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Points of monotonicity in Musielak–Orlicz function spaces
endowed with the Orlicz norm

By H. HUDZIK (Poznań), X. LIU (Harbin) and T. WANG (Harbin)

Abstract. Points of lower monotonicity, upper monotonicity, lower local uniform
monotonicity and upper local uniform monotonicity in Musielak–Orlicz function spaces
L0

M endowed with the Orlicz norm are characterized. Criteria for lower and upper local

uniform monotonicities of L0
M are deduced.

1. Introduction

It is well known that various monotonicity properties are important
in applications to the approximation theory and ergodic theory in Banach
lattices (see [1]–[3], [11] and [13]). Roughly speaking, monotonicity proper-
ties of Banach lattices play similar role as rotundity properties of Banach
spaces. Monotonicity properties are restrictions of respective rotundity
properties to the set of the couples of comparable elements in the posi-
tive cone of a Banach lattice (see [10]). Such properties can also be used
to prove monotonicity and rotundity properties of Calderón–Lozanovskǐı
spaces (see [5] and [10]). But sometime we only need to know whether
a certain (fixed) point is a point of suitable monotonicity and we need
not to know if the whole lattice is suitable monotone. Various monotonic-
ity points in Banach lattices play similar rule as various rotundity points
(extreme points, exposed points, strongly extreme points, denting points,
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H-points, points of local uniform rotundity, etc.) in Banach spaces. There-
fore, we discuss in this paper criteria in order that a fixed element of the
unit sphere of L0

M be suitable monotone.
Let (X, ‖ ‖) be a Banach lattice with a partial order “≤” and let

S(X) denote its unit sphere of X. Let X+ denote the positive cone in
X. A point x ∈ S(X) is said to be upper monotone (or a point of upper
monotonicity) if for any y ∈ X+ \ {0} there holds ‖x + y‖ > 1. We write
then x ∈ um for short. A point x ∈ S(X+) is said to be lower monotone
(or a point of lower monotonicity) if for any y ∈ X+ \ 0 satisfying y ≤ x
there holds ‖x − y‖ < 1. We write then x ∈ lm for short. It is obvious
that X is strictly monotone (stm for short) if and only if every point
x ∈ S(X+) is a um-point (equivalently, every point x ∈ S(X+) is an lm-
point). However, as we will see below the notions of a um-point and an
lm-point are different.

A point x ∈ S(X+) is called upper locally uniformly monotone (ulum
for short) or a point of upper local uniform monotonicity if for any ε > 0
there exists δ > 0 such that if y ∈ X+ and ‖y‖ ≥ ε, then ‖x + y‖ ≥ 1 + δ.
A point x ∈ S(X+) is said to be lower locally uniformly monotone (llum
for short) or a point of lower local uniform monotonicity if for any ε > 0
there exists δ > 0 such that for y ∈ X+ with y ≤ x and ‖y‖ ≥ ε there
holds ‖x− y‖ ≤ 1− δ.

Obviously, X is ulum (resp. llum) if and only if every point x ∈
S(X+) is ulum (resp. llum). Strict monotonicity and uniform mono-
tonicity were defined in [2]. Lower and upper local uniform monotonicity
were defined in [11]. Although these notions were used already, they were
not distinguished.

Let (G, Σ, µ) be a monotonic, complete and σ-finite measure space,
R be the set of real numbers, R+ be a set of positive numbers from R and
N be the set of natural numbers. A mapping M : G×R→ [0, +∞] is said
to be a Musielak–Orlicz function if there is a set F ∈ Σ with µ(F ) = 0 such
that for any t ∈ G \ F , the function M(t, ·) is convex, even, continuous
at zero and left-hand side continuous on R+ (infinite left limits are not
excluded here), and for any u ∈ R the function M(·, u) is Σ-measurable.
We denote by p(t, u) the right derivative of M(t, ·) at u and by N(t, v) the
function complementary to M(t, u) in the sense of Young. We define

e(t) = sup{u ≥ 0 : M(t, u) = 0}, B(t) = sup{u > 0 : M(t, u) < ∞},

ẽ(t) = sup{v ≥ 0 : N(t, v) = 0}, B̃(t) = sup{v > 0 : N(t, v) < ∞}.
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For a set G0 ⊂ G we write M ∈ ∆2(G0) if there exist K > 0 and a Σ-
measurable function δ : G → R+ such that

∫
G0

δ(t)dµ < ∞ and for µ-a.e.
t ∈ G0 and all u ∈ R, we have

M(t, 2u) ≤ KM(t, u) + δ(t).

In place of M ∈ ∆2(G) we write shortly M ∈ ∆2. We define on the
space L0 = L0(G, Σ, µ) of all (equivalence classes of) Σ-measurable real
functions on G the convex modular (see [1])

%M (x) =
∫

G

M(t, x(t))dµ.

The Musielak–Orlicz space LM generated by a Musielak–Orlicz function
M is defined by

LM = {x ∈ L0 : %M (λx) < ∞ for some λ > 0}.
Its subspace of order continuous elements is defined by

EM = {x ∈ L0 : %M (λx) < ∞ for any λ > 0}.
Both spaces LM and EM are endowed in this paper with the Amemiya–
Orlicz norm (we say Orlicz norm for short)

‖x‖0 = inf
k>0

1
k

(1 + %M (kx)).

Under this norm the spaces LM and EM are denoted by L0
M and E0

M ,
respectively. The Luxemburg norm is defined in LM by the formula

‖x‖ = inf{λ > 0 : %M (x/λ) ≤ 1}.
This norm is equivalent to the Orlicz norm, namely ‖x‖ ≤ ‖x‖0 ≤ 2‖x‖
for any x ∈ LM . For the theory of Musielak–Orlicz spaces we refer to [6]
and [18] and for the theory of Orlicz spaces to [6], [12] and [17]–[19].

For any x ∈ L0
M we define

ξM (x) = inf{c > 0 : %M (x/c) < ∞},
Gx = supp x = {t ∈ G : x(t) 6= 0},

K(x) = [k∗x, k∗∗x ] if k∗∗x < ∞ and
K(x) = [k∗x, k∗∗x ) if k∗∗x = ∞,
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where

k∗x = inf{k > 0 : %N (p ◦ k|x|) ≥ 1},
k∗∗x = sup{k > 0 : %N (p ◦ k|x|) ≤ 1},

(p ◦ k|x|)(t) = p(t, k|x(t)|) for t ∈ G.
It is well known (see [6] and [19]) that ξM (x) = d(x,E0

M ). The sit-
uation that k∗x = ∞ is possible. It appears for example if M(t, u) = |u|
for t ∈ G and u ∈ R. If k∗∗x < ∞, then k−1(1 + %M (kx)) = ‖x‖0 for any
k ∈ K(x). If k∗x < ∞ but k∗∗x = ∞, then k−1(1 + %M (kx)) = ‖x‖0 for
any k ∈ [k∗x, k∗∗x ) and ‖x‖0 = limk→∞ k−1(1 + %M (kx)) (see [6], [19] and
[21]). Monotonicity properties of Orlicz spaces, Musielak–Orlicz spaces
and Lorentz spaces were considered in [4], [8], [9], [11], [13]–[15] and [20].

2. Results

We start with the following

Proposition 1. Let x ∈ L0
M \ {0}. Then:

(i) If
∫

Gx
N(t, B̃(t))dµ > 1, then K(x) 6= ∅ and

‖x‖0 =
1
k

(1 + %M (kx)) if and only if k ∈ K(x).

(ii) If
∫

Gx
N(t, B̃(t))dµ ≤ 1, then

‖x‖0 =
∫

G

|x(t)|B̃(t)dµ.

Proof. (i). Note that B̃(t) = limn→∞(M(t, u)/u) = limn→∞ p(t, u).
Threfore, by the left continuity of N(t, ·) for µ-a.e. t ∈ G and by the
Beppo–Levi theorem, we get

∫

Gx

N(t, B̃(t))dµ = lim
k→∞

∫

Gx

N(t, p(t, k|x(t)|)) dµ.

Thus, the assumption from (i) implies that %N (p◦k|x|) > 1 for some k > 0.
Consequently, k∗∗x < ∞ and so, by the facts presented at the end of the
introduction, the thesis of (i) follows.

The proof of (ii) is the same as in the case of Orlicz spaces in [7], so
we omit it here.
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Theorem 1. If x ∈ S(L0
M ), x ≥ 0 and K(x) = ∅, then x is both a

ulum-ponit and an llum-point.

Proof. On the basis of Proposition 1, we have
∫

Gx
N(t, B̃(t))dµ ≤ 1

and ‖x‖0 =
∫

G
|x(t)|B̃(t) dµ. For any y ∈ (L0

M )+ with y ≤ x and ‖y‖0 ≥
ε, we have

∫
Gx−y

N(t, B̃(t)) dµ ≤ 1. Therefore, ‖x − y‖0 =
∫

G
(x(t) −

y(t))B̃(t)dµ. Hence

‖x− y‖0 =
∫

G

x(t)B̃(t)dµ−
∫

G

y(t)B̃(t)dµ = ‖x‖0 − ‖y‖0 ≤ 1− ε.

This means that x is an llum-point.
Assume for the contrary that x is not a ulum-point. Then, there exists

a sequence (xn) in (L0
M )+ such that ‖xn‖0≥ ε> 0 and ‖x + xn‖0→ 1.

We consider few cases.

I. There exists an infinite number of n such that K(xn +x) = ∅. In virtue
of Proposition 1, we have

‖xn + x‖0 =
∫

G

(x(t) + xn(t))B̃(t)dµ =
∫

G

x(t)B̃(t)dµ +
∫

G

xn(t)B̃(t)dµ

≥ ‖x‖0 + ‖xn‖0 ≥ 1 + ε,

for infinitely many n ∈ N, a contradiction.

II. There exists an infinite number of n such that K(xn + x) 6= ∅. In this
case we may assume without loss of generality that Kn(xn + x) 6= ∅ for
any n ∈ N. Let kn ∈ K(xn + x), n = 1, 2, . . . .

We consider two subcases.
II 1. kn → k0 < ∞. Then

‖xn + x‖0 =
1
kn

(1 + %M (kn(xn + x))) ≥ 1
kn

(1 + %M (knx)).

Therefore, by K(x) = ∅, limn→∞ ‖xn + x‖0 = 1 and the Fatou lemma, we
get

1 = lim
n→∞

‖xn + x‖0 ≥ 1
k0

(1 + %M (k0x))

> inf
k>0

k−1(1 + %M (kx)) = ‖x‖0 = 1,
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a contradiction.
II 2. kn →∞. Then, by superadditivity of M on R+, we get

1 = limn→∞‖xn + x‖0 = limn→∞k−1
n (1 + %M (kn(xn + x)))

≥ limn→∞k−1
n (1 + %M (knxn)) + %M (knx))

= limn→∞[k−1
n (1 + %M (knxn)) + k−1

n (1 + %M (knx))]

≥ limn→∞(‖xn‖0 + ‖x‖0) ≥ 1 + ε,

a contradiction. This finishes the proof. ¤
Theorm 2. A point x ∈ S((L0

M )+) is upper monotone if and only if
K(x) = ∅ or

kx(t) ≥ e(t) (µ− a.e.)

for any k ∈ K(x) whenever K(x) 6= ∅.
Proof. Necessity. Otherwise, there is k ∈ K(x) such that A := {t ∈

G : kx(t) < e(t)} has positive measure. Let y(t) = ( e(t)
k − x(t))χA. Then

y > 0 and

‖x + y‖0 ≤ 1
k

(1 + %M (1 + (k(x + y))))

≤ 1
k

(1 + %M (kx)) +
1
k

∫

A

M(t, k(x(t) + y(t)))dµ

= ‖x‖0 +
1
k

∫

A

M(t, e(t))dµ

= ‖x‖0 = 1,

which means that x is not a um-point.
Sufficiency. If K(x) = ∅, then x is a um-point by Theorem 1. Assume

that K(x) 6= ∅, k ∈ K(x) and y > 0. Since Gx+y ⊃ Gx, we easily deduce
that K(x + y) 6= ∅, i.e. there is h > 0 such that

‖x + y‖0 =
1
h

(1 + %M (h(x + y))).

If h /∈ K(x), then

‖x + y‖0 =
1
h

(1 + %M (h(x + y))) ≥ 1
h

(1 + %M (hx))

>
1
k

(1 + %M (kx)) = 1.
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If h ∈ K(x), then by the assumption we get that hx(t) ≥ e(t) µ-a.e.,
whence

‖x + y‖0 =
1
h

(1 +
∫

G

M(t, h(x(t) + y(t))) dµ

≥ 1
h

(
1 +

∫

G

M(t, hx(t)) dµ +
∫

G

M(t, e(t) + hy(t)) dµ

)

>
1
h

(1 + %M (hx)) = ‖x‖0 = 1. ¤

Corollary 1. The space L0
M is stm if and only if %N (B̃) ≤ 1 or

e(t) = 0 µ-a.e. .

Proof. Sufficiency. If %N (B̃) ≤ 1, then by Proposition 1, ‖x‖0 =∫
G
|x(t)|B̃(t)dµ for any x ∈ L0

M . Therefore L0
M is even uniformly mono-

tone. Assume now that e(t) = 0 µ-a.e. . Take x ∈ S(L0
M ), x > 0 and y > 0.

If K(x) = ∅, then x is um-monotone by Theorem 1. If K(x) 6= ∅, then
the condition kx(t) ≥ e(t) holds for µ-a.e. t ∈ G and for any k ∈ K(x).
Therefore, by Theorem 2, x is a um-point. We proved that, under the
assumptions, any point x ∈ S((L0

M )+) is a um-point. Therefore L0
M is

stm.
Necessity. Assume that %N (B̃) > 1 and e(t) > 0 for t ∈ A, where

A ∈ Σ and µ(A) > 0. Then there is B ∈ Σ such that G \ B ⊂ A,
µ(G \B) > 0 and %N (B̃χB) > 1.

Consequently, for any x ∈ L0
M with ‖x‖0 = 1 and Gx = B there is

k > 0 such that %N (p ◦ kx) > 1. This yields K(x) 6= ∅ for such x. Let
k ∈ K(x). Defining y = x + e(t)

k χG\B , we get

‖y‖0 ≤ 1
k

(1 + %M (ky)) =
1
k

(1 + %M (kx)) = 1.

Since 0 < x < y, this means that L0
M /∈ stm. ¤

Remark. The proof of the necessity of Corollary 1 can be found in [8].
We presented it here for the sake of completeness only.

Theorem 3. A point x ∈ S((L0
M )+) with K(x) 6= ∅ is a lower mono-

tone point if and only if whenever k ∈ K(x) then

(i) µ{t ∈ G : 0 < kx(t) < e(t)} = 0,
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(ii) If A ⊂ {t ∈ G : 0 < kx(t) = e(t)} and µ(A) > 0, then there exists

s ∈ (0, 1) such that
∫

G\A N(t, p(t, kx(t)
1−s ))dµ < 1.

Proof. If (i) does not hold, then µ({t ∈ G : 0 < kx(t) < e(t)}) > 0.
Hence, there is ε0 > 0 such that the set

C := {t ∈ G : 0 < (1 + ε0)kx(t) < e(t)}

has positive measure. For any ε ∈ (0, ε0) there holds

%N ((p ◦ (1− ε)kx)χG\C) ≤ %N (p ◦ (1− ε)kx) ≤ 1

and
%N ((p ◦ (1 + ε)kx)χG\C) = %N (p ◦ (1 + ε)kx) ≥ 1,

so k ∈ K(xχG\C), i.e.

‖xχG\C‖0 = k−1(1 + %M (kxχG\C)) = k−1(1 + %M (kx)).

This means that ‖x−xχC‖0 = 1. Since xχC > 0, this contradicts the fact
that x is an lm-point.

If (ii) does not hold, there exist A ⊂ {t ∈ G : 0 < kx(t) = e(t)} with
µ(A) > 0 such that %N ((p◦ (1+ ε)kx)χG\A) ≥ 1 for any ε > 0. This yields
that k∗xχG\A

= k, whence k ∈ K(xχG).
So,

‖xχG\A‖0 = k−1(1 + %M (kxχG\A)) = k−1(1 + %M (kx)) = ‖x‖0 = 1.

i.e. ‖x−xχA‖0 = 1. Since xχA > 0, this means that x is not an lm-point.
Sufficiency. Denote A = {t ∈ Gx : 0 < kx(t) = e(t)}. Then Gx \ A =

{t ∈ Gx : kx(t) > e(t)}. Assume that 0 ≤ y ≤ x and y 6= 0. Since Gy ⊂ Gx

and µ(Gy) > 0, we have µ(Gy ∩ (Gx \A)) > 0 or µ(Gy ∩A) > 0. We will
consider two cases.

Case I. µ(Gy ∩ (Gx \ A)) > 0. For t ∈ Gy ∩ (Gx \ A) we have
M(t, k(x(t)− y(t))) < M(t, kx(t)).

So,
∫

Gy∩(Gx\A)

M(t, k(x(t)− y(t)))dµ <

∫

Gy∩(Gx\A)

M(t, kx(t))dµ,
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whence

‖x− y‖0 ≤ k−1(1 + %M (k(x− y))) < k−1(1 + %M (kx)) = ‖x‖0 = 1.

Case II. µ(Gy ∩ A) > 0. For t ∈ Gy ∩ A we have kx(t) − ky(t) <

kx(t) = e(t). There exists θ ∈ (0, 1) such that the set

Ω =
{

t ∈ Gy ∩A :
k(x(t)− y(t))

1− θ
< e(t)

}

has positive measure. By condition (ii) there is s ∈ (0, θ] such that %N (p ◦
kx
1−sχG\Ω) < 1. Hence

%N

(
p ◦ k

1− s
(x− y)

)
≤ %N

(
p ◦ kx

1− s
χG\Ω

)
+ %N

(
p ◦ k(x−y)

1− θ
χΩ

)
< 1.

This means that k∗x−y ≥ k
1−s , whence k /∈ K(x− y). Consequently,

‖x− y‖0 = (k∗x−y)−1(1 + %M (k∗x−y(x− y)) < k−1(1 + %M (k(x− y)))

≤ k−1(1 + %M (kx)) = ‖x‖0 = 1. ¤

Theorem 4. If x ∈ S((L0
M )+) and K(x) 6= ∅, then x is an llum-point

if and only if whenever k ∈ K(x) then

(i) ξM (x) = 0,

(ii) µ({t ∈ G : 0 < ke(t) < e(t)}) = 0,

(iii) For any ε > 0 there is s ∈ (0, 1) such that if A ⊂ {t ∈ G : 0 < kx(t) =
e(t)} and µ(A) ≥ ε, then

∫
G\A N(t, p ◦ kx

1−s (t))dµ ≤ 1− s.

Proof. Necessity. If (i) does not hold, then ξM (x) = ε > 0. Choose
(Gn) ⊂ Σ such that µ(Gn) → 0 and ξM (xχGn) = ξM (x) (n = 1, 2, . . . ).
Then ‖xχGn‖0 ≥ ε for any n ∈ N and

‖x− xχGn‖0 = ‖xχG\Gn
‖0 → ‖x‖0 = 1

because L0
M has the Fatou property. This means that x is not an llum-

point.



394 H. Hudzik, X. Liu and T. Wang

The necessity of condition (ii) follows by Theorem 3. If condition (iii)
is not true, then there exist ε > 0 and a sequence (An) of measurable
subsets of the set {t ∈ G : 0 < kx(t) = e(t)} such that µ(An) ≥ ε and

∫

G\An

N

(
t, p ◦ kx(t)

1− 1
n

)
dµ > 1− 1

n
(n = 1, 2, . . . ).

We will concider two cases.

Case I. For an infinite number of n ∈ N (say for any n ∈ N without
loss of generality) there holds

∫

G\An

N

(
t, p ◦ kx(t)

1− 1
n

)
dµ > 1.

This yields that k∗xχG\An
≤ k

1− 1
n

for those n∈N. The inequality k∗xχG\An
≥

k follows by the fact that k ∈ K(x) and %N (p◦kxχAn) = 0. So, k∗xχG\An
→

k as n →∞. Denote kn = k∗xχG\An
. Then

‖xχG\An
‖0 = k−1

n

(
1 + %M (knxχG\An

)
) ≥ k−1

n

(
1 + %M (knxχG\A)

)
,

where A = {t ∈ G : 0 < kx(t) = e(t)}. Hence, we get by the Fatou lemma

lim
n→∞

‖xχG\An
‖0 ≥ k−1

(
1 + %M (kxχG\A)

)
= k−1

(
1 + %M (kx)

)
= 1,

whence it follows that ‖xχG\An
‖0 → 1.

Notice that e(t) > 0 implies M(t, 2e(t)) > 0. There is a > 0 such that
µ({t ∈ A : M(t, 2e(t)) < a}) < ε

2 . Hence

%M (2kxχAn) =
∫

An

M(t, 2e(t))dµ ≥ ε

2
a

and consequently ‖2kxχAn‖0 ≥ min( ε
2a, 1) or equivalently ‖xχAn‖0 ≥

1
k min( ε

4a, 1
2 ) (n = 1, 2, . . . ). Combining this with

‖x− xχAn‖0 = ‖xχG\An
‖0 → 1, we get that x is not an llum-point.

Case II. The inequality
∫

G\An

N

(
t, p

(
t,

kx(t)
1− 1

n

))
dµ ≤ 1
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holds for an infinite number of n ∈ N (we can assume that it holds for any
n ∈ N). Then

‖xχG\An
‖0 ≥

∫

G

xχG\An
(t)p

(
t,

kx(t)
1− 1

n

χG\An

)
dµ

=
∫

G\An

x(t)p
(

t,
kx(t)
1− 1

n

)
dµ

=
1− 1

n

k

[∫

G\An

M

(
t,

kx(t)
1− 1

n

)
+ N

(
t, p

(
t,

kx(t)
1− 1

n

))
dµ

]

≥ 1− 1
n

k

(∫

G\A
M

(
t,

kx(t)
1− 1

n

)
dµ + 1− 1

n

)

→ 1
k

(
1 + %M (kxχG\A)

)
=

1
k

(1 + %M (kx)) = ‖x‖0 = 1.

Since ‖xχG\An
‖0 → 1, this yields that x is not an llum-point.

Sufficiency. If x is not an llum-point, then there is a sequence (xn)
in (L0

M )+ such that 0 ≤ xn ≤ x, ‖xn‖0 ≥ ε > 0 for n = 1, 2, . . . . and
‖x− xn‖0 → 1 as n →∞.

It is easy to prove that xn
µ9 0 (otherwise we can deduce that ‖xn‖0 →

0). So, we can assume without loss of generality that there are σ > 0 and
δ > 0 such that µ(En)≥ δ for any n∈N, where En = {t∈G : kxn(t)≥σ}.
Denote A = {t ∈ Gx : kx(t) ≤ e(t)}. We will consider two cases.

Case I. µ((Gx \ A) ∩ En) ≥ δ
2 (n = 1, 2, . . . ). If t ∈ Gx \ A, then

kx(t) > e(t). So, M(t, kx(t)− σ) < M(t, kx(t)). There is a > 0 such that

µ
({t ∈ G \A : M(t, kx(t)− σ) > M(t, kx(t))− a}) <

δ

4
.

Denote

Bn = {t ∈ (G \A) ∩ En : M(t, kx(t)− σ) ≤ M(t, kx(t)− a}.

Then µ(Bn) ≥ δ
4 for any n ∈ N, whence

‖x− xn‖0 ≤ k−1
(
1 + %M (k(x− xn))

)

≤ k−1(1 + %M (kxχG\Bn
) + %M

(
(kx− σ)χBn)

)

≤ k−1
(
1 + %M (kxχG\Bn

) + %M (kxχBn)− aµ(Bn)
)
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≤ k−1

(
1 + %M (kx)− aδ

4

)
= 1− aδ

4k
,

which is a contradiction.
Case II. µ(A ∩ En) ≥ δ

2 for any n ∈ N. There is θ ∈ (0, 1) such that
µ({t ∈ A : e(t)− σ ≥ (1− θ)e(t)}) < δ

4 . Denoting

Hn = {t ∈ A ∩ En : e(t)− σ ≤ (1− θ)e(t)},

we have µ(Hn) ≥ δ
4 . By condition (iii), there is 0 < s ≤ θ satisfying

∫

G\Hn

N

(
t, p

(
t,

kx(t)
1− s

))
dµ ≤ 1− s (n = 1, 2, . . . ).

Hence

%N

(
p

(
k

1− s
(x− xn)

))
≤

∫

G\Hn

N

(
t, p

(
t,

k

1− s
x(t)

))
dµ

+
∫

Hn

N

(
t, p

(
t,

kx(t)− σ

1− s

))
dµ

≤ 1− s +
∫

Hn

N

(
t, p

(
t,

1− θ

1− s
e(t)

))
dµ = 1− s.

This means that kn := k∗x−xn
≥ k

1−s . So, we have

1− ‖x− xn‖0 = k−1(1 + %M (kx))− k−1
n (1 + %M (kn(x− xn)))

≥ k−1(1 + %M (k(x− xn)))− (1− s)k−1(1 + %M (k(1− s)−1(x− xn)))

≥ sk−1

{
1−

∫

G

(
k

1− s
(x(t)− xn(t))p

(
t,

k

1− s
(x(t)− xn(t))

)

− M

(
t,

k

1− s
(x(t)− xn(t)

))
dµ

}

= sk−1

{
1−

∫

G

(
k

1− s
(x(t)− xn(t))p

(
t,

k

1− s
(x(t)− xn(t))

)

−M

(
t,

k

1− s
(x(t)− xn(t))

))
dµ

}

= sk−1

{
1−

∫

G

N

(
t,

k

1− s
(x(t)− xn(t))

)
dµ

}
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≥ sk−1{1− (1− s)} = s2k−1,

whence ‖x−xn‖0 ≤ 1−s2k−1, which is a contradiction finisfing the proof.
¤

By Theorem 4 we can easily deduce the following result proved origi-
nally in [8].

Corollary 2. The space L0
M is llum if and only if %N (B̃) ≤ 1 or

e(t) = 0 µ-a.e. in G and M ∈ ∆2.

Theorem 5. A point x ∈ S((L0
M )+) with K(x) 6= ∅ is a ulum-point

if and only if whenever k ∈ K(x), then

(i) kx(t) ≥ e(t) µ-a.e. in G,

(ii) If G0 ⊂ G, G0 ∈ Σ, s ∈ (0, 1) and %M ( kx
1−sχG0) < ∞, then M ∈

∆2(G0).

Proof. Necessity. The necessity of (i) follows by Theorem 2. If (ii) is
not true there are G0 ⊂ G, G ∈ Σ, and s ∈ (0, 1) satisfying %M ( kx

1−sχG0) <

∞, and M /∈ ∆2(G0). There are xn ∈ L0
M (G0) such that xn = xχGn ,

‖xn‖0 ≥ ε > 0 for any n ∈ N, µ(Gn) → 0 and %M (xn) → 0. Hence

‖x + sk−1xn‖0 ≤ k−1
(
1 + %M (k(x + sk−1xn))

)

= k−1

(
1 + %M (kxχG\Gn

) +
∫

Gn

M
(
t, (1− s)

kx(t)
1− s

+ sxn(t)
)
dµ

)

≤ k−1(1 + %M (kx) + (1− s)%M

(
kx

1− s
χGn

)
+ s%M (xn)) → 1.

But ‖sk−1xn‖0 ≥ sk−1ε for any n ∈ N, so x is not a ulum-point. ¤

Before proving the sufficiency we prove the following

Lemma 1. If M ∈ ∆2, then for any ε > 0 there is δ > 0 such that

x ∈ (LM )+ and ‖x‖0 ≥ ε imply %M (e + x) ≥ δ.

Proof. Otherwise, there exists a sequence (xn) in (L0
M )+ with

‖xn‖0 ≥ ε for any n ∈ N such that %M (e + xn) → 0 as n → ∞.
From

∫
G

M(t, e(t) + xn(t))dµ → 0 we deduce that M(t, e(t) + xn(t))
µ−→ 0.

Hence it follows that e(t) + xn(t)
µ−→ e(t) and consequently xn(t)

µ−→ 0.
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Since M ∈ ∆2, for any λ > 0 there are K > 0 and δ0 ∈ L1 satisfying the
inequality

M(t, λu) ≤ KM(t, u) + δ0(t)

for all u ∈ R and µ-a.e. t ∈ G. There exists A ∈ Σ such that µ(A) < ∞
and

∫
G\A δ0(t)dµ < 1

6 . Further, by the Jegorov theorem, we can choose
E ⊂ A, E ∈ Σ such that

∫
E

δ0(t)dµ < 1
6 and xn → 0 uniformly in A \ E.

Then for n large enough (say n ≥ m) we have

%M (xn) ≤ %M (e + xn) <
1

3K
and

∫

A\E
M(t, λxn(t))dµ <

1
3
.

Therefore we have for n ≥ m,

%M (t, λxn) =
∫

G

M(t, λxn(t))dµ

=
∫

A\E
M(t, λxn(t))dµ +

∫

G\(A\E)

M(t, λxn(t))dµ

≤
∫

A\E
M(t, λxn(t))dµ + K

∫

G\(A\E)

(M(t, xn(t)) + δ0(t))dµ

<
1
3

+ K
1

3K
+

∫

G\(A\E)

δ0(t)dµ

<
1
3

+
1
3

+
1
3

= 1.

Consequently, ‖xn‖0 ≤ 2‖xn‖ ≤ 2
λ . By the arbitrariness of λ > 0, this

contradicts the condition ‖xn‖0 ≥ ε > 0 for any n ∈ N. So, the lemma is
proved.

Now we give a proof of the sufficiency of Theorem 5. Assume the
assumptions are satisfied. If x is not a ulum-point, there exists a sequence
(xn) in (L0

M )+ such that ‖xn‖0 ≥ 4ε > 0 for any n ∈ N and ‖x+xn‖0 → 1
as n →∞. We may assume that k := k∗x < ∞ (othervise, k(x) = ∅ and so,
by Theorem 1, x is a ulum-point). Take kn := k∗xn+x (n ∈ N). It is easy
to see that kn ≤ k (since x(t) + xn(t) ≥ x(t)). We may assume without
loss of generality (passing to a subsequence if necessary) that kn → k0 as
n →∞. We will consider four cases.
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Case I. kn → k0 < k. Then

1 = lim
n→∞

‖x + xn‖0 = lim
n→∞

k−1
n (1 + %M (kn(x + xn)))

≥ lim
n→∞

k−1
n (1 + %M (knx))

≥ k−1
0 (1 + %M (k0x)) > k−1(1 + %M (kx)) = ‖x‖0 = 1,

which is a contradiction.
Therefore, we may assume in the remaining part of the proof that

kn → k. Denote
G∞ = {t ∈ G : kx(t) = B(t)}.

Take a sequence (Gn) of measurable sets in G \G∞ such that G1 ⊂ G2 ⊂
. . . ,

%M

(
k

(
1− 1

n

)−1

xχGn

)
< ∞

and µ(Gn) → µ(G \G∞). Denote

Bn = {t ∈ G : xn(t) ≥ εx(t)}.
From

4ε ≤ ‖xn‖0 ≤ ‖xnχG\Bn
‖0 + ‖xnχBn‖0 < ε + ‖xnχBn‖0,

we obtain that ‖xnχBn‖0 > 3ε for any n ∈ N.
Case II. There is an infinite number of n ∈ N satisfying the inequality

‖xnχBn∩G∞‖0 ≥ ε. Then clearly µ(Bn ∩G∞) > 0 for an infinite sequence
of n. We may assume without loss of generality that ‖xnχBn∩G∞‖0 ≥ ε
for any n ∈ N. Therefore

1 ← ‖x + xn‖0 = k−1
n (1 + %M (kn(x + xn)))

≥ k−1

∫

Bn∩G∞
M(t, kn(x(t) + xn(t)))dµ

≥ k−1

∫

Bn∩G∞
M(t, kn(1 + ε)x(t))dµ

≥ k−1

∫

Bn∩G∞
M

(
t,

(
1 +

ε

2

)
kx(t)

)
dµ

= k−1

∫

Bn∩G∞
M

(
t,

(
1 +

ε

2

)
B(t)

)
dµ = k−1 · ∞ · µ(Bn ∩G∞) = ∞,
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which is a contradiction.

So, in the further part of the proof we may assume (and we do this)
that ‖xnχBn∩G∞‖0 < ε, i.e. ‖xnχBn∩(G\G∞)‖0 ≥ 2ε for any n ∈ N.

Case III. There is m ∈ N such that ‖xnχBn∩Gm‖0 ≥ ε for any n ∈ N.
By condition (ii), M ∈ ∆2(Gm). By Lemma 1, there is δ > 0 such

that %M ((e+kxn)χBn∩Gm) > δ for any n ∈ N. Noticing that kx(t) ≥ e(t),
we have for n large enough,

‖x + xn‖0 = k−1
n (1 + %M (kn(x + xn)))

≥ k−1
n (1 + %M (knxχG\(Bn∩Gm)) + %M (kn(x + xn)χBn∩Gm ))

≥ k−1
n

�
1 + %M (knxχG\(Bn∩Gm)) + %M (k(x + xn)χBn∩Gm )− δ

2

�
≥ k−1

n

�
1 + %M (knxχG\(Bn∩Gm))+ %M (kxχBn∩Gm )+ %M ((e + kxn)χBn∩Gm )− δ

2

�
≥ k−1

n

�
1 + %M (knx) +

δ

2

�
→ k−1(1 + %M (kx)) + δ(2k)−1 = 1 + δ(2k)−1,

which is a contradiction. So, we may assume (and we do this) in the further
part of the proof that for any m ∈ N, the inequality ‖xnχBn∩Gm‖0 ≥ ε

holds for at most finite number of n ∈ N. Therefore, we may assume
without loss of generality that there holds the following

Case IV. ‖xnχBn∩(G\G∞\Gn)‖0 ≥ ε for any n ∈ N. Denote Bn ∩ (G \
G∞ \Gn) = Ωn (n = 1, 2, . . . ). We consider two subcases.

IV.1.

inf
n

%M

((
1 +

ε

2

)
kxχΩn

)
= ka > 0.

Take n0 large enough satisfying

k−1(1 + %M (kxχG∞∪Gn0
)) > 1− a

4
.

For n large enough,

k−1
n

(
1 + %M (knxχG∞∪Gn0

)
)

> 1− a

4
− a

4
= 1− a

2
.
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Hence, we get for n large enough,

‖x + xn‖0 ≥ k−1
n

(
1 + %M (knxχG∞∪Gn0 ) + %M (kn(x + xn)χG\(G∞∪Gn0 ))

)

≥ 1− a

2
+ k−1

n %M (kn(x + xn)χΩn)

≥ 1− a

2
+

1
k

%M (kn(1 + ε)xχΩn)

≥ 1− a

2
+ k−1%M

((
1 +

ε

2

)
kxχΩn

)
≥ 1− a

2
+ a = 1 +

a

2
,

which is a contradiction.
Threfore we need only to consider the subcase

IV.2.
inf
n

%M

((
1 +

ε

2

)
kxχΩn

)
= 0.

We may assume (passing to a subsequence if necessary) that

∞∑
n=1

%M

((
1 +

ε

2

)
kxχΩn

)
< ∞.

Let Ω =
⋃∞

n=1 Ωn. Then %M ((1 + ε
2 )kxχΩ) < ∞. By condition (ii),

M ∈ ∆2(Ω).
From ‖xnχΩn‖0 ≥ ε and xnχΩn ∈ L0

M (Ω) for any n ∈ N it follows
that there is δ > 0 such that %M ((e + kxn)χΩn) ≥ δ. Hence we get for n

large enough,

‖x + xn‖0 = k−1
n (1 + %M (kn(x + xn)χG\Ωn

) + %M (kn(x + xn)χΩn))

≥ k−1
n

(
1 + %M (knxχG\Ωn

) + %M (k(x + xn)χΩn)− δ

2

)

≥ k−1
n

(
1 + %M (knxχG\Ωn

) + %M (kxχΩn) + %M ((e + kxn)χΩn)− δ

2

)

≥ k−1
n

(
1 + %M (knx) +

δ

2

)
→ 1 + δ(2k)−1,

which is a contradiction. The proof is completed. ¤

From Theorem 5 we can obtain the following result from [8].
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Corollary 3. The space L0
M is ulum if and only if %M (B̃) ≤ 1 or

e(t) = 0 for µ-a.e. t ∈ G and M ∈ ∆2.

Criteria for points of monotonicity of various kinds in E0
M we present

below. Their proofs are quite similar to the respective proofs for Theo-
rems 2, 3, 4 and 5. So, we omit them in this paper.

Theorem 6. A point x ∈ S((E0
M )+) with K(x) 6= ∅ is upper mono-

tone if and only if whenever k ∈ K(x), then kx(t) ≥ e(t) for µ-a.e. t ∈ G.

Corollary 4. The space E0
M is stm if and only if e(t) = 0 for µ-a.e.

t ∈ G or %M (B̃) ≤ 1.

Theorem 7. A point x ∈ S((E0
M )+) with K(x) 6= ∅ is lower monotone

if and only if whenever k ∈ K(x), then

(i) µ({t ∈ Gx : kx(t) < e(t)}) = 0;

(ii) If A ⊂ {t ∈ Gx : kx(t) = e(t)} and µ(A) > 0, then there is s ∈ (0, 1)
such that %N ((p ◦ kx

1−s )χG\A) < 1.

Theorem 8. A point x ∈ S((E0
M )+) with K(x) 6= ∅ is lower locally

uniformly monotone if and only if whenever k ∈ K(x), then

(i) µ({t ∈ Gx : kx(t) < e(t)}) = 0;

(ii) For any ε > 0 there is s ∈ (0, 1) such that if A ⊂ {t ∈ Gx : kx(t) =
e(t)} and µ(A) ≥ ε, then %N (p ◦ kx

1−sχG\A) ≤ 1− s.

Corollary 5. The space E0
M is llum if and only if %N (B̃) ≤ 1 or

e(t) = 0 for µ-a.e. t ∈ G.

Theorem 9. A point x ∈ S((E0
M )+) with K(x) 6= ∅ is upper locally

uniformly monotone if and only if whenever k ∈ K(x), then

(i) kx(t) ≥ e(t) for µ-a.e. t ∈ G and (ii) M ∈ ∆2.
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