On \boldsymbol{q}-multiplicative functions

By K.-H. INDLEKOFER (Paderborn), I. KÁTAI (Budapest) and Y.-W. LEE (Paderborn)

Abstract

The analogon of Delange's theorem for q-multiplicative functions is investigated for some subsets of integers.

1. Introduction

Let $q \geq 2$ be an integer and $\mathbb{A}=\{0,1, \ldots, q-1\}$. We shall use the standard notations: $\mathbb{N}, \mathbb{N}_{0}, \mathbb{Z}, \mathbb{R}, \mathbb{C}$, denote the set of positive integers, nonnegative integers, integers, real-numbers, complex numbers, respectively. For $x \in \mathbb{R}$ let $\{x\}$ be the fractional part of x, and $\|x\|$ be the distance of x to the closest integer. The q-ary expansion of some $n \in \mathbb{N}_{0}$ is defined as the unique sequence $\varepsilon_{0}(n), \varepsilon_{1}(n), \ldots$ for which

$$
\begin{equation*}
n=\sum_{j=0}^{\infty} \varepsilon_{j}(n) q^{j}, \quad \varepsilon_{j}(n) \in \mathbb{A} \tag{1}
\end{equation*}
$$

holds. $\varepsilon_{0}(n), \varepsilon_{1}(n), \ldots$ are called the digits in the q-ary expansion of n.
Let \mathcal{A}_{q} be the set of real-valued q-additive functions, and \mathcal{M}_{q} be the set of complex-valued q-multiplicative functions.

A function $f: \mathbb{N}_{0} \rightarrow \mathbb{R}$ belongs to \mathcal{A}_{q}, if $f(0)=0$, and for every $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
f(n)=\sum_{j=0}^{\infty} f\left(\varepsilon_{j}(n) q^{j}\right) . \tag{2}
\end{equation*}
$$

Mathematics Subject Classification: 11A63, 11N99.
Key words and phrases: q-multiplicative functions.

A function $g: \mathbb{N}_{0} \rightarrow \mathbb{C}$ belongs to \mathcal{M}_{q}, if $g(0)=1$, and for every $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
g(n)=\prod_{j=0}^{\infty} g\left(\varepsilon_{j}(n) q^{j}\right) \tag{3}
\end{equation*}
$$

Since $f\left(\varepsilon_{j}(n) q^{j}\right)=0, g\left(\varepsilon_{j}(n) q^{j}\right)=1$ for all those j for which $q^{j}>n$, therefore the number of summands on the right hand side of (2), and the number of factors on the right hand side of (3) is finite.

Let $\overline{\mathcal{M}}_{q}$ be the class of q-multiplicative functions with modulus 1: i.e. $g \in \overline{\mathcal{M}}_{q}$, if g is q-multiplicative and $|g(n)|=1\left(n \in \mathbb{N}_{0}\right)$. Let $e(\alpha)=e^{2 \pi i \alpha}$.

A classical theorem of H. Delange [1] asserts that for $g \in \overline{\mathcal{M}}_{q}$, $N_{x}=\left[\frac{\log x}{\log q}\right]$,

$$
m(x):=\frac{1}{x} \sum_{n<x} g(n)=\prod_{j=0}^{N_{x}-1} \frac{1}{q}\left(\sum_{b \in \mathbb{A}} g\left(b q^{j}\right)\right)+o_{x}(1),
$$

whence he deduced that $\lim _{x \rightarrow \infty}|m(x)|$ always exists and equals

$$
\prod_{j=0}^{\infty}\left|\frac{1}{q} \sum_{b \in \mathbb{A}} g\left(b q^{j}\right)\right|
$$

which is nonzero if and only if

$$
\begin{equation*}
\sum_{b \in \mathbb{A}} g\left(b q^{j}\right) \neq 0 \quad\left(\text { for all } j \in \mathbb{N}_{0}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}} \operatorname{Re}\left(1-g\left(b q^{j}\right)\right)<\infty \tag{5}
\end{equation*}
$$

Furthermore, he proved that $\lim _{x \rightarrow \infty} m(x)$ exists and is nonzero if and only if (4) holds and the series

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-g\left(b q^{j}\right)\right) \tag{6}
\end{equation*}
$$

is convergent.

An interesting problem is to give analogues of Delange's theorem [1], if we sum $g(n)$ on some subsets of the integers. Let $\alpha_{1}, \ldots, \alpha_{k}$ be rationally independent real numbers, i.e. such that $h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}+h_{k+1} \cdot 1=0$ has the only solution $h_{1}=\cdots=h_{k+1}=0$ in integers h_{1}, \ldots, h_{k+1}. Let $I_{j}=\left[u_{j}, v_{j}\right) \subset[0,1)$ be arbitrary proper subintervals of $[0,1)$, let E be the set of those integers n for which

$$
\left\{\alpha_{1} n\right\} \in I_{1}, \ldots,\left\{\alpha_{k} n\right\} \in I_{k}
$$

simultaneously holds.
Let

$$
l(n)= \begin{cases}1 & \text { if } n \in E \\ 0 & \text { if } n \in \mathbb{N}_{0} \backslash E .\end{cases}
$$

Our purpose in this paper is to investigate the sum

$$
M(x):=\sum_{n<x} g(n) l(n)
$$

for $g \in \overline{\mathcal{M}}_{q}$.
We shall prove the following
Theorem 1. $\lim _{x \rightarrow \infty} \frac{|M(x)|}{x}$ always exists. It is nonzero if there exist integers h_{1}, \ldots, h_{k} for which

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}} \operatorname{Re}\left(1-g\left(b q^{l}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{l}\right)\right)<\infty \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{b \in \mathbb{A}} g\left(b q^{l}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{l}\right) \neq 0 \quad l=0,1, \ldots \tag{8}
\end{equation*}
$$

The relation (7) can be satisfied for at most one choice of $h_{1}, \ldots, h_{k} \in \mathbb{Z}$. Assume that (7) holds. Then

$$
\frac{M(x)}{x}=c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}+o_{x}(1)
$$

where

$$
c_{h_{j}}^{(j)}=\frac{e\left(-h_{j} u_{j}\right)-e\left(-h_{j} v_{j}\right)}{2 \pi i h_{j}} \quad \text { if } h_{j} \neq 0
$$

and

$$
c_{0}^{(j)}=\left(v_{j}-u_{j}\right),
$$

furthermore,

$$
S_{h_{1}, \ldots, h_{k}}(x)=\sum_{n<x} g(n) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) n\right) .
$$

$\lim _{x \rightarrow \infty} \frac{M(x)}{x}$ exists if and only if $\lim _{x \rightarrow \infty} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}$ exists. $\lim _{x \rightarrow \infty} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}$ exists if and only if $\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-g\left(b q^{l}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{l}\right)\right)$ is convergent.

2. Proof

Let $f_{j}(j=1, \ldots, k)$ be the function defined in $[0,1)$ by

$$
f_{j}(y)= \begin{cases}1 & \text { if } y \in I_{j}, \\ 0 & \text { if } y \in[0,1) \backslash I_{j},\end{cases}
$$

and extended periodically mod 1 . Then

$$
f_{j}(y) \sim \sum_{m=-\infty}^{\infty} c_{m}^{(j)} e(m y),
$$

where $c_{m}^{(j)}=\frac{e\left(-m u_{j}\right)-e\left(-m v_{j}\right)}{2 \pi i m}$, if $m \neq 0$ and $c_{0}^{(j)}=\left(v_{j}-u_{j}\right)=\left|I_{j}\right|$.
Choosing a small $\Delta>0$, for

$$
f_{j}^{*}(u)=\frac{1}{2 \Delta} \int_{-\Delta}^{\Delta} f_{j}(y+u) d y \sim \sum_{m=-\infty}^{\infty} d_{m}^{(j)}(\Delta) e(m u)
$$

we obtain that $d_{0}^{(j)}(\Delta)=\left|I_{j}\right|$ and $\left|d_{m}^{(j)}(\Delta)\right| \leq \frac{c}{\Delta m^{2}}$, with an absolute positive constant c. Thus the Fourier series is absolutely convergent and represents $f_{j}^{*}(u)$. Let now K be a large integer, $\widetilde{f}_{j}(u)=\sum_{|h| \leq K} d_{h}^{(j)}(\Delta) e(h u)$. Then $\left|f_{j}^{*}(u)-\widetilde{f}_{j}(u)\right| \leq \frac{c}{\Delta K}$, and so

$$
\begin{equation*}
\left|\prod_{j=1}^{k} f_{j}^{*}\left(u_{j}\right)-\prod_{j=1}^{k} \widetilde{f}_{j}\left(u_{j}\right)\right| \leq \frac{c k}{\Delta K}, \tag{9}
\end{equation*}
$$

since $0 \leq f_{j}^{*}\left(u_{j}\right) \leq 1$ holds for $u_{j} \in \mathbb{R}$. We obviously have $l(n)=$ $\prod_{j=1}^{k} f_{j}\left(n \alpha_{j}\right)$. Let $l^{*}(n):=\prod_{j=1}^{k} f_{j}^{*}\left(n \alpha_{j}\right)$ and $\tilde{l}(n):=\prod_{j=1}^{k} \widetilde{f}_{j}\left(n \alpha_{j}\right)$. Let us observe that $f_{j}^{*}(u)=f_{j}(u)$ if $u \notin\left[u_{j}-\Delta, u_{j}+\Delta\right] \cup\left[v_{j}-\Delta, v_{j}+\Delta\right]$. Therefore $l(n)=l^{*}(n)$, except when $\left\{n \alpha_{j}\right\} \in\left[u_{j}-\Delta, u_{j}+\Delta\right] \cup\left[v_{j}-\Delta, v_{j}+\Delta\right]$ for some j. Furthermore $\left|l(n)-l^{*}(n)\right| \leq 1$ always holds.

Let $S(x):=\sum_{n<x} g(n) \tilde{l}(n)$. We have

$$
\begin{aligned}
|M(x)-S(x)| & \leq\left|\sum_{n<x} g(n)(l(n)-\tilde{l}(n))\right| \leq \sum_{n<x}|l(n)-\tilde{l}(n)| \\
& \leq \sum_{n<x}\left|l(n)-l^{*}(n)\right|+\sum_{n<x}\left|l^{*}(n)-\tilde{l}(n)\right|=\sum_{1}+\sum_{2} .
\end{aligned}
$$

From (9) we have that $\sum_{2} \leq \frac{c k x}{\Delta K}$. Furthermore,

$$
\sum_{1} \leq \sum_{j=1}^{k} \sharp\left\{n \leq x \mid\left\{\alpha_{j} n\right\} \in\left[u_{j}-\Delta, u_{j}+\Delta\right] \cup\left[v_{j}-\Delta, v_{j}+\Delta\right]\right\}
$$

and by using that $\alpha_{j} n$ is uniformly distributed $\bmod 1$, we obtain that $\sum_{1} \leq c_{1} k \Delta x$ with an absolute positive constant c_{1} for every large x.

Let us observe furthermore that

$$
S(x)=\sum_{h_{1}, \ldots, h_{k}} d\left(h_{1}, \ldots, h_{k}\right) S_{h_{1}, \ldots, h_{k}}(x)
$$

where h_{1}, \ldots, h_{k} run over the integers in $[-K, K]$,

$$
d\left(h_{1}, \ldots, h_{k}\right)=\prod_{j=1}^{k} d_{h_{j}}^{(j)}(\Delta)
$$

and

$$
S_{h_{1}, \ldots, h_{k}}(x)=\sum_{n<x} g(n) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) n\right) .
$$

Lemma 1. Assume that

$$
\limsup _{x \rightarrow \infty} \frac{|M(x)|}{x}>0 .
$$

Then there are some integers $h_{1}^{*}, \ldots, h_{k}^{*}$ such that

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{c \in \mathbb{A}} \operatorname{Re}\left(1-g\left(c q^{l}\right) e\left(\left(h_{1}^{*} \alpha_{1}+\cdots+h_{k}^{*} \alpha_{k}\right) c q^{l}\right)\right) \tag{10}
\end{equation*}
$$

is convergent.
Proof of Lemma 1. The function $g(n) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) n\right)$ as a function of n belongs to $\overline{\mathcal{M}}_{q}$. If (10) does not hold, then $\frac{\left|S_{h_{1}, \ldots, h_{k}}(x)\right|}{x} \rightarrow 0$ $(x \rightarrow \infty)$ due to DELANGE's theorem [1], and so $\frac{|S(x)|}{x} \rightarrow 0$. Since $\frac{|M(x)|}{x} \leq$ $\frac{|S(x)|}{x}+\frac{|M(x)-S(x)|}{x}$, and the second term is less than $c_{1} k \Delta+\frac{c k}{\Delta K}$, therefore

$$
\begin{equation*}
\limsup _{x \rightarrow \infty} \frac{|M(x)|}{x} \leq c_{1} k \Delta+\frac{c k}{\Delta K} . \tag{11}
\end{equation*}
$$

This inequality holds for each $\Delta>0$ and each $K>0$. By letting $K \rightarrow \infty$, then $\Delta \rightarrow 0$, we obtain that

$$
\limsup _{x \rightarrow \infty} \frac{|M(x)|}{x}=0 .
$$

Lemma 2. The relation

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}} \operatorname{Re}\left(1-g\left(b q^{j}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{j}\right)\right)<\infty \tag{12}
\end{equation*}
$$

may hold at most for one collection of integers h_{1}, \ldots, h_{k}.
Proof of Lemma 2. The relation (12) is equivalent to

$$
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}}\left\|\frac{\arg g\left(b q^{j}\right)}{2 \pi}+\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{j}\right\|^{2}<\infty .
$$

Assume that (12) holds with $\left(h_{1}, \ldots, h_{k}\right)$ as well as with $\left(h_{1}^{*}, \ldots, h_{k}^{*}\right)$.
Let $\gamma=\left(h_{1}-h_{1}^{*}\right) \alpha_{1}+\cdots+\left(h_{k}-h_{k}^{*}\right) \alpha_{k}$. If $\left(h_{1}, \ldots, h_{k}\right) \neq\left(h_{1}^{*}, \ldots, h_{k}^{*}\right)$, then γ is an irrational number, and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}}\left\|\gamma b q^{j}\right\|^{2}<\infty . \tag{13}
\end{equation*}
$$

we shall see that (13) is impossible.
From (13) it follows that $\left\|\gamma q^{j}\right\| \rightarrow 0(j \rightarrow \infty)$. Let $\gamma q^{j}=m_{j}+\delta_{j}$, where $\delta_{j} \in\left(-\frac{1}{2}, \frac{1}{2}\right], m_{j} \in \mathbb{Z}$. Then $\left\|\delta_{j}\right\|=\left\|\gamma q^{j}\right\|$. Furthermore $\gamma q^{j+1}=$ $q m_{j}+q \delta_{j}$, and so $\delta_{j+1}=q \delta_{j}, m_{j+1}=q m_{j}$ for every large j, and this contradicts to the fact that $\delta_{j} \neq 0$. The lemma is proved.

Lenmma 3. Assume that (12) holds with $\left(h_{1}, \ldots, h_{k}\right)$. Then

$$
\frac{M(x)}{x}=c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}+o_{x}(1) .
$$

Proof of Lemma 3. Repeating the argumentation of Lemma 1, we deduce that

$$
\left|\frac{M(x)}{x}-d\left(h_{1}, \ldots, h_{k}\right) \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}\right| \leq c_{1} k \Delta+\frac{c k}{\Delta K}
$$

whence

$$
\begin{gathered}
\left|\frac{M(x)}{x}-c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}\right| \\
\leq c_{1} k \Delta+\frac{c k}{\Delta K}+\left|d\left(h_{1}, \ldots, h_{k}\right)-c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)}\right|
\end{gathered}
$$

Then, by $K \rightarrow \infty$, and $\Delta \rightarrow 0$ we obtain that

$$
\lim _{x \rightarrow \infty}\left|\frac{M(x)}{x}-c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}\right| \rightarrow 0
$$

due to the fact that $d\left(h_{1}, \ldots, h_{k}\right) \rightarrow c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)}$ as $\Delta \rightarrow 0$.
Observe that $c_{h_{1}}^{(1)} \ldots c_{h_{k}}^{(k)} \neq 0$.
From Lemma 3 we obtain that $\lim _{x \rightarrow \infty} \frac{M(x)}{x}$ exists if and only if $\lim _{x \rightarrow \infty} \frac{S_{h_{1}, \ldots, h_{k}}(x)}{x}$ exists. Due to Delange's theorem [1] it exists and nonzero if and only if

$$
\sum_{b \in \mathbb{A}} g\left(b q^{j}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{j}\right) \neq 0
$$

for $j=0,1, \ldots$, and

$$
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-g\left(b q^{j}\right) e\left(\left(h_{1} \alpha_{1}+\cdots+h_{k} \alpha_{k}\right) b q^{j}\right)\right)
$$

is convergent.
Hence Theorem 1 immediately follows.

3. On the distribution of q-additive functions

Theorem 2. Let $f \in \mathcal{A}_{q}, E(x):=\sharp\{n<x, n \in E\}$

$$
F_{x}(y):=\frac{1}{E(x)} \sharp\{n<x, n \in E, f(n)<y\} .
$$

The limit $\lim _{x \rightarrow \infty} F_{x}(y)=F(y)$ exists for almost all $y \in \mathbb{R}$, where F is a distribution function, if and only if the series

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}} f\left(b q^{j}\right) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}} f^{2}\left(b q^{j}\right) \tag{15}
\end{equation*}
$$

are convergent.
Proof. Let $g_{\tau}(n)=e(\tau f(n))$, where $\tau \in \mathbb{R}$. Then $g_{\tau}(n) \in \overline{\mathcal{M}}_{q}$. Let $m_{\tau}(x)=\frac{1}{E(x)} \sum_{n<x} g_{\tau}(n) l(n)$. Assume first that (14), (15) are satisfied. Then $\sum_{j=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-g_{\tau}\left(b q^{j}\right)\right)$ is convergent, and by Theorem 1 we obtain that $m_{\tau}(x) \rightarrow m(\tau)(x \rightarrow \infty)$, where $m(\tau) \neq 0$ in a neighborhood of 0 , i.e. if $|\tau|<c$. Thus, by a wellknown theorem in probability theory we obtain that $F_{x}(y) \rightarrow F(y)$, the characteristic function of F is $m(\tau)$.

Assume now that $\lim _{x \rightarrow \infty} F_{x}(y)$ exists. Then there exists
$\lim _{x \rightarrow \infty} m_{\tau}(x)=m(\tau)$ in a suitable interval $|\tau| \leq c$. Applying Theorem 1, we obtain that

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-e\left(\tau f\left(b q^{l}\right)+\left(h_{1}(\tau) \alpha_{1}+\cdots+h_{k}(\tau) \alpha_{k}\right) b q^{l}\right)\right) \tag{16}
\end{equation*}
$$

is convergent, where $h_{1}(\tau), \ldots, h_{k}(\tau)$ are suitable integers. Consequently

$$
\left\|\tau f\left(b q^{l}\right)+\left(h_{1}(\tau) \alpha_{1}+\cdots+h_{k}(\tau) \alpha_{k}\right) b q^{l}\right\| \rightarrow 0
$$

and so

$$
\left\|m \tau f\left(b q^{l}\right)+m\left(h_{1}(\tau) \alpha_{1}+\cdots+h_{k}(\tau) \alpha_{k}\right) b q^{l}\right\| \rightarrow 0
$$

for every $m \in \mathbb{N}$. Furthermore,

$$
\left\|m \tau f\left(b q^{l}\right)+\left(h_{1}(m \tau) \alpha_{1}+\cdots+h_{k}(m \tau) \alpha_{k}\right) b q^{l}\right\| \rightarrow 0
$$

as $l \rightarrow \infty$.
Then, for every fixed $m \in \mathbb{N}$,

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-e\left(m \tau f\left(b q^{l}\right)+m\left(h_{1}(\tau) \alpha_{1}+\cdots+h_{k}(\tau) \alpha_{k}\right) b q^{l}\right)\right) \tag{17}
\end{equation*}
$$

is convergent as well. Applying (16) for $m \tau$ instead of τ, we obtain that

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-e\left(m \tau f\left(b q^{l}\right)+\left(h_{1}(m \tau) \alpha_{1}+\cdots+h_{k}(m \tau) \alpha_{k}\right) b q^{l}\right)\right), \tag{18}
\end{equation*}
$$

(17) and (18) easily imply that
$\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left\|\left[\left(h_{1}(m \tau)-m h_{1}(\tau)\right) \alpha_{1}+\cdots+\left(h_{k}(m \tau)-m h_{k}(\tau)\right) \alpha_{k}\right] b q^{l}\right\|^{2}<\infty$.
Applying the argument which was used in the proof of Lemma 2, and that $\alpha_{1}, \ldots, \alpha_{k}$ are linearly independent, we obtain that $h_{j}(m \tau)=m h_{j}(\tau)$ $(j=1, \ldots, k)$. Let now K be fixed, $|K| \leq c$. Then $h_{j}(K)=m h_{j}\left(\frac{K}{m}\right)$ holds for every $m=1,2, \ldots$, and since $h_{j}\left(\frac{K}{m}\right) \in \mathbb{Z}$, therefore m divides $h_{j}(K)$ for every m. Thus $h_{j}(K)=0(j=1, \ldots, k),|K| \leq c$. Consequently,

$$
\begin{equation*}
\sum_{l=0}^{\infty} \sum_{b \in \mathbb{A}}\left(1-e\left(\tau f\left(b q^{l}\right)\right)\right) \tag{19}
\end{equation*}
$$

is convergent for $|\tau| \leq c$.
Hence one can deduce that (14), (15) are convergent.

402 K.-H. Indlekofer, I. Kátai and Y.-W. Lee : On q-multiplicative functions

References

[1] H. Delange, Sur les fonctions q-additives on q-multiplicatives, Acta Arith. 21 (1972), 285-298.
K.-H. INDLEKOFER

FACULTY OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF PADERBORN
WARBURGER STRASSE 100
33098 PADERBORN
GERMANY

IMRE KÁTAI
DEPARTMENT OF COMPUTER ALGEBRA
EÖTVÖS LORÁND UNIVERSITY
PÁZMÁNY PÉTER SÉTÁNY I/D
H-1117 BUDAPEST
HUNGARY
Y.-W. LEE

FACULTY OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF PADERBORN
WARBURGER STRASSE 100
33098 PADERBORN
GERMANY
(Received June 12, 2001; revised March 4, 2002)

