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On the second variation formula
for biharmonic maps to a sphere

By C. ONICIUC (Iaşi)

Abstract. We compute the nullity for the following weakly stable biharmonic
maps: the identity map 1 : Sn → Sn and the canonical inclusion i : Sm → Sn.

1. Introduction

A map φ : (M, g) → (N, h) between two Riemannian manifolds is
harmonic if it is a critical point of the energy E(φ) = 1

2

∫
M
|dφ|2vg. The

map φ is harmonic if and only if its tension field τ(φ) = trace∇dφ vanishes.
In the same way, as suggested by J. Eells and J. H. Sampson in [6],
a map φ is biharmonic if it is a critical point of the bienergy E2(φ) =
1
2

∫
M
|τ(φ)|2vg. G. Y. Jiang has obtained in [7], [8] the first and second

variation formula. He has proved that the map φ is biharmonic if and
only if

τ2(φ) = J(τ(φ)) = 0,

where J is the Jacobi operator of φ. Of course, any harmonic map is
biharmonic.

B. Y. Chen and S. Ishikawa have shown in [3] that there are no
nonharmonic biharmonic submanifolds of R3. In the same way, in [2],
the authors have proved that there are no such submanifolds in N3(−1),
where N3(−1) is a 3-dimensional manifold with negative constant sectional
curvature −1.
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In [1] the authors have given the classification of nonharmonic bihar-
monic submanifolds of S3. They are: circles, spherical helices and parallel
spheres. Then, in [2], the authors have given some methods to construct ex-
amples of nonharmonic biharmonic submanifolds of the unit n-dimensional
sphere Sn, for n > 3. In this case the family of such submanifolds is much
larger.

A harmonic map is an absolute minimum of the bienergy and hence
stable. The goal of this paper is to find the second variation formula for
biharmonic maps φ : (M, g) → Sn and then to compute the nullity for the
simplest two biharmonic maps: the identity map 1 : Sn → Sn and the
canonical inclusion i : Sm → Sn (Theorem 2.4 and Theorem 2.5).

Notation. We shall work in the C∞ category, i.e. manifolds, metrics,
connections, maps will be assumed to be smooth. By (Mm, g) we shall in-
dicate a connected manifold of dimension m, without boundary, endowed
with a Riemannian metric g. We shall denote by ∇ the Levi–Civita con-
nection of (M, g). For vector fields X, Y , Z on M we define the Riemann
curvature operator by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z. The indices i,
j, k, l take the values 1, 2, . . . , m.

2. The second variation formula of the bienergy

Let φ : (M, g) → (N, h) be a smooth map between two Riemannian
manifolds. Assume that M is compact and orientable. The tension field
of φ is given by τ(φ) = trace∇dφ and the bienergy is defined by

E2(φ) =
1
2

∫

M

|τ(φ)|2vg.

The map φ is called biharmonic if it is a critical point of the bienergy. As
we said in the introduction, the first variation formula is given by

d

dt

∣∣∣
t=0

E2(φt) =
∫

M

〈τ2(φ), V 〉vg,

where vg is the volume element, V is the variational vector field corre-
sponding to the variation {φt}t∈R of φ, and

(2.1) τ2(φ) = −∆τ(φ)− trace RN (dφ·, τ(φ))dφ· .
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Now, let φ : (M, g) → Sn be a biharmonic map. We consider a smooth
variation {φs,t}s,t∈R of φ with two parameters s and t, i.e. we consider the
smooth map Φ given by

Φ : R× R×M → Sn, Φ(s, t, p) = φs,t(p),

where Φ(0, 0, p) = φ0,0(p) = φ(p), ∀p ∈ M .
The corresponding variational vector fields V and W are given by

V (p) =
d

ds

∣∣∣
s=0

φs,0(p) = dΦ(0,0,p)

(
∂

∂s

)
∈ Tφ(p)Sn,

and

W (p) =
d

dt

∣∣∣
t=0

φ0,t(p) = dΦ(0,0,p)

(
∂

∂t

)
∈ Tφ(p)Sn.

V and W are sections of φ−1TSn, i.e. V, W ∈ C(φ−1TSn).
The Hessian of E2 at its critical point φ is defined by

H(E2)φ(V,W ) =
∂2

∂s∂t

∣∣∣
(s,t)=(0,0)

E2(φs,t).

Theorem 2.1. Let φ : (M, g) → Sn be a biharmonic map. Then the

Hessian of the bienergy E2 at φ is given by

H(E2)φ(V,W ) =
∫

M

〈I(V ),W 〉vg,

where

I(V ) = ∆(∆V ) + ∆{trace〈V, dφ·〉dφ· − |dφ|2V }(2.2)

+ 2〈dτ(φ), dφ〉V + |τ(φ)|2V
− 2 trace〈V, dτ(φ)·〉dφ· − 2 trace〈τ(φ), dV ·〉dφ·
− 〈τ(φ), V 〉τ(φ) + trace〈dφ·,∆V 〉dφ·
+ trace〈dφ·, trace〈V, dφ·〉dφ·〉dφ·
− 2|dφ|2 trace〈dφ·, V 〉dφ·
+ 2〈dV, dφ〉τ(φ)− |dφ|2∆V + |dφ|4V.
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Proof. We start by computing ∂
∂t

∣∣
t=0

E2(φs,t). We have

∂

∂t

∣∣∣
t=0

E2(φs,t) =
∂

∂t

∣∣∣
t=0

1
2

∫

M

|τ(φs,t)|2vg

=
∫

M

〈∇ ∂
∂t

τ(φs,t), τ(φs,t)〉
∣∣
t=0

vg.

In order to obtain ∇ ∂
∂t

τ(φs,t), let {Xi}m
i=1 be a geodesic frame field around

an arbitrary point p ∈ M . We obtain

∇ ∂
∂t

τ(φs,t) = ∇ ∂
∂t

{ m∑

i=1

(∇Xidφs,t(Xi)− dφs,t(∇XiXi))
}

= ∇ ∂
∂t

{ m∑

i=1

(∇XidΦs(Xi)− dΦs(∇XiXi))
}

,

where Φs(t, p) = Φ(s, t, p). Using the formula

∇ eXdΦs(Ỹ )−∇eY dΦs(X̃) = dΦs([X̃, Ỹ ]), ∀X̃, Ỹ ∈ C(Φ−1
s TSn),

we obtain, at p and for t = 0, the following

∇ ∂
∂t

τ(φs,t) =
m∑

i=1

{∇ ∂
∂t
∇XidΦs(Xi)−∇ ∂

∂t
dΦs(∇XiXi)

}

=
m∑

i=1

{
∇ ∂

∂t
∇XidΦs(Xi)−∇∇Xi

XidΦs

( ∂

∂t

)
− dΦs

([ ∂

∂t
,∇XiXi

])}

=
m∑

i=1

∇ ∂
∂t
∇XidΦs(Xi) =

m∑

i=1

{
RS

n

(dΦs

( ∂

∂t

)
, dΦs(Xi))dΦs(Xi)

+∇Xi∇ ∂
∂t

dΦs(Xi) +∇[ ∂
∂t ,Xi]

dΦs(Xi)
}

=
m∑

i=1

{
RS

n

(Ws, dΦs(Xi))dΦs(Xi)

+∇Xi

(
∇XidΦs

( ∂

∂t

)
+ dΦs

([ ∂

∂t
,Xi

]))}

=
m∑

i=1

RS
n

(Ws, dΦs(Xi))dΦs(Xi) +
m∑

i=1

∇Xi∇XiWs
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= −∆Ws −
m∑

i=1

RS
n

(dΦs(Xi),Ws)dΦs(Xi),

where

Ws(p) =
d

dt

∣∣∣
t=0

φs,t(p) = dΦs,(0,p)

(
∂

∂t

)
, Ws ∈ C(φ−1

s,0TS
n), W0 = W.

Thus ∂
∂t

∣∣
t=0

E2(φs,t) is given by

∂

∂t

∣∣∣
t=0

E2(φs,t) =
∫

M

〈−∆Ws − trace RS
n

(dφs,0·,Ws)dφs,0·, τ(φs,0)〉vg

=
∫

M

〈−∆τ(φs,0)− trace RS
n

(dφs,0·, τ(φs,0))dφs,0·,Ws〉vg.

Since φ is biharmonic, from (2.1) we obtain

H(E2)φ(V, W )

=
∂

∂s

∣∣∣
s=0

∫

M

〈−∆τ(φs,0)− traceRS
n

(dφs,0·, τ(φs,0))dφs,0·,Ws〉vg

=
∫

M

〈∇ ∂
∂s

{−∆τ(φs,0)− traceRS
n

(dφs,0·, τ(φs,0))dφs,0·
}∣∣

s=0
,W 〉vg

=
∫

M

〈I(V ),W 〉vg,

where

(2.3) I(V ) = ∇ ∂
∂s

{−∆τ(φs,0)− traceRS
n

(dφs,0·, τ(φs,0))dφs,0·
}∣∣

s=0
.

Next, since

∇ ∂
∂s

τ(φs,0)
∣∣
s=0

= −∆V − trace RS
n

(dφ·, V )dφ·
and

trace RS
n

(dφ·, V )dφ· = trace〈V, dφ·〉dφ· − |dφ|2V,

we get

(2.4)

∇ ∂
∂s

{−∆τ(φs,0)
}∣∣

s=0
= ∆(∆V ) + ∆{trace〈V, dφ·〉dφ· − |dφ|2V }

+ 2〈dτ(φ), dφ〉V + |τ(φ)|2V + trace〈τ(φ), dφ·〉dV ·
− 2 trace〈V, dτ(φ)·〉dφ· − trace〈τ(φ), dV ·〉dφ· − 〈τ(φ), V 〉τ(φ),
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and

(2.5)

∇ ∂
∂s

{− traceRS
n

(dφs,0·, τ(φs,0))dφs,0·
}∣∣

s=0

= − trace〈τ(φ), dV ·〉dφ·+ trace〈dφ·,∆V 〉dφ·
+ trace〈dφ·, trace〈V, dφ·〉dφ·〉dφ·
− |dφ|2 trace〈dφ·, V 〉dφ· − trace〈τ(φ), dφ·〉dV ·
+ 2〈dV, dφ〉τ(φ)− |dφ|2∆V − |dφ|2 trace〈V, dφ·〉dφ·+ |dφ|4V.

Now, replacing (2.4) and (2.5) in (2.3), we obtain (2.2). ¤

Remark 2.2. We note that formula (2.2) can be also deduced from
formula (5.8) in [8].

Corollary 2.3. Let φ : (M, g) → Sn be a harmonic Riemannian im-

mersion. Then the operator I of φ is symmetric, positive semi-definite and

(2.6) ker I = {V ∈ C(φ−1TSn) | ∆V = mV − V T },

where V = V T + V N , V T ∈ C(TM) and V N ∈ C(NM).

Proof. From (2.2) it follows

I(V ) = ∆(∆V )− 2m∆V + m2V + ∆V T + (∆V )T + (1− 2m)V T .

First we shall prove that I is symmetric, i.e. (I(V ),W ) = (V, I(W )),
∀V, W ∈ C(φ−1TSn), where (V, W ) =

∫
M
〈V, W 〉vg is the usual inner prod-

uct on the real vector space C(φ−1TSn). Since ∆ is a symmetric operator
and 〈V T ,W 〉 = 〈WT , V 〉, in order to prove that I is symmetric we must
show that

∫

M

〈∆V T + (∆V )T ,W 〉vg =
∫

M

〈∆WT + (∆W )T , V 〉vg.

But
∫

M

〈∆V T ,W 〉vg =
∫

M

〈V T , ∆W 〉vg =
∫

M

〈V T , (∆W )T 〉vg

=
∫

M

〈V, (∆W )T 〉vg,
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and ∫

M

〈(∆V )T ,W 〉vg =
∫

M

〈(∆V )T ,WT 〉vg =
∫

M

〈∆V, WT 〉vg

=
∫

M

〈V, ∆WT 〉vg.

So I is a symmetric operator.
In order to prove that J is positive semi-definite, i.e. (I(V ), V ) ≥ 0,

we start with the following remarks
∫

M

〈∆V T , V 〉vg =
∫

M

〈(∆V )T , V 〉vg,

and

I(V ) = ∆∆V T + ∆∆V N − 2m∆V T − 2m∆V N + m2V T + m2V N

+ ∆V T + (∆V )T + (1− 2m)V T .

Thus we have

(I(V ), V ) =
∫

M

{〈∆(∆V T ), V 〉+ 2(1−m)〈∆V T , V 〉+ (m− 1)2〈V T , V 〉

+ 〈∆(∆V N ), V 〉 − 2m〈∆V N , V 〉+ m2〈V N , V 〉}vg

=
∫

M

{〈∆(∆V T ), V T 〉+ 2(1−m)〈∆V T , V T 〉+ (m− 1)2|V T |2

+ 〈∆(∆V N ), V N 〉 − 2m〈∆V N , V N 〉+ m2|V N |2
+ 〈∆(∆V T ), V N 〉+ 2(1−m)〈∆V T , V N 〉
+ 〈∆(∆V N ), V T 〉 − 2m〈∆V N , V T 〉}vg

=
∫

M

{|∆V T + (1−m)V T |2 + |∆V N −mV N |2

+ 2(〈∆V T ,∆V N 〉+ (1− 2m)〈∆V T , V N 〉)}vg

=
∫

M

|∆V T + (1−m)V T + ∆V N −mV N |2vg

=
∫

M

|∆V −mV + V T |2vg.
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From the above relation it follows that I is positive semi-definite and ker I
is given by (2.6). ¤

In the following we shall consider the simplest two cases of biharmonic
maps φ : (M, g) → Sn. These maps are harmonic Riemannian immersions,
so they are weakly-stable, i.e. the operator I is positive semi-definite.

Theorem 2.4. The identity map 1 : Sn → Sn is weakly-stable and

a) if n = 2 then nullity(1) = 6,

b) if n > 2 then nullity(1) = n(n+1)
2 .

Proof. In this case C(1−1TSn) = C(TSn) and ∆V = − trace∇2V .
We shall use X to denote a tangent vector field on Sn. By Corollary 2.3,
the operator I is given by

I(X) = ∆(∆X)− 2(n− 1)∆X + (n− 1)2X,

and

I(X) = 0 ⇐⇒ ∆X = (n− 1)X.

The Hodge decomposition theorem for C(TSn) states that

C(TSn) = {X ∈ C(TSn) | div X = 0} ⊕ {grad f | f ∈ C∞(Sn)}.

This decomposition of C(TSn) is orthogonal with respect to the scalar
product on the real vector space C(TSn), and ∆H preserves invariantly
these subspaces, where, using the musical isomorphisms,

∆H(X) = (∆X[)],

∆ being the Laplacian which acts on Λ1(Sn).
It is known that

∆X = ∆H(X)− (n− 1)X

(see [5], [11]), so

I(X) = 0 ⇐⇒ ∆H(X) = 2(n− 1)X.

From the Hodge decomposition theorem we write X =Y + grad f , div Y =0
and we obtain

∆H(X) = 2(n− 1)X ⇐⇒
{

∆H(Y ) = 2(n− 1)Y

∆H grad f = 2(n− 1) grad f.
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Consequently

I(X) = 0 ⇐⇒
{

Y is a Killing vector field

∆f = 2(n− 1)f.

It is known that the first eigenvalues of ∆ which acts on C∞(Sn) are 0, n,
2(n + 1), and the eigenvalue n has the multiplicity n + 1. So 2(n − 1) is
an eigenvalue if and only if n = 2, and in this case its multiplicity is 3.

It is well known too that

dim{Y ∈ C(TSn) | Y is a Killing vector field} =
n(n + 1)

2
.

Now, the theorem follows. ¤
Theorem 2.5. The canonical inclusion i : Sm → Sn is weakly-stable

and

a) if m = 2 then nullity(i) = 3n,

b) if m > 2 then nullity(i) = (n−m)(m + 1) + m(m+1)
2 .

Proof. Let V ∈ C(NSm) and X,Y ∈ C(TSm). As i is a totally
geodesic map, it results that

∇XV = ∇⊥XV, ∆V = ∆⊥V, ∇XY =S
m ∇XY, ∆X = − traceS

m ∇2X.

Again, by Corollary 2.3, the operator I is given by
{

I(V ) = ∆⊥(∆⊥V )− 2m∆⊥V + m2V ∈ C(NSm)

I(X) = ∆(∆X)− 2(m− 1)∆X + (m− 1)2X ∈ C(TSm),

and
{

I(V ) = 0 ⇐⇒ ∆⊥V = mV

I(X) = 0 ⇐⇒ ∆X = (m− 1)X.

Now, let {Em+1, . . . , En} be the vector fields which give the trivialisation
of NSm. We have

(2.7) ∇XEm+1 = . . . = ∇XEn = 0, ∀X ∈ C(TSm)

(see [10]). Since any V ∈ C(NSm) can be written as

V = f1Em+1 + · · ·+ fn−mEn,
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where f1, . . . , fn−m ∈ C∞(Sm), from (2.7) we obtain

∆⊥V = mV ⇐⇒ ∆f1 = mf1, . . . , ∆fn−m = mfn−m.

So we have

dim{V ∈ C(NSm) | I(V ) = 0} = (n−m)(m + 1).

Now, using Theorem 2.4 and the fact that the kernel of I splits in the
direct sum of the kernel of I restricted to C(NSm) and the kernel of I
restricted to C(TSm), we conclude. ¤

Acknowledgement. Thanks are due to the referee for helpful remarks
and suggestions.
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