ Sk. A function f : U → C is a solution of

equation (1.2) on the set U if and only if the functions fj , j = 0, 1, . . . , k−1,

which occur in the partition (1.3) of f , fulfil on U the system of equations

(1.4)
∑

m0,m1,...,mk−1

bl,m0,m1,...,mk−1

k−1∏

j=0

f
mj

j (w) = 0, l = 0, 1, . . . , k − 1,

where m0,m1, . . . , mk−1 ∈ N ∪ {0}, the coefficients bl,m0,m1,...,mk−1 are

determined by the coefficients of the polynomial P from (1.2), every sum

includes only finitely many components and these components belong to

F l
k(U) for l = 0, 1, . . . , k − 1.

The system of equations (1.4) has been obtained in [2] with the appli-
cation of (1.3) to the unknown function f and with the use of the equalities
fj(εlw) = εjlfj(w), j, l = 0, 1, . . . , k − 1 to its (j, k)-symmetrical parts fj .

The following notions and results are also useful.

Definition 3 ([2]). Let U ∈ Sk and l ∈ {0, 1, . . . , k− 1}. By the sector
U l

k of U we will mean the set

U l
k :=

{
w ∈ U

∣∣∣ arg w ∈
〈

2π

k
l,

2π

k
(l + 1)

)}
.

If 0 belongs to U , then we assume that 0 ∈ U l
k for every l = 0, 1, . . . , k− 1.

Definition 4 ([2]). Let h : U0
k → C and j = 0, 1, . . . , k− 1. By [h]jk let

us denote the function which is defined in U as follows:

[h]jk(w) := εjlh(ε−lw), w ∈ U l
k \ {0}, l = 0, 1, . . . , k − 1,

[h]jk(0) :=
{ 0 for j = 1, 2, . . . , k − 1,

h(0) for j = 0.

The function [h]jk will be called the (j, k)-symmetrical extension of h

from U0
k onto U .

Lemma 2 ([2]). (i) The (j, k)-symmetrical extension of every function

h : U0
k → C onto U is a (j, k)-symmetrical function.

(ii) Every function f ∈ F j
k(U) is the (j, k)-symmetrical extension onto

U of the function h := f | U0
k : U0

k → C.
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Theorem 2 ([2]). (i) If some functions hj : U0
k → C, j = 0, 1, . . . , k−1,

fulfil the system of equations (1.4) on the sector U0
k of U , then so do the

functions fj := [hj ]
j
k, j = 0, 1, . . . , k − 1 on U .

(ii) If the (j, k)-symmetrical functions fj , j = 0, 1, . . . , k − 1 fulfil the

system (1.4) on a set U ∈ Sk, then there exist functions hj : U0
k → C,

j = 0, 1, . . . , k − 1 which fulfil this system on U0
k and fj := [hj ]

j
k.

2. Auxiliary results

Before we discuss equation (1.1) we introduce the basic notions and
give some of their properties.

Let U ∈ Sk. By F∗k (U) we will denote the class of all functions
f : U → C which have the following property:

(∗) ∀ x,y∈U [f(x) = f(y) =⇒ f(εx) = f(εy)] .

It is easily seen that all injective functions on U and all functions from the
class F j

k(U), j = 0, 1, . . . , k − 1 belong to the class F∗k (U).
In the next theorem we will give a necessary and sufficient condition

for a function f : U → C to belong to the class F∗k (U).
For every function f : U → C and every x ∈ U let us denote

Ux(f) := {y ∈ U | f(x) = f(y)} .

Theorem 3. A function f : U → C belongs to F∗k (U) if and only if

for every x ∈ U

Ux(f) ⊂
k−1⋂

j=0

Ux(fj),

where fj are the (j, k)-symmetrical components of f in partition (1.3).

This theorem follows directly from the following lemma:

Lemma 3. Let f =
∑k−1

j=0 fj be the unique partition of f onto (j, k)-
symmetrical components. The function f belongs to F∗k (U) if and only if

(2.1) ∀ x,y∈U [f(x) = f(y) =⇒ fj(x) = fj(y)]
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for j = 0, 1, . . . , k − 1.

Proof. Let us assume that f satisfies relation (2.1). If for any x, y∈U

f(x) = f(y), then εjfj(x) = εjfj(y) for j = 0, 1, . . . , k − 1, so fj(εx) =
fj(εy). Therefore, by (2.1) f(εx) = f(εy), and f has property (∗). Thus
f ∈ F∗k (U).

Now let us assume that f ∈ F∗k (U). If f(x) = f(y) for any x, y ∈ U ,
then by property (∗) f(εlx) = f(εly) for l = 0, 1, . . . , k − 1. Hence by
Lemma 1,

fj(x)− fj(y) =
1
k

k−1∑

l=0

ε−lj(f(εlx)− f(εly)) = 0, j = 0, 1, . . . , k − 1.

Therefore, f satisfies (2.1). ¤

Now we will give another theorem which is very helpful in checking
whether at a function f : U → C belongs to the class F∗k (U).

Theorem 4. Let U ∈ Sk, and hj : U0
k → C, j = 0, 1, . . . , k − 1 be

arbitrarily chosen functions (we will assume hj(0) = 0 for j = 1, . . . , k− 1
when 0 ∈ U). The function f :=

∑k−1
j=0 [hj ]

j
k belongs to F∗k (U) if and only

if for all points v, w ∈ U0
k and all integers l,m, s ∈ {0, 1, . . . , k − 1} there

holds the relation

(2.2)
k−1∑

j=0

(εjlhj(v)− εjmhj(w)) = 0 =⇒ εlshs(v) = εmshs(w).

Proof. First, let us observe that for all j, l ∈ {0, 1, . . . , k − 1} and
x ∈ U l

k

(2.3) [hj ]
j
k(x) = εjlhj(ε−lx),

(see Definition 4).
Now let us assume that condition (2.2) is fulfilled and x ∈ U . If y ∈

Ux(f), then f(x) = f(y), and consequently
∑k−1

j=0 ([hj ]
j
k(x)− [hj ]

j
k(y)) = 0.

Of course, x ∈ U l
k and y ∈ Um

k for any l, m ∈ {0, 1, . . . , k− 1}, so by (2.3),

k−1∑

j=0

(εjlhj(ε−lx)− εjmhj(ε−my)) = 0.
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From this, in view of (2.3) and (2.2), we obtain that [hs]sk(x) = [hs]sk(y)
for s = 0, 1, . . . , k − 1, because the points v = ε−lx, w = ε−my belong to
U0

k . Thus y ∈ Ux([hs]sk) for s = 0, 1, . . . , k − 1. Theorem 3 also gives that
f ∈ F∗k (U).

Now let us assume that f ∈ F∗k (U) and for any l,m ∈ {0, 1, . . . , k−1}
k−1∑

j=0

(εjlhj(v)− εjmhj(w)) = 0, v, w ∈ U0
k .

Then there exist x ∈ U l
k and y ∈ Um

k such that v = ε−lx, w = ε−my and

k−1∑

j=0

(εjlhj(ε−lx)− εjmhj(ε−my)) = 0.

From this and from (2.3) we have
∑k−1

j=0 [hj ]
j
k(x) =

∑k−1
j=0 [hj ]

j
k(y). This

gives that f(x) = f(y). Therefore, applying Lemma 3, we obtain [hs]sk(x)=
[hs]sk(y) for s ∈ {0, 1, . . . , k − 1}. Hence by (2.3), εlshs(v) = εmshs(w) for
l, m, s ∈ {0, 1, . . . , k − 1}. ¤

3. Main results

Let U ∈ Sk, f ∈ F∗k (U) and let D := f(U). We introduce the class of
functions

[f ]∗ = {g : D −→ U | f ◦ g = idD}.

The class [f ]∗ is nonvoid, because for every z ∈D the equation f(w)= z

has at least one solution w ∈ U . Also it is clear that [f ]∗ = {f−1} when f

is an injective function.
Now let us observe that, for every g ∈ [f ]∗ the function ϕ := f ◦ εg

maps D into itself and, in view of the fact that f ∈ F∗k (U), if h ∈ [f ]∗ and
ψ := f ◦ εh, then ψ = ϕ on D. Hence the definition of the function ϕ does
not depend on the choice of function g ∈ [f ]∗. Thus we may write

ϕ = H(f), f ∈ F∗k (U),

as ϕ is uniquely assigned to f .
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Theorem 5. Let U ∈ Sk and f ∈ F∗k (U). If g ∈ [f ]∗ and ϕ = f ◦ εg,

then for n ∈ N ∪ {0} the following relations

(3.1) ϕ(n) = f ◦ εng

hold on the set f(U).

Proof. First let us observe that for every w ∈ U we have f(εw) =
f(εg(f(w))). Indeed, if for every w ∈ U we put z = f(w) and w̃ := g(z),
then z = f(w̃), so f(w) = f(w̃). Using the fact that f ∈ F∗k (U), we have

f(εw) = f(εw̃) = f(εg(z)) = f
(
εg(f(w))

)
.

Now we proceed by induction.
For n = 0 and n = 1 relation (3.1) is evident. Let us assume that it

holds for an integer n ∈ N. Then for every z ∈ f(U) it follows that g(z) ∈ U

and f(εn+1g(z)) = f
(
ε(εng(z))

)
= f

(
εg(f(εng(z)))

)
= f

(
εg(ϕ(n)(z))

)
=

ϕ(n+1)(z). ¤

Now we will give the main theorem which permits to obtain some
solutions ϕ for (1.1) from the the solutions f of (1.2).

Theorem 6. (i) If U ∈ Sk and a function f ∈ F∗k (U) satisfies equation

(1.2) on U , then the function ϕ = H(f) fulfils equation (1.1) on D = f(U).

(ii) If for U ∈ Sk and f ∈ F∗k (U) the function ϕ = H(f) fulfils

equation (1.1) on the set f(U), then the function f fulfils equation (1.2)
on U .

Proof. (i) Let us assume that U ∈ Sk and that f ∈ F∗k (U) satisfies
equation (1.2). Consider ϕ = H(f) = f◦εg, where g is an arbitrary element
of [f ]∗. It is clear that f fulfils equation (1.2) on the set Ug := g(D),
because Ug ⊂ U .

As for every z ∈ D = f(U) there exists such w ∈ Ug that w = g(z),
so f fulfils equation (1.2) at the point w. Therefore

P (f(ε0g(z)), f(ε1g(z)), . . . , f(εk−1g(z))) = 0, z ∈ D,

i.e., ϕ fulfils equation (1.1) on D.

(ii) Now let us assume that U ∈ Sk, ϕ = H(f) with a function f ∈
F∗k (U) and let ϕ satisfy equation (1.1) on the set D = f(U).
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As ϕ = f ◦ εg for every arbitrarily chosen g ∈ [f ]∗, so f satisfies
equation (1.2) on every set g(D), with g ∈ [f ]∗. Consequently, f satisfies
equation (1.2) on the set U , because U =

⋃
g∈[f ]∗ g(D). ¤

Theorem 6 shows that we should consider a solution of equation (1.1),
or (1.2) as a function together with the set on which this function satisfies
equation (1.1) or (1.2), respectively. To do it we introduce the following
notions.

Definition 5. A pair 〈f, U〉, where f is a function satisfying equation
(1.2) on a set U ∈ Sk, (a pair 〈ϕ,D〉, where ϕ is a function satisfying
equation (1.1) on a set D ⊂ C) will be called a solving element of equation
(1.1) and equation (1.2), respectively.

Now we reformulate Theorem 6.

Theorem 7. Let U ∈ Sk and f ∈ F∗k (U). The pair 〈f, U〉 is a solving

element of equation (1.2) if and only if the pair 〈H(f), f(U)〉 is a solving

element of equation (1.1).

Further on, (1.2) be called equation associated with (1.1).
The method of solving of equation (1.1), which is included in Theo-

rem 6 permits to find all solving elements 〈ϕ,D〉 = 〈H(f), f(U)〉 of equa-
tion (1.1), where f ∈ F∗k (U), and 〈f, U〉 is a solving element of equation
(1.2) associated with (1.1).

4. Examples

In this section we shall present two examples. In the first one we
shall illustrate the main idea of our method; in the second one we shall
additionally point to the difficulties which may appear in practice.

Example 1. Let us consider the functional equation

(4.1) ϕ(2)ϕ(3) − 1 = 0.

We will look for the solving elements 〈ϕ,D〉 of the above equation.
We should take k = 4. For any U ∈ S4 the equation associated with the
equation (4.1) is the following

(4.2) f(−w)f(−iw)− 1 = 0, w ∈ U.
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First, we will use Theorem 1 and Theorem 2 to determine all solving
elements 〈f, U〉 of equation (4.2). Let us fix arbitrarily a set U ∈ S4 and
represent the unknown function f in form (1.3), that is f = f0+f1+f2+f3.
In view of Theorem 1 function f satisfies equation (4.2) on U if and only
if the (j, 4)-symmetrical components fj , j = 0, 1, 2, 3 of f fulfil on U the
system of equations

(4.3)
f0

2 − f2
2 = 1, f0f1 − f2f3 = 0

f1
2 − f3

2 = 0, f0f3 − f1f2 = 0

It is easy to check that this system of equations has infinitely many solu-
tions on U . From Theorem 2 it follows that these solutions depend on one
arbitrary function F defined on the sector U0

4 of U and they have the form

f0 = [F ]04, f1 = 0, f2 =
[√

F 2 − 1
]2

4
, f3 = 0,

where, for every function G : U0
4 → C, the symbol

√
G means the function

whose value
√

G(w) at every w is arbitrarily chosen square root of the
number G(w). If 0 ∈ U , then it is necessary to assume that F 2(0) = 1;
compare the definition of the (2, 4)-symmetrical extension of a function
and the first equation of system (4.3).

In sequel we will understand the symbol
√

G in the same sense.
From this by Theorem 1 we obtain that all solutions of equation (4.2)

on the set U ∈ S4 are of the form

(4.4) f = [F ]04 +
[√

F 2 − 1
]2

4
,

where F : U0
4 → C is an arbitrary function (with F 2(0) = 1 if 0 ∈ U).

Using Theorem 7 we conclude: if the function f of the form (4.4) belongs
to F∗4 (U), then 〈f, U〉 is a solving element of equation (4.2) if and only if
〈H(f), f(U)〉 is a solving element of equation (4.1).

Now we will show that all functions of the form (4.4) belong to F∗4 (U).
By Theorem 4 it suffices to show that for all points v, w ∈ U0

4 and all
integers l, m ∈ {0, 1, 2, 3} the equalities

(4.5) i2l
√

F 2(v)− 1 = i2m
√

F 2(w)− 1, F (v) = F (w)
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follow from the equality

(4.6) (F (v)− F (w)) +
(
i2l

√
F 2(v)− 1− i2m

√
F 2(w)− 1

)
= 0.

In order to check that the equality F (v) = F (w) follows from (4.6) observe
that after carrying the second component of sum (4.6) onto the right hand
side and then raising both sides to the 2-nd power, we obtain F (v)F (w)−
1 = (−1)l+m

√
F 2(v)− 1

√
F 2(w)− 1, hence (F (v)− F (w))2 = 0.

The first part of (4.5) follows directly from (4.6) and from the second
part of (4.5), proved above. Therefore f ∈ F∗4 (U).

Now we can use Theorem 7. It says that for every U ∈ S4 and every
function F in the expression (4.4) we may find a corresponding solving
element 〈f, U〉 of equation (4.2), so the solving elements 〈ϕ,D〉 of the
equation (4.1) are in the form 〈H(f), f(U)〉, too.

Let us put ϕ := H(f) = f ◦ ih on f(U), with an arbitrary h ∈ [f ]∗.
Then for z ∈ f(U) we have ϕ(z) = f(ih(z)) = f0(ih(z)) + f2(ih(z)) =
f0(h(z)) − f2(h(z)) and z = f(h(z)) = f0(h(z)) + f2(h(z)). From this
and (4.3) we obtain that zϕ(z) = 1. Hence, z 6= 0 and ϕ(z) = z−1 for
z ∈ f(U).

Now we will consider two particular cases with U = C\ {0}.
If we put F = c, where c ∈ C is a constant, then f0 = c, f2 =[√

c2 − 1
]2
4

and D = f(U) =
{
c +

√
c2 − 1, c−√c2 − 1

}
. Therefore the

solution of equation (4.1) is the function ϕ(z) = z−1, z ∈ {c +
√

c2 − 1,
c−√c2 − 1 }, so a corresponding solving element of equation (4.1) has the
form 〈

1
idD

,
{

c +
√

c2 − 1, c−
√

c2 − 1
}〉

.

Now let us take F (w) = w4 for w ∈ C0
4. Then we have f0(w) = w4 and

f2(w) =
[√

(w8 − 1) | C0
4

]2

4
for w ∈ C\ {0}; moreover f(U) = D = C\ {0}.

Consequently, we obtain that the solution of equation (4.1) is the function
ϕ(z) = z−1, z ∈ C\{0}, so the corresponding solving element of (4.1) has
the form

〈
1

idD
,C\{0}

〉
.

Let us observe that in Example 1 function f appearing in solving el-
ement 〈f, U〉 of associated equation (4.2) belongs to class F ∗4 (U) for each
U . In a general case it does not have to happen. In the next example we
shall consider an equation (1.1) that function f from the solving element
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〈f, U〉 of the associated equation (1.2) belongs to class F ∗k (U) only for the
properly selected sets U . In order to obtain such sets U we shall apply The-
orem 3; moreover, we shall demonstrate the possibility of a maximization
of selected sets U .

Example 2. Let us consider the equation

(4.7) ϕ(0) − ϕ(1) − ϕ(2) + ϕ(3) = 0.

We should take k = 4. For every U ∈ S4 the equation associated with
the above has the form

f(ε0w)− f(ε1w)− f(ε2w) + f(ε3w) = 0, w ∈ U

that is

f(w)− f(iw)− f(−w) + f(−iw) = 0, w ∈ U.(4.8)

We will determine the family of all solving elements 〈f, U〉 of equation (4.8).
Let us decompose the unknown function f onto the sum f = f0 +

f1 + f2 + f3 of the form (1.3) on the set U . By Theorem 1 the function
f fulfils equation (4.8) on the set U if and only if the (j, 4)-symmetrical
components fj of f fulfil on U the following equations : f1 = 0, f3 = 0.
Thus f = f0 + f2, and the family of all solving elements 〈f, U〉 of equation
(4.8) is identical with the set of pairs 〈f0 + f2, U〉, where f0 and f2 are
arbitrary functions from F0

4 (U), F2
4 (U), respectively.

If the function f = f0 + f2 belongs to F∗4 (U) then, by Theorem 7,
the pair 〈f, U〉 is a solving element of equation (4.8) if and only if the pair
〈H(f), f(U)〉 is a solving element of equation (4.7).

Let us put U = C, f0 = c, c ∈ C and let f2 be an arbitrary function
from F2

4 (C). Then it is easily seen that the function f = c + f2 belongs to
F∗4 (C) and in this case all pairs 〈ϕ, f(C)〉 are solving elements of equation
(4.8), with ϕ = H(f). If we fix the function f2 ∈ F2

4 (C) arbitrarily, then for
every g ∈ [f ]∗ and z ∈ D := f(C) we have ϕ(z) = f(ig(z)) = c− f2(g(z)).
From this we have ϕ(z) = 2c − z, because z = f(g(z)) = c + f2(g(z)).
Therefore in this case all solving elements of equation (4.8) have the form
〈2c − idD, D〉, where D = c + f2(C) and f2 is an arbitrary element of
F2

4 (C). It is convenient to choose such a function f2 ∈ F2
4 (C) for which

the set f2(C) is possibly the biggest. If, for instance, we put f2(w) = w2,
then f2(C) = C, so for every a ∈ C the function ϕ(z) = a− z, z ∈ C fulfils
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equation (4.8) and the corresponding solving elements of the equation (4.8)
have the form 〈a− idC,C〉, with every a ∈ C.

Now we will consider the case in which f0 is nonconstant. Let f0(w) =
c + w4, w ∈ C, c ∈ C and f2(w) = −w2, w ∈ C. Then f0 ∈ F0

4 (C),
f2 ∈ F2

4 (C) and the function f , f (w) = c + w4 − w2 is a solution of
equation (4.8) on C. We can use Theorem 7 if we find such a set U ∈ S4

that f ∈ F∗4 (U). Let us observe that for every x ∈ U

Ux(f0) = {x,−x, ix,−ix} , Ux(f2) = {x,−x} ,

Ux(f) =
{

x,−x,
√

1− x2,−
√

1− x2
}

.

Thus, in view of Theorem 3, f ∈ F∗4 (U) if and only if for every x ∈ U

(4.9)
√

1− x2 /∈ U or x = ±
√

1− x2.

Now we give an example of a set U ∈ S4, which satisfies condition (4.9). We
restrict ourselves to sets U = B(0, r), i.e., the open discs with the radius
r > 0, centered at the origin. To obtain condition (4.9) it is sufficient
to choose such an r > 0, that for every x the inequality

∣∣√1− x2
∣∣ > r

follows from the inequality |x| < r. The largest of such radii r is the
number r0 = 1√

2
. Hence f ∈ F∗4 (B(0, r0)). An easy computation shows

that f satisfies condition (4.9) on the closed disc U0 = B(0, r0), too.
On the other hand for every r > r0 there exists such x belonging to

the circle C(0, r) = ∂B(0, r) that
√

1− x2 ∈ C(0, r) and
√

1− x2 6= x and
−√1− x2 6= x, so f /∈ F∗4 (C(0, r)) for r > r0. Therefore f ∈ F∗4 (U0) and
U0 is the largest disc with this property. (The maximality of U0 guarantees
that in every disc B(0, r), B(0, r) + U0, there exists a point x such that
(4.9) is false, so we also have that f /∈ F∗4 (C − U0)). As 〈f, U0〉 is a
solving element of equation (4.8) so by Theorem 7 the pair 〈H(f), f(U0)〉
is a solving element of equation (4.7) for every c ∈ C. Let ϕ := H(f).
Then for every g ∈ [f ]∗ and every z ∈ f(U0) we have ϕ(z) = f(ig(z)) =
c + g(z)4 + g(z)2, and g(z) := w is an arbitrary solution of the equation
f(w) = z, that is of the equation c+w4−w2−z = 0. From this we obtain
(g(z))2 = 1

2 (1 +
√

1− 4c + 4z ). Therefore

ϕ(z) = z + 1 +
√

1− 4c + 4z,
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where c ∈ C and z ∈ f(U0).
Consequently, we obtain the next class of solving elements 〈ϕ, f(U0)〉

of equation (4.7), where U0 = B(0, r0) and f (w) = c+w4−w2 for w ∈ U0.
In a similar way we can look for other solving elements of equation

(4.7) by choosing other functions f0 ∈ F0
4 (U), f2 ∈ F2

4 (U).
In this example we have determined the solutions ϕ of equation (4.7)

which are defined only on the set f(B(0, 1√
2

)). However, the disc B(0, 1√
2

)
can be replaced by sets U ∈ S4 of other types which satisfy condition (4.9).

Now we will show that the above method does not give the solving
element 〈1 + idC,C〉 if k = 4. To this purpose observe that for every
solution f of equation (4.8) and for the corresponding solving element
〈ϕ, f(U0)〉 of equation (4.7), the function ϕ = H(f) has the following
property: ϕ(2) = idf(U0). Indeed, for z ∈ f(U0) and g ∈ [f ]∗ we have
ϕ(2)(z) = f(−g(z)) = f0(g(z)) + f2(g(z)) = f(g(z)) = z. Simultaneously,
the pair 〈ψ,C〉, with ψ = 1 + idC, is also a solving element of equation
(4.7), but ψ(2) = 2 + idC 6= idC.

5. Final Observations

The results presented so far can be generalized when we consider the
equation

(5.1) P
(
ϕ(0)(z), ϕ(1)(z), . . . , ϕ(n)(z)

)
= 0, z ∈ D

and the associated equation

(5.2) P
(
f(ε0

kw), f(ε1
kw), . . . , f(εn

kw)
)

= 0, w ∈ U,

where k − 1 ≥ n, εk := exp(2πi/k), U ∈ Sk, and ϕ, f are unknown
functions and P (x0, x1, . . . xk−1) is a given polynomial of complex variables
x0, x1, . . . , xn. It is clear that to equations (5.1), (5.2) there can be applied
the main Theorem 6 (see its proof).

Using this observation we can take k > n + 1. Consequently, for
equation (5.1) we can sometimes obtain more solving elements than in the
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case k = n + 1. Let us illustrate it with a short example. Consider the
following simple equation

(5.3) ϕ(1) + ϕ(2) = 1.

It can be treated as equation (5.1), with n = 2.
Taking k = 3 we obtain the associated equation (5.2) of the form

(5.4) f(ε3w) + f(ε2
3w) = 1, w ∈ U,

where ε3 := exp(2πi/3) and U is an arbitrary set from S3.
Equation (5.4) has only the constant solution f = 1

2 on U . Of course,
f ∈ F∗3 (U). Since D = f(U) =

{
1
2

}
, we have only one solving element

〈ϕ,D〉 =
〈

1
2 ,

{
1
2

}〉
of equation (5.3).

Now let k = 4. Then the equation associated with (5.3) has the form

(5.5) f(ε4w) + f(ε2
4w) = 1, w ∈ U,

where ε4 := exp(2πi/4) and U is an arbitrary set from S4. Equation
(5.5) has infinitely many solutions f on U and they have the form f =
1
2 + f2, where f2 is an arbitrary function from F2

4 (U). Of course, f ∈
F∗4 (U). Thus, putting f2 = 0, we obtain the same solving element 〈ϕ,D〉 =〈

1
2 ,

{
1
2

}〉
for (5.3) as above. However if we put f2 6= 0, we obtain other

solving elements for (5.3). They have the form 〈1 − idD4 , D4〉, where
D4 = 1

2 + f2(U), for instance 〈1 − idC,C〉 when U = C, and f2(w) = w2

for w ∈ U .
Finally, let us observe that sometimes by enlarging k we can obtain less

solutions of (5.3). Indeed, for every odd k ≥ 3 we obtain only the solving
element

〈
1
2 ,

{
1
2

}〉
for (5.3). It is also easy to check that for every even k ≥ 4

we obtain the solving elements of (5.3) only of the form 〈1 − idDk
, Dk〉,

where Dk = 1
2 + f k

2
(U) and f k

2
is an arbitrary function from F

k
2

k (U).
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apply (j, k)-symmetrical functions to solving functional equations in which
the unknown function occurs in the form of its own iterates.



Functions (j, k)-symmetrical and functional equations . . . 305

References

[1] P. Liczberski and J. Po lubi�nski, On (j, k)-symmetrical functions, Mathematica
Bohemica 120 (1995), 13–28.

[2] P. Liczberski and J. Po lubi�nski, On the application of (j, k)-symmetrical func-
tions to solving some functional equations, Proceedings of the Fifth Environmental
Mathematical Conference Rzeszów–Lublin–Lesko 1998, Lublin Catholic University
Press, 1999, 89–97.

PIOTR LICZBERSKI
INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF ÃLÓDŹ
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INSTITUTE OF MATHEMATICS
TECHNICAL UNIVERSITY OF ÃLÓDŹ
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