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Note on metric spaces and continuous functions

By JACEK TABOR (Kraków)

Abstract. W. Ring, P. Sch�opf and J. Schwaiger showed in [RSS] that if E
is a finite dimensional normed space then a function f : E → R is continuous iff f ◦ γ
is continuous for every regular curve γ : [0, 1] → E.

We investigate a similar problem for metric spaces and the class of Lipschitz curves.

1. Introduction

W. Ring, P. Schöpf and J. Schwaiger constructed in [RSS] an
example of a not continuous function f : R2 → R such that f ◦ γ is
continuous for every analytic curve γ : (−1, 1) → R2. They also showed
that if instead of analytic we take regular curves, such a function does not
exist. In view of the above results the following general problem appears:

Problem 1. Let X,T be metric spaces, let Γ be a family of functions
from T into X. We assume that f : X → R is such that f ◦γ is continuous
for every γ ∈ Γ. Does this imply that f is continuous?

In this paper we investigate the above problem in few cases.
Let us first consider as an illustration the case when X is an arbitrary

metric space, T denotes the set {0} ∪⋃
n∈N{ 1

n}, and Γ denotes the space
of all continuous functions from T into X.

Let f : X → R be arbitrary. We assume that f ◦ γ is continuous for
every γ ∈ Γ. We show that then f is continuous. For an indirect proof,
let us assume that this is not the case. Then there exists an x0 ∈ X and a
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sequence {xn} convergent to x0 such that the sequence {f(xn)} does not
converge to f(x0). We define γ ∈ Γ by

γ(0) = x0, γ
(

1
n

)
= xn.

One can now easily notice that f ◦ γ is not continuous, a contradiction.
Let us now consider a situation when T = [0, 1] and Γ is the space of

all continuous functions from T into X. Under no additional assumption
on X the answer to Problem 1 is negative. It is sufficient to put X =
{0} ∪ ⋃

n∈N{ 1
n}. Then every γ ∈ Γ is constant, which means that f ◦ γ

is continuous for every f : X → R. However, there exist non-continuous
functions on X.

As shows the following result, under reasonable assumption on X the
answer to Problem 1 is positive.

Theorem 1. Let X be a locally arcwise connected metric space, and

let T = [0, 1]. Let f : X → R. If f ◦ γ is continuous for every continuous

function γ : T → X then f is continuous.

Proof. For an indirect proof let us assume that there exists an x0 ∈
X such that f is not continuous at x0.

Since X is locally arcwise connected for every n ∈ N there exists
rn < 1

n such that each two points from B(x0, rn) can be connected by an
arc contained in B(x0,

1
n ). Without loss of generality we may assume that

{rn} is a decreasing sequence.
Since f is not continuous at x0 there exists a sequence {xn} convergent

to x0 such that xn ∈ B(x0, rn) and

lim inf
n→∞

|f(xn)− f(x0)| > 0.

Then for every n ∈ N there exists a continuous curve γn : [0, 1] → B(x0,
1
n )

such that γn(0) = xn+1, γn(1) = xn. We define a continuous function
γ : [0, 1] → X by

γ(t) :=





γn(2nt− 1) for t ∈
[

1
2n

,
1

2n−1

]
, n ∈ N,

x0 for t = 0.

We obtain a contradiction since f ◦ γ is not continuous at 0. ¤
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Now let us consider as Γ the set of all Lipschitz mappings from T =
[0, 1] into X. Then the assumption that X is locally arcwise connected
does not guarantee a positive solution to Problem 1. As an example one
can take as X the graph of an arbitrary continuous nowhere differentiable
function f : [0, 1] → R. Then X is locally connected. As there are no
non-constant Lipschitz functions γ : [0, 1] → X, g ◦ γ is continuous for
every function g : X → R. This suggests that the assumption that X is
a locally arcwise connected is too weak, since there there may not exist
nontrivial Lipshcitz functions from [0, 1] into X. The following definition
is an analogue of the definition of locally arcwise connected spaces for
Lipschitz curves.

Definition 1. Let X be a metric space. We say that X is locally
Lipschitz connected if for every point x ∈ X and R > 0 there exists an
r > 0 such that each points from B(x, r) can be connected by a Lipschitz
arc in B(x,R).

It occurs that even this property is two weak to guarantee the positive
solution to Problem 1. We have the following result.

Theorem 2. There exists a compact locally Lipschitz connected met-

ric space X ⊂ R2 and a not continuous function f : X → R such that f ◦γ

is continuous for every Lipschitz function γ : [0, 1] → X.

Proof. We put r(x) := |x− round(x)|, where round(x) denotes the
nearest integer to x. For n ∈ N we define the function gn : [0, 1

2n ] → R2 by

gn(x) :=

(
1
2n

+
1
2n

√
1− 1

4n
r(4nx), x

)

and put

Xn := gn

([
0,

1
2n

])
, Y := {(x, 0) : x ∈ [0, 1]}.

One can easily check that the gn is chosen so that the length of the curve
gn is exactly 1. We put X =

⋃
n≥0 Xn ∪ Y (see picture below).

Clearly X is locally Lipschitz connected.
Let fn : Xn → R be defined by

fn(gn(x)) = 2nx for x ∈
[
0,

1
2n

]
.



122 Jacek Tabor

Figure 1: Set X

We also define f0 : Y → R by f0 ≡ 0. Let f =
⋃

n≥0 fn. Then f : X → R
is clearly not continuous at (0, 0).

Let γ : [0, 1] → X be a Lipschitz function. We show that f ◦ γ is
continuous. The function f ◦γ is obviously continuous in the neighborhood
of every t ∈ [0, 1] such that γ(t) 6= (0, 0). We check what happens in the
neighborhood of (0, 0).

Let

kn := sup
{

x ∈
[
0,

1
2n

]
: gn(x) ∈ γ([0, 1])

}
.

By the definition of gn the length of the part of γ contained in Xn is greater
then 2nkn, which implies that the length of γ is greater then

∑
n 2nkn.

Since length of γ is finite this yields that 2nkn converges to zero. By (1)
this yields that the function f restricted to the set

Xγ =
⋃

n≥0

{gn(x) : x ∈ [0, kn]} ∪ Y

is continuous. As γ([0, 1]) ⊂ Xγ , this implies f ◦ γ is continuous. ¤
The reason why such an example can be constructed is that although

(0, 0) can be connected with every point x of X by a Lipschitz curve γx,
the Lipschitz constant of γx (as a function of x) is not bounded from above.
This leads to the following definition.

Definition 2. Let X be a metric space. We say that X is uniformly
locally Lipschitz connected if for every point x ∈ X and R > 0 there exist
r > 0, L > 0 such that each points from B(x, r) can be connected by a
Lipschitz arc in B(x,R) with Lipschitz constant smaller then L.



Note on metric spaces and continuous functions 123

We omit the proof of the following result since it is analogous to that
of Theorem 1.

Theorem 3. Let X be a uniformly locally Lipschitz connected metric

space, and let T = [0, 1]. Let f : X → R. If f ◦ γ is continuous for every

Lipschitz function γ : T → X then f is continuous.
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