
Publ. Math. Debrecen

61 / 1-2 (2002), 87–118

Tangential structure of formal Bruck loops

By GÁBOR P. NAGY (Szeged)

Abstract. In the theory of loops, the class of local analytic Bruck loop plays a
substantial role, mainly because of its strong relation with symmetric spaces. Like for
formal groups, one can derive the concept of formal loops from the classical theory of
local analytic loops in a natural way. Also the process of localization of algebraic loops
leads to formal loops. In this paper, we extend some results from the theory of local
analytic Bruck loops and of formal groups to the category of formal Bruck loops.

1. Introduction

Natural generalizations of the concept of group are Moufang and Bol
loops. An important subclass of the latter is the class of Bruck loops. Local
Bruck loops are strongly related to local symmetric spaces (in the sense
of Loos [Loo69]), since the local translations of local symmetric spaces
define the set of (right) translations of a local Bruck loop and conversely
(cf. [NS98], [NS02]).

The concept of formal loops (just like formal groups) is derived in a
natural way from the classical theory of local analytic loops: instead of
considering the absolutely convergent Taylor expansion of the loop multi-
plications, one can define formal “product” and “inverting rules” using for-
mal power series over an arbitrary field ([Die57], [Die73], [Car62], [Sel67]).

In Section 2, we introduce the concept of formal Bruck loops and
define their tangential structures as the vector space of certain derivations.
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We also explain the process of localization, creating a relationship between
the category of algebraic loops and the category of formal loops.

In Section 3, we first consider the concept of restricted Lie triple sys-
tems and prove a result concerning their embeddability in restricted Lie
algebras (Theorem 3.2). Using methods of the theory of local analytic
Bruck loops we show that the tangent space of a formal Bruck loop can
be endowed with the structure of a (restricted) Lie triple system (Theo-
rem 3.6). In the last part of the section, we relate the infinitesimal Lie
triple system of a formal Bruck loop with its formal associator (Propo-
sition 3.8); also, this relation is motivated by methods of local analytic
Bruck loops.

After these results, it is natural to ask to what extent one can invert
the above functorial map from the category of formal Bruck loops to the
category of (restricted) Lie triple systems. Knowing the analogous problem
for formal (and algebraic) groups, one can expect a simple answer only for
the characteristic 0. Indeed, the existence of a Campbell–Hausdorff series
for local analytic Bruck loops with rational coefficients (cf. [Nag99]) solves
this question immediately.

However, for characteristic p > 0, one needs much more elaborate
tools in order to handle the subject. P. Cartier [Car62] proved a functo-
rial equivalence between the category of formal groups of height 0 and the
category of restricted Lie algebras of characteristic p > 0. In Section 4,
we generalize Cartier’s construction and prove a functorial equivalence be-
tween the category of formal Bruck loops of height 0 and the category of
restricted Lie triple systems of characteristic 3 (Theorem 4.2).

The most commonly used notations of this paper are:

L, . . . loops

(x, y, z), α(x, y, z) associator of loop elements

L′ associator subloop of L

K algebraically closed field of definition

K[L] ring of regular functions on L

K[[T 1, . . . , Tn]] ring of formal power series in n

indeterminates over K

K[[X1, . . . , Xn, Y 1, . . . , Y n]] ring of formal power series in 2n

indeterminates over K
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T , X, Y n-tuples (T 1, . . . , Tn), (X1, . . . , Xn) and
(Y 1, . . . , Y n)

Der(K[[T ]]) Lie algebra of derivations
PDer(K[[T ]]) space of point derivations
l, . . . tangent algebras of the loops L, . . .

(x, y, z) ternary operation in Lie triple systems

Definition. The set L endowed with the binary operation “ · ” is a loop
if there is a unit element 1 ∈ L such that for all x ∈ L holds

(1) x = 1 · x = x · 1
and, furthermore, for any a, b, c, d ∈ L, the equations x · a = b, c · y = d
have unique solutions in x and y.

We denote the solutions by x = b/a and y = c\d. The property of
unique solvability can be expressed equivalently by the identities

x · (x\y) = y, (x/y) · y = x, x\(x · y) = y, (x · y)/y = x.

In order to define the class of Bruck loops, one needs the following identi-
ties:

x · (y · xz) = (x · yx) · z,(3)

(xy)−1 = x−1y−1.(4)

Identity (3) is called the Bol identity . It is known that (3) implies 1/x =
x\1 = x−1 and the identity

(5) x−1 · xy = y

holds. This fact makes (4), the so called automorphic inverse property,
meaningful.

The most common name of the class which satisfies (3) and (4) simul-
taneously is Bruck loops (cf. [NS02]). However, these loops are equivalently
called K-loops as well; the equivalence of the different systems of axioms
was shown explicitely in [KK95].

For Bruck loops, it is useful to require an extra property, namely that
the map x 7→ x2 be a bijection of the underlying set L. Such loops are
called B-loops by G. Glauberman [Gla64] and 2-divisible Bruck loops by
P. T. Nagy and K. Strambach [NS02]. However, as we will see, in the
formal context this property is not relevant.
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2. Algebraic and formal loops

The treatment of formal loops in this section will be the naive one
(direct calculations with formal power series, terminology of Dieudonné),
in Section 4, we will use a slightly more general definition.

2.1. Basic definitions

For this paper, Xi, Y i, Zi, T i will denote indeterminates over the field
K with n ∈ N and i, j, k = 1, . . . , n. We also put X = (X1, . . . , Xn), Y =
(Y 1, . . . , Y n), Z = (Z1, . . . , Zn), T = (T 1, . . . , Tn). To avoid confusion,
we use K[[T ]] for the ring of formal power series in n and K[[X,Y ]] for
the ring of formal power series in 2n variables. K[[T ]] is a local ring with
unique maximal ideal M(T ) and complete with respect to the M(T )-adic
topology.

The distinction between K[[T ]] and K[[X, Y ]] is important, because
for formal series the tensor product K[[T ]]⊗K[[T ]] is properly embedded in
K[[X, Y ]]. Moreover, the tensor product topology and the M(X,Y )-adic
topology are compatible and K[[T ]]⊗ K[[T ]] can be canonically identified
with a dense subset of K[[X, Y ]].

The definition of Bruck loops motivates the following

Definition. A formal Bruck loop is a system of n formal power series
µi(X, Y ) ∈ K[[X, Y ]] in 2n variables and n power series ei(T ) ∈ K[[T ]]
in n variables such that with the further notation µ = (µi), e = (ei), the
identities

X = µ(X,0) = µ(0, X)(6)

µ(e(X), µ(X, Y )) = Y(7)

µ(X, µ(Y ,µ(X,Z))) = µ(µ(X, µ(Y , X)),Z)(8)

e(µ(X, Y )) = µ(e(X), e(Y ))(9)

hold.

Clearly, the identities (6)–(9) are formal analogues of the abstract
loop identities (1), (5), (3) and (4), respectively.

The next lemma shows that the existence of formal inversion is not
relevant for formal Bruck loops. Moreover, if chr(K) 6= 2, then the 2-divis-
ibility is automatically given as well.
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Lemma 2.1. Let the system of formal series µ1(X,Y ), . . . , µn(X,Y )∈
K[[X, Y ]] over the field K satisfy the identity (6).

a) There exist formal power series e1(T ), . . . , en(T ) ∈ K[[T ]] satisfy-
ing (7).

b) If chr(K) 6= 2, then a system of power series ν1(T ), . . . , νn(T ) ∈
K[[T ]] exist with µ(ν(T ),ν(T )) = T and ν(µ(T ,T )) = T .

Proof. From condition (6) follows that

µi(X, Y ) = Xi + Y i +
∑

terms of degree ≥ 1 w.r.t. Xi and Y j .

We therefore deduce from the theorem of implicit functions for formal
power series [Bou50, p. 64, Proposition 10 and p. 59, Proposition 4] that
there exists n well defined formal series

ei(T ) = −T i +
∑

terms of degree ≥ 2 w.r.t. T i

such that (7) holds. For b), if chr(K) 6= 2, then the Jacobian of µ(X,X)
is not zero and a system of power series ν1(T ), . . . , νn(T ) ∈ K[[T ]] exists
with µ(ν(T ), ν(T )) = T by the mentioned theorem of implicit functions.
Furthermore, one has

(10) ν(µ(ν(T ), ν(T ))) = ν(T ).

On the other hand, let M be the unique maximal ideal of K[[T ]], generated
by {T 1, . . . , Tn}. Calculation modulo M2 shows that

νi(T ) =
1
2
T i +

∑
terms of degree ≥ 2 w.r.t. T i,

thus T i 7→ νi(T ) induces an automorphism of the ring K[[T ]]. This means
that (10) is equivalent with

ν(µ(T ,T )) = T

and the lemma is proved. ¤
It is well known that any automorphism U of the ring K[[T ]] is induced

by some map T i 7→ ui(T ) ∈ K[[T ]] with non-singular “Jacobian” ∂ui

∂T j (0),
and vice versa. By some abuse of language, we will simply call such maps
substitutions or changes of coordinates.

The next lemma claims that with an appropriate change of coordi-
nates, the inverting rule e of a formal loop can be brought to the simple
form −T .
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Lemma 2.2. Let a system of series ei(T ) ∈ K[[T ]] (i = 1, . . . , n) be

given such that

ei(e(T )) = T i and
∂ei

∂T j
(0) = −δi

j .

Then there exists a system of series ui(T ), vi(T ) ∈ K[[T ]] such that

ui(v(T )) = T i, vi(u(T )) = T i, and ui(e(v(T ))) = −T i.

Proof. Let us define the series ui(T ) = ei(T )− T i. Obviously,

(11) ui(e(Y )) = ei(e(Y ))− ei(Y ) = Y i − ei(Y ) = −ui(Y ).

However, we have ∂ui

∂T j (0) = −2δi
j , hence, by the theorem of implicit func-

tions, there exists a system of series vi(T ) ∈ K[[T ]] with

ui(v(T )) = T i, and vi(u(T )) = T i.

Substituting Y = v(T ) in (11), we get ui(e(v(T ))) = −T i. ¤
Now, for any algebra over K, we define derivations of K[[T ]] as K-linear

maps D : K[[T ]] → K[[T ]], satisfying the Leibniz rule

D(fg) = D(f)g + fD(g), (f, g ∈ K[[T ]]).

A point derivation of K[[T ]] is a K-linear map δ : K[[T ]] → K with

δ(fg) = δ(f)g(0) + f(0)δ(g), (f, g ∈ K[[T ]]).

Derivations and point derivations of K[[T ]] are uniquely determined by
their effects on T 1, . . . , Tn (cf. [Bou50, p. 61, Proposition 6]). Thus, they
can be written in the form

ai(T )
∂

∂T i
, and ai ∂

∂T i

∣∣∣∣
T=0

,

with ai(T ) ∈ K[[T ]] and ai ∈ K, respectively.
Now, let a formal Bruck loop be given with formal product (µi(X, Y ))

and consider a point derivation α ∈ K[[T ]]. Then, the map α⊗1 : K[[T ]]⊗
K[[T ]] → K[[T ]] has a unique continuous extension

α ⊗̂ 1 : K[[X, Y ]] → K[[T ]].
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On the other hand, the given formal loop induces a homomorphism ∆ :
K[[T ]] → K[[X, Y ]] of commutative algebras by T i 7→ µi(X, Y ). Let us
define the map

D̃α = (α ⊗̂ 1) ◦∆ : K[[T ]] → K[[T ]].

Lemma 2.3. The map D̃ : α 7→ D̃α is a K-linear embedding

PDer(K[[T ]]) ↪→ Der(K[[T ]]).

Moreover, for α = ai ∂
∂T i

∣∣
T=0

holds

D̃α = ai ∂µj

∂Xi
(0, T )

∂

∂T j
.

Remark. We call the derivations D̃α the L-derivations of the formal
loop (µi(X, Y )). The analogy with right invariant derivations of local Lie
groups is obvious.

Proof. It suffices to calculate the formula for D̃α. By definition, we
have

α ⊗̂ 1 = ai ∂

∂Xi

∣∣∣∣
X=0,Y =T

and ∆(f(T )) = f(µ(X, Y )).

Hence,

D̃α(f(T )) =

(
ai ∂

∂Xi

∣∣∣∣
X=0,Y =T

)
(f(µ(X, Y )))

= ai ∂µj

∂Xi
(0, T )

∂f

∂T j
(T ). ¤

2.2. Localization of algebraic loops

It is known that via the localization process, any algebraic group de-
termines a formal group (see [Di57], [Sel67]). In this section, we explain
this method for the class of algebraic Bruck loops and use it to describe
abstractly the tangent algebra of an algebraic Bruck loop.

Let L be a Bruck loop which is an (affine) algebraic variety over the
algebraically closed field K such that the L × L → L maps (x, y) 7→ xy,
x/y, x\y are morphisms. For simplicity, we assume L to be connected of
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dimension n. Clearly, L is a smooth variety, that is, every point of L is
simple.

We denote by ox(L) the ring of functions which are regular in x; we
have K[L] =

⋂
x∈L ox(L) and K(L) is the fraction field of K[L]. ox(L) is also

called the local ring of L at x. For a simple point x of L, ox(L) is a regular
local ring with maximal ideal Mx, we denote by Ox(L) its completion with
respect to the Mx-adic topology, and Ox(L) can be identified with the ring
of power series K[[T ]] = K[[T 1, . . . , Tn]] in n = dim L indeterminates (see
[Die57, no. 14]).

Let us now consider the L × L → L morphism µ : (x, y) → xy. It
maps the simple point (e, e) of L× L onto the simple point e of L, hence
it defines a homomorphism µ∗ of oe(L) into o(e,e)(L×L) = oe(L)⊗ oe(L).
By continuity, µ∗ can be extended to a homomorphism

∆ : K[[T ]] → K[[X, Y ]]

of the completions K[[T ]] and K[[X, Y ]] (T = (T i), X = (Xi), Y = (Y i)).
We call δ the formal comultiplication on K[[T ]]. Now, for each i = 1, . . . , n,
we define the power series µi(X, Y ) = ∆(T i).

We do the same for the inverting map x 7→ x−1 in order to define the
power series ei(T ). We write µ(X, Y ) = (µi(X, Y )) and e(T ) = (ei(T )).
However, by Lemma 2.1, it suffices to consider the series µi(X, Y ).

Lemma 2.4. The formal power series µi(X,Y ) (i = 1, . . . , n) deter-

mine a formal Bruck loop in n variables.

Proof. We start with showing the Bol identity. Let us consider the
mappings

u1 : (x1, x2, x3, x4) 7→ x1(x2 · x3x4),

u2 : (x1, x2, x3, x4) 7→ (x1 · x2x3)x4,

v : (x1, x2, x3) 7→ (x1, x2, x1, x3).

We have

u∗1(T ) = µ(X1, µ(X2, µ(X3, X4)));

u∗2(T ) = µ(µ(X1, µ(X2, X3)), X4);

v∗(X1) = X1, v∗(X2) = X2, v∗(X3) = X1, v∗(X4) = X4,
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where K[[T ]], K[[X1, X2, X3, X4]] and K[[X1,X2,X3]] are the completed
local rings of L, L4 and L3 at e, (e, e, e, e) and (e, e, e), respectively. How-
ever, by the left Bol identity, we have u1 ◦ v = u2 ◦ v and v∗ ◦u∗1 = v∗ ◦u∗2,
which implies the equality

µ(X1, µ(X2, µ(X1, X4))) = µ(µ(X1, µ(X2,X1)), X4)

of formal power series. This proves the Bol identity for µ, the other iden-
tities can be shown in a similar way. ¤

A point derivation δ in x ∈ L is a linear map ox(L) → K such that
the Leibniz rule

δ(fg) = δ(f)g(x) + f(x)δ(g)

holds for all f, g ∈ K[L]. A derivation D on L is a linear map K(L) → K(L)
such that

D(fg) = D(f)g + fD(g)

holds for all f, g ∈ K[L]. Obviously, a (point) derivation is completely
determined by its effect on K[L]. More precisely, a linear map K[L] → K

(K[L] → K[L]) satisfying the Leibniz rule can be extended uniquely to a
(point) derivation of K(L).

It is well known that for a given point x ∈ L, the set of point deriva-
tions can be identified with the tangent space Tx(L) of L in x (see [Hum75,
p. 38]). Let us denote by l the tangent space Te(L) at the unit element.
One can associate any tangent vector α ∈ l to a derivation Dα in a well
known way. For any f ∈ K[L], we define Dα(f) by

Dα(f)(x) = α(τxf),

where the K(L) → K(L) mapping τx is defined by (τxf)(y) = f(yx).
Indeed, one can use the calculations of [Hum75, p. 66 and 68] to show
that D : α 7→ Dα is a linear embedding PDer(K(L)) ↪→ Der(K(L)) and
Dα = (α⊗1)◦µ∗ where µ∗ is the loop comultiplication K[L] → K[L]⊗K[L].

As explained above, one can embed oe(L) in K[[T ]] (T = (T 1, . . . , Tn))
in a canonical way. Clearly, every (point) derivation of oe(L) can be ex-
tended to a (point) derivation of the ring of formal power series K[[T ]].
This extension yields a natural homomorphism Der(K[L]) → Der(K[[T ]])
of Lie algebras.

In the next lemma, we use the terminology and notation of Lemma 2.3.
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Lemma 2.5. For the maps D : α 7→ Dα, D̃ : α 7→ D̃α we have

D̃α ∈ Der(K[[T ]]) and the diagram

TeL
D−−−−→ Der(K[L])

natural

y
yextensions

PDer(K[[T ]]) −−−−→eD Der(K[[T ]])

commutes. The map Der(K[L]) → Der(K[[T ]]) is an embedding of Lie

algebras. Moreover, we have

D̃α = aiξj
i (T )

∂

∂T j
, with α = ai ∂

∂T i

∣∣∣∣
T=0

and ξj
i (T ) =

∂µj

∂Xi
(0, T ).

Proof. The mappings of the diagram are well defined and the for-
mula for D̃α holds by Lemma 2.3. Let α be a point derivation of K[L]
with completion α̃ ∈ PDer(K[[T ]]). The derivations Dα = (α ⊗ 1) ◦ µ∗

and D̃eα = (α̃ ⊗̂ 1) ◦ ∆ are compatible since the formal comultiplication
∆ : K[[T ]] → K[[X, Y ]] is the completion of the comultiplication µ∗ :
K[L] → K[L]⊗ K[L] by definition. ¤

3. Tangential structures of formal Bruck loops

3.1. Restricted Lie triple systems

In this section, we define a restricted structure for Lie triple systems
in the characteristic p > 2 setting, akin to the restricted structure for Lie
algebras. These objects were also studied very recently and completely
independently by T. L. Hodge [Hod00].

Definition. A finite dimensional vector space b over a field K equipped
with a trilinear operation (. , . , . ) is called a Lie triple system (abbrev.
L.t.s.), if for all x, y, z, u, v ∈ b,

(x, x, y) = 0,(12)

(x, y, z) + (y, z, x) + (z, x, y) = 0,(13)

(u, v, (x, y, z)) = ((u, v, x), y, z) + (x, (u, v, y), z)(14)

+ (x, y, (u, v, z)).
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Given any Lie algebra g and any L.t.s. b, we define the linear maps

ad z :
{

g → g

a 7→ [a, x]
, ∆x,y :

{
b → b

a 7→ (a, x, y)
, Dx,y :

{
b → b

a 7→ (x, y, a)

and ∆x = ∆x,x for x, y ∈ b and z ∈ g.
Any Lie algebra (g, [. , . ]) can be made into an L.t.s. with the operation

(x, y, z) = [[x, y], z]. A theorem of N. Jacobson [Jac51] asserts that every
L.t.s. b is isomorphic to a subalgebra of a (g, (. , . , . )) with Lie algebra g.
Moreover, if dim b = n < ∞ then dim g ≤ n +

(
n
2

)
.

Given a set M , one may define a free Lie algebra L(M) over the field
K and L(M) ⊆ F(M), where F(M) is the free associative K-algebra on M
(see [Bou89]).

By definition, the free L.t.s. B(M) on M is a L.t.s. such that M ⊆
B(M) and whenever N is an L.t.s. over K and ϕ0 a mapping of M into N,
there is a unique L.t.s. homomorphism ϕ : B(M) → N.

The free L.t.s. on M may be constructed by forming the free Lie alge-
bra L(M) on M , and taking the Lie triple subsystem B of (L(M), (. , . , . )),
generated by M .

If the ground field has characteristic p and if M consists of two ele-
ments x, y, then it is known that the element

Λp(x, y) = (x + y)p − xp − yp

of F(M) is in fact in L(M). Indeed, Λp(x, y) is a homogenous [. , . ]-
polynomial of degree p, with integer coefficients. Therefore, if p > 2,
Λp(x, y) is a uniquely determined element of B(M). Hence, it makes sense
to define Λp(u, v) whenever u and v are elements of an L.t.s. b over K, as
the image of Λp(x, y) under the homomorphism of B(M) into b sending x
into u, y into v (cf. [Sel67]).

We recall the definition of a restricted Lie algebra (Jacobson).

Definition. A restricted Lie algebra over a field K of prime character-
istic p is a Lie algebra g together with a mapping z 7→ z[p] of b into g
satisfying the identities:

[x, y[p]] = [[x, y] . . . , y︸ ︷︷ ︸
p

];(15)

(αz)[p] = αpz[p];(16)

(y + z)[p] = y[p] + z[p] + Λp(x, y);(17)
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This definition motivates the following

Definition. A restricted Lie triple system over a field K of prime char-
acteristic p is an L.t.s. b together with a mapping z 7→ z[p] of b into b

satisfying the identities:

(x, y[p], z) = (((x, y, y), . . . y, y), y︸ ︷︷ ︸
p

, z);(18)

(αz)[p] = αpz[p];(19)

(y + z)[p] = y[p] + z[p] + Λp(x, y).(20)

The identities (15) and (18) are equivalently expressed by ad(z[p]) =
(ad z)p and Dx,y[p] = D

∆
(p−1)/2
y (x),y

, respectively.

Lemma 3.1. Let g be a restricted Lie algebra over a field of charac-

teristic p > 2. Let us suppose that the linear subspace b of g is closed

under the operations [[A,B], C] and A 7→ A[p]. Then, b is a restricted Lie

triple system with respect to these operations.

Proof. Except for (18), all the defining properties of a L.t.s. can be
checked easily. For (18), we have

(x, y[p], z) = [[x, y[p]], z] = [[[x, y], . . . y︸ ︷︷ ︸
p

], z]

= (((x, y, y), . . . y, y), y︸ ︷︷ ︸
p

, z). ¤

Theorem 3.2. Let b be a restricted L.t.s. over a field of characteris-

tic 3. Then b can be embedded into a restricted Lie algebra g. Moreover,

if dim b = n < ∞, then dim g ≤ n + n2.

Proof. Let us suppose that b is an L.t.s. over a field K of charac-
teristic p = 3. Derivations of Lie triple systems can be defined in the
usual way. In order to modify Jacobson’s embedding method, we need the
concept of [3]-derivations. Let us put

D = {δ ∈ Der(b) | δ(x[3]) = (δ(x), x, x) ∀x ∈ b}.
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First we show that D is a restricted Lie algebra such that Dx,y ∈ D. By
(12), (13) and (18), one has (x, y, z[p]) = ((x, z, z), z, y) − ((y, z, z), z, x).
Therefore, to show that Dx,y ∈ D, we only have to prove the identity

(21) ((x, y, z), z, z) = ((x, z, z), z, y)− ((y, z, z), z, x).

We claim that (21) holds in the free L.t.s. B on the set M = {x, y, z}.
Indeed, B is a subsystem of the free Lie algebra on M , which can be
embedded in the free associative K-algebra F . However, in F (21) becomes

[[x, y], z3] = [[x, z3], y]− [[y, z3], x],

which follows from the Jacobi identity.
Let us now suppose δ, ε ∈ D. We have

δ3(x[3]) = δ(δ(δ(x), x, x)) = (δ3(x), x, x)

+ 2(δ2(x), δ(x), x) + (δ2, x, δ(x)) + (δ(x), x, δ2(x))

= (δ3(x), x, x)

and

[δ, ε](x[3]) = δ(ε(x), x, x)− ε(δ(x), x, x)

= ([δ, ε](x), x, x)− 2(δ(x), ε(x), x)

+ (ε(x), x, δ(x))− (δ(x), x, ε(x))

= ([δ, ε](x), x, x),

whence δ3, [δ, ε] ∈ D and D is a restricted Lie subalgebra of Der(b). Let
us define the vector space g = b⊕D with the operations

[x + δ, y + ε] = δ(y)− ε(x) + [δ, ε] + Dx,y,

(y + ε)[3] = y[3] + ε3 + ε2(y)−Dε(y),y.

(The [3]-map is motivated by Λ3(x, y) = (x, y, y) + (y, x, x).) Jacobson’s
proof shows that (g, [. , . ]) is a Lie algebra and b → g is an embedding of
an L.t.s.

Concerning the [3]-map, a straightforward calculation gives that both
[δ, (y + ε)[3]] and [[[δ, y + ε], y + ε], y + ε] are equal to

δ(y[3]) + δε2(y) + [δ, ε3] + Dδε(y),y + Dε(y),δ(y).
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On the other hand, both [x, (y + ε)[3]] and [[[x, y + ε], y + ε], y + ε] are equal
to

−ε3(x) + (y, ε(y), x) + Dx,ε2(y) + Dx,y[3] .

This yields

[x + δ, (y + ε)[3]] = [[[x + δ, y + ε], y + ε], y + ε],

which proves that g is a restricted Lie algebra. Clearly, if dim b = n < ∞,
then dimD ≤ dim(Der(b)) ≤ n2. ¤

Remark. In [Hod00], the result of the above theorem is obtained for
general prime p > 2 but under the assumption z(b) = {z ∈ b | (z, x, y) = 0
∀x, y ∈ b} = {0}.
3.2. Infinitesimal algebras of formal Bruck loops

In this section, we start using heavily the Bol property of our formal
loops. The applied calculation methods rely on [Nôn61].

Let µi(X,Y ), ei(T ) define a formal Bruck loop, i = 1, . . . , n, and let
us introduce the power series ϕi(X,Y ) = µi(X, µ(Y ,X)).

Lemma 3.3. Assume that K is a field of characteristic 6= 2. Then we

have

(i)
∂µi

∂Xj
(X,0) = δi

j ,
∂µi

∂Y j
(0, Y ) = δi

j ;

(ii)
∂ei

∂T k
(0,0) = −δi

k;

(iii)
∂ϕi

∂Xj
(0,0) = 2δi

j ,
∂ϕi

∂Y j
(0, Y ) = δi

j .

(iv) With the notations χi
k(T ) =

∂ϕi

∂Xk
(0,T ) and ξi

k(T ) =
∂µi

∂Xk
(0, T ), the

matrices (χi
k(T ))i,k and (ξi

k(T ))i,k are invertible over K[[T ]].

Proof. Differentiating the identities

µi(X,0) = Xi, µi(0,Y ) = Y i, ϕi(0,Y ) = Y i,

we get (i) and the second equation of (iii). Differentiating the identity

µi(e(X), µ(X,Y )) = Y i
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by Xk, we have

∂µi

∂Xj
(e(X), µ(X, Y ))

∂ej

∂Xk
(X) +

∂µi

∂Y j
(e(X), µ(X, Y ))

∂µj

∂Xk
(X, Y ) = 0.

Substituting X = Y = 0, we get

∂µi

∂Xj
(0,0)

∂ej

∂T k
(0) +

∂µi

∂Y j
(0,0)

∂µj

∂Xk
(0,0) = 0,

which implies (ii).
For the first equation of (iii), we differentiate both sides of ϕi(X, Y ) =

µi(X, µ(Y , X)) by Xj and put Y = 0. Then we have

(22)
∂ϕi

∂Xj
(X,0) =

∂µi

∂Xj
(X,X) +

∂µi

∂Y j
(X,X),

which gives (iii) by (i).
Finally, by (i) and (iii), if char(K)6=2, then the power series det(ξi

k(T )),
det(χi

k(T )) are invertible elements of the ring K[[T ]], hence the matrices
are invertible over K[[T ]]. ¤

Lemma 3.4. Let us consider the formal loop B over a field K with

char(K) 6= 2. Let us assume that the formal product (µi(X,Y )) of B

satisfies the formal Bol identity (8) and define the elements

ξi
j(Y ) =

∂µi

∂Xj
(0, Y ) ∈ K[[Y ]] and Ek = ξi

k(Y )
∂

∂Y i
∈ Der(K[[Y ]]).

Then the Ek’s span the space V of L-derivations of B; the space V is closed

under the operation [[A, B], C].

Proof. We have to show the last statement only. The abstract Bol
identity (3) is equivalent with the identity t · yx = (t ·xt) · t−1y. Its formal
version is

µi(T , µ(X, Y )) = µi(ϕ(T , X), µ(e(T ), Y )).

Differentiating by T k and putting T = 0 yields

∂µi

∂Xk
(0, µ(X,Y )) =

∂µi

∂Xj
(X,Y )

∂ϕj

∂Xk
(0,X)(23)

− ∂µi

∂Y j
(X, Y )

∂µj

∂Xk
(0, Y ).
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Let us define the K[[X, Y ]]-derivations

Ak = χi
k(X)

∂

∂Xi
,

and put Fk = Ak − Ek. Then (23) can equivalently be written as

(24) Fk(µi(X, Y )) = ξi
k(µ(X, Y )).

Applying (24) several times, we get

[[Fk, F`], Fm](µi) = (FkF`Fm − F`FkFm − FmFkF` + FmF`Fk)(µi)

= FkF`(ξi
m(µ))− F`Fk(ξi

m(µ))

− FmFk(ξi
`(µ)) + FmF`(ξi

k(µ))

= Fk

(
∂ξi

m

∂Y r
(µ)ξr

` (µ)
)
− F`

(
∂ξi

m

∂Y r
(µ)ξr

k(µ)
)

− Fm

(
∂ξi

`

∂Y r
(µ)ξr

k(µ)
)

+ Fm

(
∂ξi

k

∂Y r
(µ)ξr

` (µ)
)

= U i
k`m(µ),

where

U i
k`m(T ) =

∂ξi
m

∂Y r
(T )

∂ξr
`

∂Y s
(T )ξs

k(T )− ∂ξi
m

∂Y r
(T )

∂ξr
k

∂Y s
(T )ξs

` (T )

− ∂ξi
`

∂Y r
(T )

∂ξr
k

∂Y s
(T )ξs

m(T ) +
∂ξi

k

∂Y r
(T )

∂ξr
`

∂Y s
(T )ξs

m(T )

− ∂2ξi
`

∂Y r∂Y s
(T )ξs

m(T )ξr
k(T )+

∂2ξi
k

∂Y r∂Y s
(T )ξs

m(T )ξr
` (T )∈K[[T ]].

On the other hand, straightforward calculation gives

(25) [[Ek, E`], Em] = U i
k`m(Y )

∂

∂Y i
,

for the series U i
k`m(Y ) with k, `,m = 1, . . . , n. Moreover, the invertibility

of the matrices (χi
k(T ))i,k and (ξi

k(T ))i,k implies the existence of elements
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wi
k`m(T ), w̄i

k`m(T ) ∈ K[[T ]] such that

[[Ek, E`], Em] = wi
k`m(Y )Ei,(26)

[[Ak, A`], Am] = w̄i
k`m(X)Ai

hold for all k, `,m = 1, . . . , n. (25) and (26) imply

U i
k`m(Y ) = wj

k`m(Y )ξi
j(Y ).

Combining this with [[Fk, F`], Fm](µi) = U i
k`m(µ), we obtain

(27) [[Fk, F`], Fm](µi(X,Y )) = wj
k`m(µ(X, Y ))ξi

j(µ(X, Y )).

By [Ak, E`] = 0, we have

(28) [[Fk, F`], Fm](µi) = w̄j
k`m(X)Aj(µi)− wj

k`m(Y )Ej(µi).

Using Lemma 3.3, we get

(29)

Aj(µi(X, Y ))|X=0 = χs
j(0)

∂µi

∂Xs
(0, Y ) = 2ξi

j(Y ),

Aj(ϕi(X, Y ))|X=0 = χs
j(0)

∂ϕi

∂Xs
(0, Y ) = 2χi

j(Y ),

Ej(µi(X, Y ))|X=0 = ξs
j (Y )

∂µi

∂Y s
(0, Y ) = ξi

j(Y ).





(29) can be applied to substitute X = 0 in (28):

(30) [[Fk, F`], Fm](µi(X, Y ))|X=0

= 2w̄j
k`m(0)ξi

j(Y )− wj
k`m(Y )ξi

j(Y ).

Substituting X = 0 in (27), we obtain

(31) [[Fk, F`], Fm](µi(X,Y ))|X=0 = wj
k`m(Y )ξi

j(Y ).

Now, if we compare (30) with (31) and use the invertibility of (ξi
k(T ))i,k,

we obtain the final result

(32) wj
k`m(Y ) = w̄j

k`m(0) = wj
k`m(0) ∈ K

for all k, `, m, j = 1, . . . , n. ¤
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Lemma 3.5. Let us use the assumptions and notation of Lemma 3.4.

If char(K) = p > 0, then the space V of L-derivations is closed under the

operation A 7→ Ap.

Proof. The equation (24) gives by induction, that for any m > 0,
there exist formal power series U i

k(µ) such that

Fm
k (µi) = U i

k(µ) and Em
k (Y i) = U i

k(Y )

hold for all i, k = 1, . . . , n. Put m = p, then Ep
k is a derivation and

Ep
k = U i

k(Y ) ∂
∂Y i . Moreover, from Lemma 3.3(iv) follows the existence of

power series wj
k(Y ) ∈ K[[Y ]] with

Em
k = wj

k(Y )Ej .

Thus,

(33) Fm
k (µi) = wj

k(µ)ξi
j(µ).

Still using Lemma 3.3(iv), we can put Ap
k = w̄i

k(X)Ak for some series
w̄i

k(X) ∈ K[[X]]. By [Ak, Ek] = 0, we have

(34) F p
k (µi) = Ap

k(µi)− Ep
k(µi) = w̄j

k(X)Aj(µi)− wj
k(Y )Ej(µi).

Setting X = 0 in (33) and (34) and applying (29), we obtain

wj
k(Y )ξi

j(Y ) = 2w̄j
k(0)ξi

j(Y )− wj
k(Y )ξi

j(Y ),

which gives
wi

k(Y ) = w̄i
k(0) = wi

k(0) ∈ K

for all i, k = 1, . . . , n. ¤

Theorem 3.6. The space of formally invariant derivations of a formal

Bruck loop forms a Lie triple system. Moreover, if the characteristic of the

ground field is p > 2, then the Lie triple system is restricted.

Proof. Since the space of derivations is an associative algebra, the
statements follow immediately from Lemma 3.1, Lemma 3.4 and Lem-
ma 3.5. ¤

We are now able to formulate our main result on the tangent structure
of algebraic Bruck loops.
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Theorem 3.7. Let L be an algebraic Bruck loop over an algebraically
closed field K with char(K) 6= 2. We define the tangent algebra l of L
as the space of derivations {Dα | α ∈ Te(L)} of K(L). Then l is a Lie
triple system with respect to the operation [[Dα, Dβ ], Dγ ]. Moreover, if
char(K) = p > 0, then the map Dα 7→ Dp

α makes l into a restricted Lie
triple system.

Proof. We keep using the notation of Section 2. By Lemma 2.5,
the correspondence Dα ↔ akEk defines an isomorphism between l and the
space V spanned by the Ek’s. Hence, Theorem 3.6 implies the theorem.

¤
3.3. The infinitesimal formal associator

Let us consider a system of power series µi(X, Y ), ei(T ) defining a
formal Bruck loop. Let us assume that ei(T ) = −T i holds. This and the
automorphic inverse property together imply that the series µi to has the
form

(35) µi(X, Y ) = Xi + Y i + µi
3(X, Y ) + o(5),

where µi
3(X, Y ) is a homogenous polynomial of degree 3 in X1, . . . , Y n.

Moreover, µi
3(X,−X) = 0 and µi

3(−X,−Y ) = −µi
3(X, Y ) hold. We

define the associator series

αi(X,Y ,Z) = µi(µ(µ(X, Y ),Z),−µ(X, µ(Y , Z))).

Now,
αi(0, Y , Z) = αi(X,0, Z) = αi(X, Y ,0) = 0

forces αi(X, Y , Z) to have the form

αi(X,Y , Z) = αi
3(X, Y , Z) + o(5),

where αi
3 is a homogenous polynomial

αi
3(X, Y ,Z) =

n∑

k,`,m=1

ωi
k`m XkY `Zm

of degree 3. Putting 〈x,y, z〉 = αi
3(x, y, z) for the elements x,y, z ∈ Kn,

we get a trilinear map (Kn)3 → Kn. We call 〈. , . , .〉 the infinitesimal formal
associator of the formal loop; it is clear that this concept is the precise
analog of the local analytic construction.
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Proposition 3.8. Let us use the above notation and assumptions for
the power series µi of a formal Bruck loop. Let us identify the vector
spaces Kn and PDer(K[[Y ]]) via the canonical bases

{ε(i) | i = 1, . . . , n} and

{
∂

∂T i

∣∣∣∣
T=0

∣∣ i = 1, . . . , n

}
.

Using this identification, let us define the K-linear map

Φ : Kn → b ≤ Der(K[[Y ]]), x 7→ D̃x.

Then Φ is an isomorphism between the ternary algebras (Kn, 〈. , . , .〉) and
(b, [[. , . ], . ]).

Proof. Concerning the infinitesimal algebra b, we use the notation
of Section 3.2. From ξi

k(0) = δi
k follows that Φ maps the canonical basis

element ε(i) of Kn onto the basis element Ei of b. Let us denote by ωi
k`m

and wi
k`m the structure constants of (Kn, 〈. , . , .〉) and (b, [[. , . ], . ]) in this

basis, respectively. We will show that

(36) wi
k`m = −2ωi

k`m

holds for all k, `,m, i = 1, . . . , n. We remark that this fact is in accordance
with [MS90, p. 419, (8.6)].

Since we have

[[Ek, E`], Em] = U i
k`m(Y )

∂

∂Y i
= wi

k`mEi,

U i
k`m(Y ) = wj

k`mξi
j(Y ) holds, implying

wi
k`m = U i

k`m(0) =
∂2ξi

k

∂Y `∂Y m
(0)− ∂2ξi

`

∂Y k∂Y m
(0),

for µi(X, Y ) does not contain quadratic terms and ∂ξi
j

∂Y s (0) = 0 for all
i, j, s = 1, . . . , n. If we put

µi
3(X, Y ) =

∑

1≤a<b<c≤n

gi
abc(X

a, Xb, Xc, Y a, Y b, Y c),

then we can write

(37) wi
k`m =

∂3gi
abc

∂Xk∂Y `∂Y m
(0)− ∂3gi

abc

∂X`∂Y k∂Y m
(0)
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for {a, b, c} = {k, `, m}.
On the other hand, by (35) we have

(38)

αi(X,Y ,Z) = µi(µ(X, Y ), Z)− µi(X,µ(Y , Z)) + µi
3(µ(X, Y )

+ Z + o(3),−X − µ(Y , Z) + o(3)) + o(5)

= µi(µ(X, Y ), Z)− µi(X,µ(Y , Z))

+ µi
3(µ(X,Y ) + Z,−X − µ(Y , Z)) + o(5)

= µi(X,Y ) + Zi + µi
3(µ(X, Y ), Z)−Xi − µi(Y , Z)

− µi
3(X, µ(Y ,Z)) + µi

3(X + Y + Z + o(3),

−X − Y −Z + o(3)) + o(5)

= µi
3(X, Y ) + µi

3(X + Y + o(3), Z)

− µi
3(Y ,Z)− µi

3(X, Y + Z + o(3)) + o(5)

= (dµi
3)(X, Y , Z) + o(5),

where the operator d associates the function

(df)(X,Y, Z) = f(X + Y, Z) + f(X, Y )− f(X, Y + Z)− f(Y, Z)

to a function f(X, Y ). Thus, we obtain

(39) αi
3(X, Y ,Z) = (dµi

3)(X,Y ,Z) =
∑

1≤a<b<c≤n

(dgi
abc)(X

a, . . . , Zc).

Now, by (37) and (39), all we have to show is the following statement:

(∗) For all a, b, c with 1 ≤ a < b < c ≤ n, the coefficient of XkY `Zm

in dgi
abc is

−1
2

(
∂3gi

abc

∂Xk∂Y `∂Y m
(0)− ∂3gi

abc

∂X`∂Y k∂Y m
(0)

)

for all k, `,m with {k, `, m} = {a, b, c}.
However, we should not forget that the series µi defines a formal Bruck
loop. With the help of calculations of type (38), we get

(40) (d′µi
3)(X, Y , Z) = 0



108 Gábor P. Nagy

from the formal Bol identity, where the operator d′ associates the function

(d′f)(X,Y, Z) = f(2X + Y, Z) + f(X, Y + X) + f(Y, X)

− f(X, Y + X + Z)− f(Y, X + Z)− f(X, Z)

to a function f(X, Y ). For any 1 ≤ a, b, c ≤ n, putting Xj = Y j = Zj = 0
for all j 6∈ {a, b, c}, we obtain

(d′gi
abc)(X

a, Xb, Xc, Y a, Y b, Y c, Za, Zb, Zc) = 0.

Conversely, if d′gi
abc = 0 holds for all 1 ≤ a, b, c ≤ n, then (40) is satis-

fied. Using a short “Maple V” program, one can see that the homogenous
polynomial gi

abc satisfies d′gi
abc = 0 if and only if it has the form

s1 (Xa Xb Y a + Xb Y a2) + s2 (−Xa (Y c)2 + 2 Xc Y a Y c + (Xc)2 Y a)

+ s3 (Xc (Y c)2 + (Xc)2 Y3) + s4 (2 Xc Y b Y c −Xb (Y c)2 + (Xc)2 Y b)

+ s5 (−Xa (Y b)2 + 2 Xb Y a Y b + (Xb)2 Y a)

+ s6 ((Xb)2 Y c −Xc (Y b)2 + 2 Xb Y b Y c)

+ s7 ((Xb)2 Y b + Xb (Y b)2) + s8 (Xa (Y a)2 + (Xa)2 Y a)

+ s9 (−Xc (Y a)2 + 2 Xa Y a Y c + (Xa)2 Y c)

+ s10 (Xa Xb Y a + (Xa)2 Y b + 2 Xa Y a Y b)

+ s11 (−Xc Y a Y b + Xa Xb Y c + Xa Y b Y c + Xb Y a Y c)

+ s12 (Xa Xb Y b + Xa (Y2)2)

+ s13 (Xa Xc Y a + Xc (Y a)2) + s14 (Xa (Y c)2 + Xa Xc Y c)

+ s15 (Xa Xc Y b + Xc Y a Y b −Xb Y a Y c + Xa Y b Y c)

+ s16 (Xb Y a Y c −Xa Y b Y c + Xc Y a Y b + Xb Xc Y a)

+ s17 (Xb Xc Y c + Xb (Y c)2) + s18 (Xc (Y b)2 + Xb Xc Y b)

with s1, . . . , s18 ∈ K. Some more (symbolic, thus programmable) calcula-
tion gives that polynomials of the above form satisfy (∗). ¤



Tangential structure of formal Bruck loops 109

4. The Cartier duality of formal Bruck loops

In this section, we extend the definition given in Section 2 for formal
loops. The new definition enables us to prove a functorial equivalence
between the category of (restricted) Lie triple systems and a certain sub-
category of the category of formal Bruck loops of characteristic 0 and 3.
Our construction generalizes an analogous result of P. Cartier [Car62,
Théorème 3, 4] on (restricted) Lie algebras and formal groups.

4.1. Generalized formal loops

In Section 2, we defined a formal loop as an n-tuple µ(X,Y ) =
(µi(X, Y )) of elements of the ring K[[X, Y ]] of formal powers in 2n vari-
ables. In this case, the ring K[[T ]] (T = (T 1, . . . , Tn)) of formal power
series in n variables took over the role of the ring of the regular functions
of an algebraic loop. For this reason, we will call K[[T ]] the function ring
of the formal loop µ(X,Y ).

From now on, the definition of formal loops remains unchanged if
the ground field K has characteristic 0. However, if chr(K) = p > 0,
then we allow the ring K[[T ]]/I as formal function ring as well, where
the ideal I / K[[T ]] is generated by elements of the form (T j)pk

with j ∈
{1, . . . , n} and k ≥ 1. This means that the power series µi(X,Y ) defining
the formal product are elements of the ring K[[X, Y ]]/J , where the ideal
J is generated by the elements (Xj)pk

, (Y j)pk

with the above indices j, k.
In the following, the function ring of a formal loop will still be denoted

by K[[T ]], where (T j)pk

= 0 is allowed when chr(K) = p > 0. We will say
that the formal loop has height h if (T i)ph+1

= 0 holds for all i ∈ {1, . . . , n}.
If there exists no positive integer h with this property, then we speak of a
formal loop of infinite height (cf. [Die73, Chapter II]).

Clearly, the concepts of derivation, point derivation, tangent algebra
and formal Bruck loop can be taken over to this extended definition with-
out any difficulty. The most important results concerning formal Bruck
loops, like the Lemmas 3.4, 3.5, 2.2 and Proposition 3.8, remain true.

There is another, more abstract way to define formal loops in the
above sense; this was done for formal groups by P. Cartier [Car62] and
J. Dieudonné [Die73]. Their definition is based on the properties of the
function ring A = K[[T ]]. On the one hand, A is clearly a commutative,
associative algebra over the field K. Moreover, A is a local ring with unique
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maximal ideal M = (T 1, . . . , Tn). Introducing the M-adic topology on A,
it turns out to be a linearly compact vector space with continuous algebra
operations. One can deduce from [Car62, Théorème 2] and [Die73, Chap-
ter II] that these properties (linearly compact, commutative, associative
local algebra) characterize the rings K[[T ]]/I, where I = 0 if chr(K) = 0
and I is as above if chr(K) = p > 0.

Let us now consider the category ALCK of linearly compact, commu-
tative, associative local K-algebras. Morphisms are the continuous algebra
homomorphisms, and the sum of the objects A and B can be defined as
follows. We endow the vector space A⊗B with the tensor product topol-
ogy and construct the completed tensor product A ⊗̂B as the topological
completion of A⊗B via Cauchy sequences.

Finally, we can put on A the structure of a formal loop using the
concept of comultiplication, which is a continuous homomorphism

c : A → A ⊗̂A

and that of counit (or augmentation), which is a continuous homomor-
phism

γ : A → K,

sending both homomorphisms unit to unit.
In the original definition, for A = K[[T ]]/I we have

A ⊗̂A = K[[X, Y ]]/J

(I and J defined as above) and the comultiplication is induced by the map
T i 7→ µi(X, Y ).

The associativity of the formal loop (i.e., formal groups) translates to
the following commutative diagram:

A
c−−−−→ A ⊗̂A

c
y

y c⊗ 1

A ⊗̂A −−−−→
1⊗c

A ⊗̂A ⊗̂A

Other loop identities can be expressed by diagrams, too. However, even
simple looking loop identities produce rather complex diagrams. For ex-
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ample, the loop identity x(xy) = x2y has diagram

A
c−−−−→ A ⊗̂A

c⊗1−−−−→ A ⊗̂A ⊗̂A

c
y

y µ⊗ 1

A ⊗̂A −−−−→
1⊗c

A ⊗̂A ⊗̂A −−−−→
µ⊗1

A ⊗̂A

In the rest of this section, we will use the naive concept of formal loops
and groups.

4.2. Cartier duality of formal groups

The functorial equivalence between the category of Lie algebras (re-
stricted Lie algebras) and the category of formal groups (formal groups of
height 0) goes as follows.

Theorem 4.1 (Cartier). Let K be a field and let us denote the Lie

algebra of the formal group G by L(G).

a) If chr(K) = 0, then L is an equivalence between the category of

formal K-groups and the category of Lie algebras over K.

b) If chr(K) = p > 0, then L is an equivalence between the category

of formal K-groups of height 0 and the category of restricted Lie algebras

over K.

Proof. See [Car62, Théorème 3,4]. ¤

Using the formal Campbell-Hausdorff series of Lie groups, part a) of
the theorem can be shown immediately. However, the proof of part b)
requires higher algebra. The idea is the following. Let g be a restricted
Lie algebra over the field K with chr(K) = p > 0, and let B = {b1, . . . , bn}
be a basis of g. Then, the restricted universal associative algebra Up(g) is
a finite dimensional K-space with basis

{bs1
1 · · · bsn

n | 0 ≤ s1, . . . , sn < p}

(see [Sel67, Theorem I.3.2]). One can introduce a cocommutative, coasso-
ciative comultiplication on the associative algebra Up(g) by extending the
map

g → g⊕ g, x 7→ x⊕ x
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into a map Up(g) → Up(g⊕ g) = Up(g)⊗Up(g). Similarly, the trivial map
g → 0 extends to a counit Up(g) → K.

Now, if we consider the dual vector space A = Up(g)∗, A turns out
to be a finite dimensional, commutative, associative algebra with unit,
coassociative comultiplication and counit. The basis of the dual space A

(symbolically) can be written in the form

{(T 1)s1 · · · (Tn)sn | 0 ≤ s1, . . . , sn < p}.

One shows that the commutative algebra structure of A is such that A is
isomorphic to the ring K[[T 1, . . . , Tn]]/((T 1)p, . . . , (Tn)p) of formal power
series of height 0 (cf. [Die73, Chapter II, §1, No. 4]). Finally, the images
µi(X, Y ) of the generating elements T i under the comultiplication map
A → A⊗A = K[[X, Y ]]/((Xi)p, (Y j)p) define the formal group G we were
looking for. The coassociativity of the comultiplication is equivalent to the
formal associativity of G.

4.3. The generalization of the Cartier duality

In this section, we generalize Theorem 4.1 for the category of formal
Bruck loops. Since our result uses heavily the embeddings of the tangen-
tial L.t.s. of the formal Bruck loop (cf. Theorem 3.2), we have to restrict
ourselves to the case chr(K) ∈ {0, 3}. However, a proof of Theorem 3.2
for the case chr(K) > 3 would immediately imply the full generality of
Theorem 4.2.

Let K be a field of characteristic 0 (characteristic 3) and let us denote
by L(B) the tangent (restricted) L.t.s. of the formal Bruck loop B.

Theorem 4.2. a) If chr(K) = 0, then L is an equivalence between

the category of formal Bruck loops over K and the category of Lie triple

systems over K.

b) If chr(K) = 3, then L is an equivalence between the category of

formal Bruck loops of height 0 over K and the category of restricted Lie

triple systems over K.

Proof. Since the construction of the tangent algebra of a formal
Bruck loop B is natural, the non-trivial part of the proof is to obtain the
inverse of L, that is, to find the formal loop of a given (restricted) L.t.s.

In [Nag99], we showed the existence of a Campbell–Hausdorff formula
of local analytic Bruck loops. This means that if B is a local analytic
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Bruck loop with tangent L.t.s. (b, (. , . , . )), then we have the following:
Identifying the unit element of B with 0 we can choose an appropriate
coordinate system on B in such a way that in a neighborhood U of the unit
element, the local multiplication of B is given by the absolutely convergent
series

(41)
∞∑

k=0

d2k+1(X,Y ),

where X, Y ∈ U and d2k+1(X, Y ) is a homogenous (. , . , . )-polynomial of
degree 2k + 1. Moreover, the (. , . , . )-polynomials are universal and the
coefficients are rational numbers not depending on B or b.

Now, if chr(K) = 0, then Q ⊂ K and we can take the series (41)
as a formal power series over K in n = dim b variables and forget about
convergence in order to obtain part a) of the theorem for any field K of
characteristic 0. (On local analytic Bruck loops and their expansions see
also [MS90], [NS98] and [Fig99].)

Let us now assume chr(K) = 3 and let b be a restricted L.t.s. over K.
In Theorem 3.2, we have shown that b can be embedded in a restricted
Lie algebra g of finite dimension. Moreover, we had the vector space
decomposition g = b ⊕ D, where D was a restricted Lie subalgebra of g,
consisting of derivations of b.

We define the map

σ : g → g, x + δ 7→ −x + δ (x ∈ b, δ ∈ D).

A direct calculation gives that σ is an involutorial automorphism of g.
Then, σ can be lifted to an involutorial automorphism of the restricted
universal associative algebra U3(g) of g. We denote this algebra auto-
morphism also by σ. As we explained in the previous section, U3(g) is
an associative algebra with a cocommutative, coassociative comultiplica-
tion and a counit. Clearly, σ is an automorphism with respect to the
co-operations, too.

Let us consider the dual algebra A = (U3(g))∗ together with the dual
(algebra and coalgebra) automorphism σ∗. As before, the commutative,
associative algebra A is isomorphic to K[[T 1, . . . , Tn]/((T i)3), the comul-
tiplication, antipodism (=coinverse) and the dual automorphism σ∗ are
given by the maps

T i 7→ µi(X, Y ), ei(T ), si(T ),

respectively. Clearly, we have si(s(T )) = T i.



114 Gábor P. Nagy

Lemma 4.3. By an appropriate change of coordinates, the series ei

and si can be brought to the form ei(T ) = −T i and si(T ) = ±T i.

Proof. By Lemma 2.2, we can assume that e(T ) = −T . Let us
define the matrix D = (di

j) by di
j = ∂si

∂T j (0), that is,

si(T ) =
∑
j

di
jT

j +
∑

terms of degree ≥ 2 w.r.t. T i

and D2 = 1. We define the system of power series ui(T ) by

u(T ) = s(T ) + DT .

One gets u(s(T )) = Du(T ) immediately. On the other hand, u(T ) has
non-zero Jacobian. Thus, the map T i 7→ ui(T ) induces an automorphism
of A which is a change of coordinates yielding s(T ) = DT . Now, by
D2 = 1, a linear substitution gives si(T ) = ±T i.

Finally, we have to show that the change of coordinates, induced by
T i 7→ ui(T ) does not affect the form of ei(T ) = −T i. Indeed, since s is an
automorphism w.r.t. the antipodism e, we have

u(−T ) = s(−T )−DT = −s(T )−DT = −u(T ). ¤

We suppose now that a formal group G = (µi(X, Y )) on A is given
such that ei(T ) = −T i (i = 1, . . . , n), si(T ) = −T i (i = 1, . . . , m) and
si(T ) = T i (i = m + 1, . . . , n) hold. It follows from Cartier’s Theorem 4.1
that the tangent algebra of G is the restricted Lie algebra g. Clearly, the
automorphism σ∗ = s of G induces an involutorial automorphism ds of
g and g decomposes into g = g− ⊕ g+. Moreover, since the induced Lie
algebra automorphism ds is the original σ, we have g− = b and m = dim b.

Following Glauberman [Gla64], to any 2-divisible group one can
associate a 2-divisible Bruck loop with operation

x ◦ y = x
1
2 · yx

1
2 .

In the next lemma, we copy this trick for the formal case.

Lemma 4.4. Let the series (µi(X,Y )) define a formal group G with

formal square root operation (νi(T )) and tangent (restricted) Lie algeba g.

Then the series

µ̂i(X, Y ) = µi(ν(X),µ(Y , ν(X)))
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defines a formal Bruck loop Ĝ such that

a) the inversion e and any automorphism of G are automorphisms

of Ĝ.

b) the tangent L.t.s. ĝ of Ĝ is isomorphic to (g, [[. , . ], . ]).

c) If chrK > 0, then ĝ and (g, [[. , . ], . ]) are isomorphic as restricted

Lie triple systems.

Proof. The fact that (µ̂i(X, Y )) is a formal Bruck loop can be
shown by the same steps that one uses to check the properties of the
operation x ◦ y = x

1
2 · yx

1
2 , cf. [Gla64], [MS90] or [NS02]. Part a) follows

immediately.
The tangent (restricted) Lie algebra g of G is spanned by the deriva-

tions

Ek = ξi
k(Y )

∂

∂Y i
, ξi

k(Y ) =
∂µi

∂Xj
(0,Y ),

which is clearly a (restricted) L.t.s. with respect to the operation
[[A,B], C].

The tangent algebra of Ĝ is spanned by the derivations

Êk = ξ̂i
k(Y )

∂

∂Y i
, ξ̂i

k(Y ) =
∂µ̂i

∂Xj
(0,Y ).

Following the notation of Section 3.2, we have

ϕi(X,Y ) = µi(X, µ(Y , X)),

χi
k(Y ) =

∂ϕi

∂Xj
(0,Y ), Ak = χi

k(X)
∂

∂Xi
.

Moreover, since G satisfies the formal Bol identity (3), the proof of Lem-
ma 3.4 shows that the spaces of derivations spanned by {Ek} and {Ak}
are isomorphic with respect to the operation [[A,B], C] (cf. (26) and (32)).

On the other hand µ̂(X,Y ) = ϕ(ν(X),Y ), thus, by ν(T ) = 1
2T +. . .

ξ̂i
k(Y ) =

1
2
χi

k(Y )

holds. Hence, the map

gi(Y )
∂

∂Y i
7→ 2gi(X)

∂

∂Xi
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is an isomorphism between ĝ and the space spanned by {Ak}. Hence ĝ

and (g, [[. , . ], . ]) are isomorphic too, which proves b).
We can argue similarly to see that the [3]-maps are isomorphic, too.

¤
Using this lemma, we define the formal Bruck loop Ĝ = (µ̂i(X, Y ))

of G. All we have to show is that Ĝ has a formal subloop whose tangent
space is the subspace b = g−. The theory of formal subloops is rather
well elaborated and we do not intend to go into details, the problem can,
however, be solved very easily.

Lemma 4.5. The equations Tm+1 = · · · = Tn = 0 define a formal

subloop of Ĝ whose tangent algebra is b.

Proof. All we have to show is that the “space” Tm+1 = · · · = Tn = 0
is closed under µ̂. Let us put X0 = (X1, . . . , Xm, 0, . . . , 0) and Y0 =
(Y 1, . . . , Y m, 0, . . . , 0) and show

µ̂t(X0, Y0) = 0, t = m + 1, . . . , n.

Indeed, since e and s are automorphisms of Ĝ, we have

−µ̂t(X0, Y0) = et(µ̂(X0, Y0)

= µ̂t(−X0,−Y0) = µ̂t(s(X0), s(Y0))

= st(µ̂(X0, Y0)) = µ̂(X0,Y0)

for any t ∈ {m + 1, . . . , n}, which implies µ̂t(X0, Y0) = 0. ¤
This finishes the proof of Theorem 4.2.

Remark. Obviously, a generalization of Theorem 3.2 together with the
above proof would imply the proof of the preceding theorem for general
characteristic p > 0.

4.4. An interesting example

The method explained so far can be applied to calculate the formal
Bruck loop of height 0 of a given restricted L.t.s. Now we do the calculation
for an example which has some interest if one consider a special class of
algebraic Bruck loops, namely the algebraic commutative Moufang loops.

The tangent L.t.s. of such loops satisfy an infinite set of equations,
which also imply the nilpotency of the systems. The simplest of these
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identities is (X, Y, Y ) = 0, which is equivalent with saying that the ternary
operation (X, Y, Z) alternates. If chrK 6= 3, then by (13) the L.t.s. is
trivial.

However, there are non-nilpotent alternating Lie triple systems: Let
K be a field of characteristic 3, and let us define the structure constants

w3
123 = −w3

132 = w3
231 = −w3

213 = w3
312 = −w3

321 = 1

and wi
k`m = 0 for all other k, `,m, i ∈ {1, 2, 3}. Let {e1, e2, e3} be a basis

of a vector space l over K and let us define the trilinear operation by

(ek, e`, em) = wi
k`mei.

With the trivial [3]-map, l becomes an alternating restricted L.t.s., which
is solvable but not nilpotent. (And hence, it is not the tangent algebra of
a formal commutative Moufang loop.)

The following formal Bruck loop of height 0 has l as its tangent L.t.s.
We constructed this example by using the method of the proof of 4.2. The
calculations were done with the computer algebra program GAP4 [Gro98].




X1 + Y1

X2 + Y2

X3 + Y3 + (X1 − Y1)(X2Y3 −X3Y2) + µ5(X, Y ) + µ7(X, Y )




µ5(X, Y ) = −X2
1 X2

2 Y3 + X2
1 X2 X3 Y2 + X1 X2

2 X3 Y1 −X1 X2
2 Y1 Y3

+ X1 X2 X3 Y1 Y2 + X2
2 X3 Y 2

1 −X2
2 Y 2

1 Y3 + X2 X3 Y 2
1 Y2

µ7(X, Y ) = −X2
1 X2

2 X3 Y1 Y2.
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