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On Fermat’s problem in matrix rings and groups

By Z. PATAY (Békéscsaba) and A. SZAKÁCS (Békéscsaba)

Abstract. We describe the periodic elements in GL2(Z) and give the answer to
some problems concerning Fermat’s equation Xm+Y m = Zm (F ) in matrix groups and
in irreducible elements of matrix rings, proposed by L. N. Vaserstein and A. Khazanov.
Namely: (1) equation (F ) has solutions in GL2(C) for every m; (2) if m = 3 or m ≡ ±1
(mod 3), then (F ) has solutions in SL3(Z); (3) if m is odd, then equation (F ) has
solutions in M2(Z) in irreducible elements; (4) if m ≡ ±1 (mod 3) or m = n ≥ 2, then
(F ) has solutions in irreducible elements of matrix rings M3(Z) and Mn(Z) respectively.

1. Introduction

We consider the solution of Fermat’s equation

(F) Xm + Y m = Zm (m ∈ N)

in the ring Mn(Z) of n× n-matrices over the ring Z of integers.
It is proved in [4] that equation X4+Y 4 = Z4 is solvable in M2(Z). It

is also easy to see that if n ≥ 2, then there are such idempotent elements A

and B that A+B = E, where E is the identity matrix, and so Am +Bm =
Em for every m ≥ 1.

Equation (F ) was studied with distinct restrictions in papers [1]–[14]
in the ring Mn(Z) and in Mn(R) over a commutative ring R with unit
element.
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The question about the solvability of (F ) in the group GL2(Z) was
studied at first by L. N. Vaserstein in [14].

The solvability of (F ) in the set of positive integer powers of a matrix
A with elements a11 = 0, a12 = a21 = a22 = 1 was studied in [5] and [6].

In [8] and [11] a general result has been proved: if A ∈ M2(Z) and
n > 2, then the equation (F ) has solution (X, Y, Z) with X, Y, Z ∈ A =
{Ak | k ∈ N} if and only if A is nilpotent or tr A = det A = 1. Evidently
X, Y, Z ∈ SL2(Z) and we can (by [8], [10]) determine effectively all such
solutions.

Paper [7] contains the following result: let A ∈ Mn(C), n ≥ 2 and
Ax + Ay = Az for some positive integers x, y, z. If A has at least one
real eigenvalue α >

√
2, then max{x − z, y − z} = −1. Many interesting

consequences can be obtained from this assertion.
A. Khazanov in [9] proved that in GL3(Z) solutions do not exist if

m is a multiple of either 21 or 96, and in SL3(Z) solutions do not exist if
m is a multiple of 48. Paper [12] gives another proof of Khazanov’s result
(see [9], Corollary 4) on the solvability of (F ) in SL2(Z).

L. N. Vaserstein proposed the following problem: how about solutions

of the equation (F ) in SL2(Z) or in GL3(Z); or in irreducibles X, Y , Z of

the ring M2(Z)? Later A. Khazanov called attention to the fact that the
equation X3 + Y 3 = Z3 is still unsolved in SL3(Z) and in GL3(Z) as well
as in SL3(Q).

We give the answers to some of these questions and their generaliza-
tions.

Here GLn(Z) is the group of units of the ring Mn(Z) and

SLn(Z) = {A ∈ Mn(Z) : det A = 1}.

An element x of a ring R is called irreducible, if it is neither a unit nor
the product yz of two elements y, z of R, both not units. A matrix X in
Mn(Z) is irreducible if and only if detX = ±p for a prime p.

2. Description of the elements in GL2(Z)

In this part we give a description of the elements in GL2(Z) by proving
the following theorem:
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Theorem 2.1. Let A ∈ GL2(Z) and A is a periodic element. Then

we have:

1◦ if ordA = 1, then A = E.

2◦ if ordA = 2, then either tr A = −2 and A = −E, or tr A = 0 and

A = ±
(

1 0
z −1

)
, or A =

(
z v

(1− z2)v−1 −z

)
, where z ∈ Z and

v | 1− z2.

3◦ if ordA = 3, then A =
(

z −v

(1 + z + z2)v−1 −1− z

)
for some z ∈ Z

and v | 1 + z + z2.

4◦ if ordA = 4, then A =
(

z −v

(1 + z2)v−1 −z

)
, where z ∈ Z and

v | 1 + z2.

5◦ if ordA = 6, then A =
( −z −v

(1 + z + z2)v−1 1 + z

)
for some z ∈ Z

and v | 1 + z + z2.

Proof. It is well-known (see for example [7] or [9]) that any periodic
matrix in GL2(Z) has order 1, 2, 3, 4 or 6 and if A is an arbitrary matrix of
M2(Z), t = tr A and d = det A, then for every natural n the n-th power of
A can be written in the form An = unA− dun−1E, where u0 = 0, u1 = 1,
u2 = t and un = tun−1 − dun−2 for n ≥ 3. Therefore, for a nondiagonal
matrix A ∈ M2(Z) and for some nonzero k ∈ Z the equality An = kE

holds if and only if in the series u0, u1, u2, u3, . . . the element un is zero.
Indeed, suppose An = kE and A = (aij). Then unA = An + dun−1E =
(k + dun−1)E and una12 = una21 = 0. Since a12 6= 0 or a21 6= 0, we
have un = 0. Conversely, in case un = 0, An = −dun−1E = kE with
k = −dun−1.

Let ord A = 2 and A diagonal. Then A = −E or A = ±
(

1 0
z −1

)
.

Let A be a nondiagonal. Then u2 = tr A = 0, so A =
(

z v

u −z

)
. If v = 0,

then z2 = 1 and A = ±
(

1 0
u −1

)
, u ∈ Z. If v 6= 0, then z2 + uv = 1, u

and v are divisors of 1 − z2 and A =
(

z v

(1− z2)v−1 −z

)
, where z ∈ Z

and v | 1− z2.
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Let ord A = 3. Then d · t = −1, 0 = u3 = t2 − d. This iplies

d = 1, t = −1 and A =
(

z −v

u −1− z

)
. So 1 = d = −z − z2 + uv and

uv = 1 + z + z2.

Let ord A = 4. Then u4 = t3 − 2dt = 0, du3 = d(t2 − d) = −1. The
case t 6= 0 is impossible, since from it t2−2d = 0 follows, so t2−d = d and

d2 = −1. Therefore t = 0, A =
(

z −v

u −z

)
, A2 =

(
z2 − uv 0

0 z2 − uv

)
=

−E and uv = 1 + z2.

Let ord A = 6. Then 0 = u6 = t5 − 4dt3 + 3d2t, 1 = du5 = d(t4 −
3dt2 + d2). Since A3 = −E, A2 6= E, it follows d = 1, t = 1. It is easy to

prove that in this case A has form A =
( −z −v

(1 + z + z2)v−1 1 + z

)
, where

z ∈ Z and v | 1 + z + z2. The theorem is proved.

Theorem 2.2. Let C be the field of complex numbers. The equation

(F ) has infinitely many solutions in the group GL2(C) for every m.

Proof. Let u be an arbitrary integer. The matrices

A =
(

u 1
−1− u− u2 −1− u

)
, B =

( −1− u −1
1 + u + u2 u

)

are elements of order 3 in GL2(C) and A + B = −E. By [3] for every
m there exist some Am, Bm and Cm in M2(C), for which (Am)m = A,
(Bm)m = B and (Cm)m = −E. The matrices Am, Bm and Cm belong to
GL2(C) and (Am, Bm, Cm) is a solution of the equation (F ).

Theorem 2.3. If UTn(Z) is the subgroup of upper (or lower) triangu-

lar matrices of GLn(Z) and m ≥ 1, then the equation (F ) has no solutions

in UTn(Z).

Proof. Suppose that A = (aij), B = (bij), C = (cij) and (A, B,C)
is a solution of (F ). Since for every A ∈ UTn(Z) the equation det A =
a11a22 · · · ann = ±1 holds, it follows that aii ∈ {−1; 1}, and similarly,
bii ∈ {−1; 1}, cii ∈ {−1; 1}. From the equation Am + Bm = Cm it follows
that am

ii + bm
ii = cm

ii . Then cii ∈ {−2; 0; 2}, which contradicts cii ∈ {−1; 1}.
The theorem is proved.
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3. Fermat’s equation in SL3(Z)

Theorem 3.1. If m ≡ ±1 (mod 3), then the equation (F ) has solu-

tions in SL3(Z).

Proof. Obviously

A =




1 0 1
0 −1 1
0 −1 0


 , B =



−1 1 −1
0 1 0
1 1 0


 , C =




0 1 0
0 0 1
1 0 0




are the elements of order 3 in SL3(Z) and A + B = C.
If m ≡ 1 (mod 3), then Am + Bm = A + B = C = Cm and so

(A,B,C) is a solution of (F ).
Let m ≡ −1 (mod 3). Then (A2, B2, C2) is a solution of (F ). The

theorem is proved.

Theorem 3.2. The equation X3 + Y 3 = Z3 has solutions in SL3(Z).

Proof. It is easy to verify that (A,B, C) with the following elements
A, B and C is a solution of the equation X3 + Y 3 = Z3 in SL3(Z). We
also give the elements A3, B3, C3 below.

A =




0 0 1
0 −1 1
1 1 0


, B =




0 1 0
0 1 −1
−1 −1 0


, C =




0 1 1
0 0 1
1 0 0


,1)

A3=




0 −1 2
−1 −3 3
2 3 −1


, B3=




1 2 −1
1 4 −2
−1 −3 2


, C3=




1 1 1
0 1 1
1 0 1




and A, B, C are not periodic elements.

A =




0 0 1
0 1 0
−1 0 0


, B =




1 0 0
0 0 −1
1 1 0


, C =




0 1 0
0 0 1
1 0 −1


,2)

A3=




0 0 −1
0 1 0
1 0 0


, B3=




1 0 0
−1 0 1
0 −1 0


, C3=




1 0 −1
−1 1 1
1 −1 0


,

A, B are elements of order 4 and C is not a periodic element.
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A =




0 1 0
−1 0 0
1 0 1


, B =




0 1 1
0 0 1
1 0 0


, C =




0 1 0
0 0 1
1 0 1


,3)

A3=




0 −1 0
1 0 0
0 1 1


, B3=




1 1 1
0 1 1
1 0 1


, C3=




1 0 1
1 1 1
1 1 2


,

A is an element of order 4 and B, C are not periodic elements.

A =




0 0 1
0 −1 −1
1 1 0


, B =




1 1 0
0 −1 0
0 0 −1


, C =




1 0 0
0 0 1
1 −1 0


,4)

A3=




0 −1 0
1 1 −1
0 1 1


, B3=




1 1 0
0 −1 0
0 0 −1


, C3=




1 0 0
1 0 −1
0 1 0


,

A is not a periodic element, B is an element of order 2 and C has order 4.

A =




0 0 −1
0 1 0
1 0 1


, B =



−1 0 1
1 1 −1
−1 1 0


, C =




0 1 0
0 0 1
1 0 −1


,5)

A3=



−1 0 0
0 1 0
0 0 −1


, B3=




2 0 −1
−1 0 1
1 −1 1


, C3=




1 0 −1
−1 1 1
1 −1 0


,

A is an element of order 6, B, C are not periodic elements. The theorem
is proved.

4. Fermat’s equation in irreducible elements
of the rings M2(Z) and M3(Z)

Let us now consider the solution of (F ) in irreducibles X, Y , Z of the
rings M2(Z) and M3(Z).

Theorem 4.1. If m is odd, then the equation (F ) has solutions in

M2(Z) in irreducible elements.
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Proof. Let

A =
(−i + 1 −i2 + 2i + 2

1 i− 1

)
, B =

(−i− 2 −i2 − 4i− 1
1 i + 2

)
,

C =
(−2i− 1 −2i2 − 2i + 1

2 2i + 1

)
.

Then det A = det B = det C = −3, A + B = C and

A2 = B2 = C2 =
(

3 0
0 3

)
= 3E

for every i ∈ Z. If m = 2k + 1 (k ∈ N), then (for example) Am = A2k+1 =
(A2)kA = (3E)kA = 3kA. Therefore A2k+1 + B2k+1 = 3kA + 3kB =
3kC = C2k+1 and the proof is complete.

Theorem 4.2. If m ≡ ±1 (mod 3), then the equation (F ) has solu-

tions in M3(Z) in irreducible elements.

Proof. Let

A =




0 1 −i

0 0 1
2 2i 0


 , B =




i− 1 i2 − i i + 1
−1 −i −1
−2 −2i− 1 1


 ,

C =




i− 1 i2 − i + 1 1
−1 −i 0
0 −1 1


 .

Then det A = det B = det C = 2, A+B = C and A3 = B3 = C3 = 2E for
every i ∈ Z.

If m = 3k + 1, then (as in the proof of Theorem 4.1)

A3k+1 + B3k+1 = 2kA + 2kB = 2kC = C3k+1.

Let m = 3k − 1 (k = 1, 2, . . . ). Then A2, B2, C2 is a solution of
(F ). Indeed, using equation (A2)3k−1 = A6k−2 = A3(2k−1)+1 = 22k−1A it
is easy to see that (A2)3k−1 + (B2)3k−1 = 22k−1A + 22k−1B = 22k−1C =
(C2)3k−1. The proof is complete.
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Theorem 4.3. If m = n ≥ 2, then the equation (F ) has solutions in
Mn(Z) in irreducible elements.

Proof. Let En−1 denote the (n− 1)× (n− 1) identity matrix, 0 the
n − 1-dimensional vector-column, 0∗ the (n − 1)-dimensional vector-line

and let p be a prime. Then the element Ap =
(

0 En−1

p 0∗

)
is irreducible

in Mn(Z), det Ap = p and it is easy to prove that (Ap)n = pEn. Therefore,
for example, (A2, A5, A7) is a solution of (F ) and the proof is complete.
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