On the second variation formula for biharmonic maps to a sphere

By C. ONICIUC (Iaşi)

Abstract

We compute the nullity for the following weakly stable biharmonic maps: the identity map $1: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ and the canonical inclusion $\boldsymbol{i}: \mathbb{S}^{m} \rightarrow \mathbb{S}^{n}$.

1. Introduction

A map $\phi:(M, g) \rightarrow(N, h)$ between two Riemannian manifolds is harmonic if it is a critical point of the energy $E(\phi)=\frac{1}{2} \int_{M}|d \phi|^{2} v_{g}$. The map ϕ is harmonic if and only if its tension field $\tau(\phi)=\operatorname{trace} \nabla d \phi$ vanishes. In the same way, as suggested by J. Eells and J. H. Sampson in [6], a map ϕ is biharmonic if it is a critical point of the bienergy $E_{2}(\phi)=$ $\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g}$. G. Y. Jiang has obtained in [7], [8] the first and second variation formula. He has proved that the map ϕ is biharmonic if and only if

$$
\tau_{2}(\phi)=J(\tau(\phi))=0
$$

where J is the Jacobi operator of ϕ. Of course, any harmonic map is biharmonic.
B. Y. Chen and S. Ishikawa have shown in [3] that there are no nonharmonic biharmonic submanifolds of \mathbb{R}^{3}. In the same way, in [2], the authors have proved that there are no such submanifolds in $N^{3}(-1)$, where $N^{3}(-1)$ is a 3 -dimensional manifold with negative constant sectional curvature -1 .

Mathematics Subject Classification: 58E20.
Key words and phrases: harmonic and biharmonic maps, Jacobi operator.
Partially supported by the Grant 545/2002 C.N.C.S.I.S, România.

In [1] the authors have given the classification of nonharmonic biharmonic submanifolds of \mathbb{S}^{3}. They are: circles, spherical helices and parallel spheres. Then, in [2], the authors have given some methods to construct examples of nonharmonic biharmonic submanifolds of the unit n-dimensional sphere \mathbb{S}^{n}, for $n>3$. In this case the family of such submanifolds is much larger.

A harmonic map is an absolute minimum of the bienergy and hence stable. The goal of this paper is to find the second variation formula for biharmonic maps $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ and then to compute the nullity for the simplest two biharmonic maps: the identity map $1: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ and the canonical inclusion $\boldsymbol{i}: \mathbb{S}^{m} \rightarrow \mathbb{S}^{n}$ (Theorem 2.4 and Theorem 2.5).

Notation. We shall work in the C^{∞} category, i.e. manifolds, metrics, connections, maps will be assumed to be smooth. By $\left(M^{m}, g\right)$ we shall indicate a connected manifold of dimension m, without boundary, endowed with a Riemannian metric g. We shall denote by ∇ the Levi-Civita connection of (M, g). For vector fields X, Y, Z on M we define the Riemann curvature operator by $R(X, Y) Z=\left[\nabla_{X}, \nabla_{Y}\right] Z-\nabla_{[X, Y]} Z$. The indices i, j, k, l take the values $1,2, \ldots, m$.

2. The second variation formula of the bienergy

Let $\phi:(M, g) \rightarrow(N, h)$ be a smooth map between two Riemannian manifolds. Assume that M is compact and orientable. The tension field of ϕ is given by $\tau(\phi)=$ trace $\nabla d \phi$ and the bienergy is defined by

$$
E_{2}(\phi)=\frac{1}{2} \int_{M}|\tau(\phi)|^{2} v_{g} .
$$

The map ϕ is called biharmonic if it is a critical point of the bienergy. As we said in the introduction, the first variation formula is given by

$$
\left.\frac{d}{d t}\right|_{t=0} E_{2}\left(\phi_{t}\right)=\int_{M}\left\langle\tau_{2}(\phi), V\right\rangle v_{g},
$$

where v_{g} is the volume element, V is the variational vector field corresponding to the variation $\left\{\phi_{t}\right\}_{t \in \mathbb{R}}$ of ϕ, and

$$
\begin{equation*}
\tau_{2}(\phi)=-\Delta \tau(\phi)-\operatorname{trace} R^{N}(d \phi \cdot, \tau(\phi)) d \phi \cdot . \tag{2.1}
\end{equation*}
$$

Now, let $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ be a biharmonic map. We consider a smooth variation $\left\{\phi_{s, t}\right\}_{s, t \in \mathbb{R}}$ of ϕ with two parameters s and t, i.e. we consider the smooth map Φ given by

$$
\Phi: \mathbb{R} \times \mathbb{R} \times M \rightarrow \mathbb{S}^{n}, \quad \Phi(s, t, p)=\phi_{s, t}(p)
$$

where $\Phi(0,0, p)=\phi_{0,0}(p)=\phi(p), \forall p \in M$.
The corresponding variational vector fields V and W are given by

$$
V(p)=\left.\frac{d}{d s}\right|_{s=0} \phi_{s, 0}(p)=d \Phi_{(0,0, p)}\left(\frac{\partial}{\partial s}\right) \in T_{\phi(p)} \mathbb{S}^{n},
$$

and

$$
W(p)=\left.\frac{d}{d t}\right|_{t=0} \phi_{0, t}(p)=d \Phi_{(0,0, p)}\left(\frac{\partial}{\partial t}\right) \in T_{\phi(p)} \mathbb{S}^{n} .
$$

V and W are sections of $\phi^{-1} T \mathbb{S}^{n}$, i.e. $V, W \in C\left(\phi^{-1} T \mathbb{S}^{n}\right)$.
The Hessian of E_{2} at its critical point ϕ is defined by

$$
H\left(E_{2}\right)_{\phi}(V, W)=\left.\frac{\partial^{2}}{\partial s \partial t}\right|_{(s, t)=(0,0)} E_{2}\left(\phi_{s, t}\right) .
$$

Theorem 2.1. Let $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ be a biharmonic map. Then the Hessian of the bienergy E_{2} at ϕ is given by

$$
H\left(E_{2}\right)_{\phi}(V, W)=\int_{M}\langle I(V), W\rangle v_{g},
$$

where

$$
\begin{align*}
I(V)= & \Delta(\Delta V)+\Delta\left\{\operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot-|d \phi|^{2} V\right\} \tag{2.2}\\
& +2\langle d \tau(\phi), d \phi\rangle V+|\tau(\phi)|^{2} V \\
& -2 \operatorname{trace}\langle V, d \tau(\phi) \cdot\rangle d \phi \cdot-2 \operatorname{trace}\langle\tau(\phi), d V \cdot\rangle d \phi \cdot \\
& -\langle\tau(\phi), V\rangle \tau(\phi)+\operatorname{trace}\langle d \phi \cdot, \Delta V\rangle d \phi . \\
& +\operatorname{trace}\langle d \phi \cdot, \operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot\rangle d \phi . \\
& -2|d \phi|^{2} \operatorname{trace}\langle d \phi \cdot, V\rangle d \phi . \\
& +2\langle d V, d \phi\rangle \tau(\phi)-|d \phi|^{2} \Delta V+|d \phi|^{4} V .
\end{align*}
$$

Proof. We start by computing $\left.\frac{\partial}{\partial t}\right|_{t=0} E_{2}\left(\phi_{s, t}\right)$. We have

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} E_{2}\left(\phi_{s, t}\right) & =\left.\frac{\partial}{\partial t}\right|_{t=0} \frac{1}{2} \int_{M}\left|\tau\left(\phi_{s, t}\right)\right|^{2} v_{g} \\
& =\left.\int_{M}\left\langle\nabla_{\frac{\partial}{\partial t}} \tau\left(\phi_{s, t}\right), \tau\left(\phi_{s, t}\right)\right\rangle\right|_{t=0} v_{g} .
\end{aligned}
$$

In order to obtain $\nabla_{\frac{\partial}{\partial t}} \tau\left(\phi_{s, t}\right)$, let $\left\{X_{i}\right\}_{i=1}^{m}$ be a geodesic frame field around an arbitrary point $p \in M$. We obtain

$$
\begin{aligned}
\nabla_{\frac{\partial}{\partial t}} \tau\left(\phi_{s, t}\right) & =\nabla_{\frac{\partial}{\partial t}}\left\{\sum_{i=1}^{m}\left(\nabla_{X_{i}} d \phi_{s, t}\left(X_{i}\right)-d \phi_{s, t}\left(\nabla_{X_{i}} X_{i}\right)\right)\right\} \\
& =\nabla_{\frac{\partial}{\partial t}}\left\{\sum_{i=1}^{m}\left(\nabla_{X_{i}} d \Phi_{s}\left(X_{i}\right)-d \Phi_{s}\left(\nabla_{X_{i}} X_{i}\right)\right)\right\},
\end{aligned}
$$

where $\Phi_{s}(t, p)=\Phi(s, t, p)$. Using the formula

$$
\nabla_{\tilde{X}} d \Phi_{s}(\tilde{Y})-\nabla_{\widetilde{Y}} d \Phi_{s}(\widetilde{X})=d \Phi_{s}([\tilde{X}, \widetilde{Y}]), \forall \tilde{X}, \tilde{Y} \in C\left(\Phi_{s}^{-1} T \mathbb{S}^{n}\right),
$$

we obtain, at p and for $t=0$, the following

$$
\begin{aligned}
& \nabla_{\frac{\partial}{\partial t}} \tau\left(\phi_{s, t}\right)=\sum_{i=1}^{m}\left\{\nabla_{\frac{\partial}{\partial t}} \nabla_{X_{i}} d \Phi_{s}\left(X_{i}\right)-\nabla_{\frac{\partial}{\partial t}} d \Phi_{s}\left(\nabla_{X_{i}} X_{i}\right)\right\} \\
&= \sum_{i=1}^{m}\left\{\nabla_{\frac{\partial}{\partial t}} \nabla_{X_{i}} d \Phi_{s}\left(X_{i}\right)-\nabla_{\nabla_{X_{i}} X_{i}} d \Phi_{s}\left(\frac{\partial}{\partial t}\right)-d \Phi_{s}\left(\left[\frac{\partial}{\partial t}, \nabla_{X_{i}} X_{i}\right]\right)\right\} \\
&= \sum_{i=1}^{m} \nabla_{\frac{\partial}{\partial t}} \nabla_{X_{i}} d \Phi_{s}\left(X_{i}\right)=\sum_{i=1}^{m}\left\{R^{\mathbb{S}^{n}}\left(d \Phi_{s}\left(\frac{\partial}{\partial t}\right), d \Phi_{s}\left(X_{i}\right)\right) d \Phi_{s}\left(X_{i}\right)\right. \\
&\left.\quad+\nabla_{X_{i}} \nabla_{\frac{\partial}{\partial t}} d \Phi_{s}\left(X_{i}\right)+\nabla_{\left[\frac{\partial}{\partial t}, X_{i}\right]} d \Phi_{s}\left(X_{i}\right)\right\} \\
&= \sum_{i=1}^{m}\left\{R^{\mathbb{S}^{n}}\left(W_{s}, d \Phi_{s}\left(X_{i}\right)\right) d \Phi_{s}\left(X_{i}\right)\right. \\
&\left.\quad+\nabla_{X_{i}}\left(\nabla_{X_{i}} d \Phi_{s}\left(\frac{\partial}{\partial t}\right)+d \Phi_{s}\left(\left[\frac{\partial}{\partial t}, X_{i}\right]\right)\right)\right\} \\
&= \sum_{i=1}^{m} R^{\mathbb{S}^{n}}\left(W_{s}, d \Phi_{s}\left(X_{i}\right)\right) d \Phi_{s}\left(X_{i}\right)+\sum_{i=1}^{m} \nabla_{X_{i}} \nabla_{X_{i}} W_{s}
\end{aligned}
$$

$$
=-\Delta W_{s}-\sum_{i=1}^{m} R^{\mathbb{S}^{n}}\left(d \Phi_{s}\left(X_{i}\right), W_{s}\right) d \Phi_{s}\left(X_{i}\right)
$$

where

$$
W_{s}(p)=\left.\frac{d}{d t}\right|_{t=0} \phi_{s, t}(p)=d \Phi_{s,(0, p)}\left(\frac{\partial}{\partial t}\right), \quad W_{s} \in C\left(\phi_{s, 0}^{-1} T \mathbb{S}^{n}\right), W_{0}=W
$$

Thus $\left.\frac{\partial}{\partial t}\right|_{t=0} E_{2}\left(\phi_{s, t}\right)$ is given by

$$
\begin{aligned}
\left.\frac{\partial}{\partial t}\right|_{t=0} E_{2}\left(\phi_{s, t}\right) & =\int_{M}\left\langle-\Delta W_{s}-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0}, W_{s}\right) d \phi_{s, 0} \cdot, \tau\left(\phi_{s, 0}\right)\right\rangle v_{g} \\
& =\int_{M}\left\langle-\Delta \tau\left(\phi_{s, 0}\right)-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0} \cdot, \tau\left(\phi_{s, 0}\right)\right) d \phi_{s, 0} \cdot, W_{s}\right\rangle v_{g}
\end{aligned}
$$

Since ϕ is biharmonic, from (2.1) we obtain

$$
\begin{aligned}
H & \left(E_{2}\right)_{\phi}(V, W) \\
& =\left.\frac{\partial}{\partial s}\right|_{s=0} \int_{M}\left\langle-\Delta \tau\left(\phi_{s, 0}\right)-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0}, \tau\left(\phi_{s, 0}\right)\right) d \phi_{s, 0} \cdot, W_{s}\right\rangle v_{g} \\
& =\int_{M}\left\langle\left.\nabla_{\frac{\partial}{\partial s}}\left\{-\Delta \tau\left(\phi_{s, 0}\right)-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0} \cdot, \tau\left(\phi_{s, 0}\right)\right) d \phi_{s, 0} \cdot\right\}\right|_{s=0}, W\right\rangle v_{g} \\
& =\int_{M}\langle I(V), W\rangle v_{g}
\end{aligned}
$$

where

$$
\begin{equation*}
I(V)=\left.\nabla_{\frac{\partial}{\partial s}}\left\{-\Delta \tau\left(\phi_{s, 0}\right)-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0} \cdot, \tau\left(\phi_{s, 0}\right)\right) d \phi_{s, 0} \cdot\right\}\right|_{s=0} \tag{2.3}
\end{equation*}
$$

Next, since

$$
\left.\nabla_{\frac{\partial}{\partial s}} \tau\left(\phi_{s, 0}\right)\right|_{s=0}=-\Delta V-\operatorname{trace} R^{\mathbb{S}^{n}}(d \phi \cdot, V) d \phi
$$

and

$$
\operatorname{trace} R^{\mathbb{S}^{n}}(d \phi \cdot, V) d \phi \cdot=\operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot-|d \phi|^{2} V
$$

we get

$$
\begin{align*}
& \left.\nabla_{\frac{\partial}{\partial s}}\left\{-\Delta \tau\left(\phi_{s, 0}\right)\right\}\right|_{s=0}=\Delta(\Delta V)+\Delta\left\{\operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot-|d \phi|^{2} V\right\} \\
& \quad+2\langle d \tau(\phi), d \phi\rangle V+|\tau(\phi)|^{2} V+\operatorname{trace}\langle\tau(\phi), d \phi \cdot\rangle d V \tag{2.4}\\
& \quad-2 \operatorname{trace}\langle V, d \tau(\phi) \cdot\rangle d \phi \cdot-\operatorname{trace}\langle\tau(\phi), d V \cdot\rangle d \phi \cdot-\langle\tau(\phi), V\rangle \tau(\phi)
\end{align*}
$$

and

$$
\begin{align*}
& \left.\nabla_{\frac{\partial}{\partial s}}\left\{-\operatorname{trace} R^{\mathbb{S}^{n}}\left(d \phi_{s, 0} \cdot, \tau\left(\phi_{s, 0}\right)\right) d \phi_{s, 0} \cdot\right\}\right|_{s=0} \\
& =-\operatorname{trace}\langle\tau(\phi), d V \cdot\rangle d \phi \cdot+\operatorname{trace}\langle d \phi \cdot, \Delta V\rangle d \phi . \\
& \quad+\operatorname{trace}\langle d \phi \cdot, \operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot\rangle d \phi . \tag{2.5}\\
& \quad-|d \phi|^{2} \operatorname{trace}\langle d \phi \cdot, V\rangle d \phi \cdot-\operatorname{trace}\langle\tau(\phi), d \phi \cdot\rangle d V . \\
& \quad+2\langle d V, d \phi\rangle \tau(\phi)-|d \phi|^{2} \Delta V-|d \phi|^{2} \operatorname{trace}\langle V, d \phi \cdot\rangle d \phi \cdot+|d \phi|^{4} V .
\end{align*}
$$

Now, replacing (2.4) and (2.5) in (2.3), we obtain (2.2).
Remark 2.2. We note that formula (2.2) can be also deduced from formula (5.8) in [8].

Corollary 2.3. Let $\phi:(M, g) \rightarrow \mathbb{S}^{n}$ be a harmonic Riemannian immersion. Then the operator I of ϕ is symmetric, positive semi-definite and

$$
\begin{equation*}
\operatorname{ker} I=\left\{V \in C\left(\phi^{-1} T \mathbb{S}^{n}\right) \mid \Delta V=m V-V^{T}\right\}, \tag{2.6}
\end{equation*}
$$

where $V=V^{T}+V^{N}, V^{T} \in C(T M)$ and $V^{N} \in C(N M)$.
Proof. From (2.2) it follows

$$
I(V)=\Delta(\Delta V)-2 m \Delta V+m^{2} V+\Delta V^{T}+(\Delta V)^{T}+(1-2 m) V^{T}
$$

First we shall prove that I is symmetric, i.e. $(I(V), W)=(V, I(W))$, $\forall V, W \in C\left(\phi^{-1} T \mathbb{S}^{n}\right)$, where $(V, W)=\int_{M}\langle V, W\rangle v_{g}$ is the usual inner product on the real vector space $C\left(\phi^{-1} T \mathbb{S}^{n}\right)$. Since Δ is a symmetric operator and $\left\langle V^{T}, W\right\rangle=\left\langle W^{T}, V\right\rangle$, in order to prove that I is symmetric we must show that

$$
\int_{M}\left\langle\Delta V^{T}+(\Delta V)^{T}, W\right\rangle v_{g}=\int_{M}\left\langle\Delta W^{T}+(\Delta W)^{T}, V\right\rangle v_{g} .
$$

But

$$
\begin{aligned}
\int_{M}\left\langle\Delta V^{T}, W\right\rangle v_{g} & =\int_{M}\left\langle V^{T}, \Delta W\right\rangle v_{g}=\int_{M}\left\langle V^{T},(\Delta W)^{T}\right\rangle v_{g} \\
& =\int_{M}\left\langle V,(\Delta W)^{T}\right\rangle v_{g},
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{M}\left\langle(\Delta V)^{T}, W\right\rangle v_{g} & =\int_{M}\left\langle(\Delta V)^{T}, W^{T}\right\rangle v_{g}=\int_{M}\left\langle\Delta V, W^{T}\right\rangle v_{g} \\
& =\int_{M}\left\langle V, \Delta W^{T}\right\rangle v_{g} .
\end{aligned}
$$

So I is a symmetric operator.
In order to prove that J is positive semi-definite, i.e. $(I(V), V) \geq 0$, we start with the following remarks

$$
\int_{M}\left\langle\Delta V^{T}, V\right\rangle v_{g}=\int_{M}\left\langle(\Delta V)^{T}, V\right\rangle v_{g}
$$

and

$$
\begin{aligned}
I(V)= & \Delta \Delta V^{T}+\Delta \Delta V^{N}-2 m \Delta V^{T}-2 m \Delta V^{N}+m^{2} V^{T}+m^{2} V^{N} \\
& +\Delta V^{T}+(\Delta V)^{T}+(1-2 m) V^{T}
\end{aligned}
$$

Thus we have

$$
\left.\begin{array}{rl}
(I(V), V)= & \int_{M}\left\{\left\langle\Delta\left(\Delta V^{T}\right), V\right\rangle+2(1-m)\left\langle\Delta V^{T}, V\right\rangle+(m-1)^{2}\left\langle V^{T}, V\right\rangle\right. \\
& \left.\quad+\left\langle\Delta\left(\Delta V^{N}\right), V\right\rangle-2 m\left\langle\Delta V^{N}, V\right\rangle+m^{2}\left\langle V^{N}, V\right\rangle\right\} v_{g} \\
= & \int_{M}\left\{\left\langle\Delta\left(\Delta V^{T}\right), V^{T}\right\rangle+2(1-m)\left\langle\Delta V^{T}, V^{T}\right\rangle+(m-1)^{2}\left|V^{T}\right|^{2}\right. \\
& \quad+\left\langle\Delta\left(\Delta V^{N}\right), V^{N}\right\rangle-2 m\left\langle\Delta V^{N}, V^{N}\right\rangle+m^{2}\left|V^{N}\right|^{2} \\
& \quad+\left\langle\Delta\left(\Delta V^{T}\right), V^{N}\right\rangle+2(1-m)\left\langle\Delta V^{T}, V^{N}\right\rangle \\
& \left.\quad+\left\langle\Delta\left(\Delta V^{N}\right), V^{T}\right\rangle-2 m\left\langle\Delta V^{N}, V^{T}\right\rangle\right\} v_{g}
\end{array}\right\} \begin{aligned}
\quad & \int_{M}\left\{\left|\Delta V^{T}+(1-m) V^{T}\right|^{2}+\left|\Delta V^{N}-m V^{N}\right|^{2}\right. \\
\quad & \left.\quad+2\left(\left\langle\Delta V^{T}, \Delta V^{N}\right\rangle+(1-2 m)\left\langle\Delta V^{T}, V^{N}\right\rangle\right)\right\} v_{g} \\
= & \int_{M}\left|\Delta V^{T}+(1-m) V^{T}+\Delta V^{N}-m V^{N}\right|^{2} v_{g} \\
= & \int_{M}\left|\Delta V-m V+V^{T}\right|^{2} v_{g} .
\end{aligned}
$$

From the above relation it follows that I is positive semi-definite and ker I is given by (2.6).

In the following we shall consider the simplest two cases of biharmonic maps $\phi:(M, g) \rightarrow \mathbb{S}^{n}$. These maps are harmonic Riemannian immersions, so they are weakly-stable, i.e. the operator I is positive semi-definite.

Theorem 2.4. The identity map $1: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n}$ is weakly-stable and
a) if $n=2$ then $\operatorname{nullity}(\mathbf{1})=6$,
b) if $n>2$ then nullity $(\mathbf{1})=\frac{n(n+1)}{2}$.

Proof. In this case $C\left(\mathbf{1}^{-1} T \mathbb{S}^{n}\right)=C\left(T \mathbb{S}^{n}\right)$ and $\Delta V=-\operatorname{trace} \nabla^{2} V$. We shall use X to denote a tangent vector field on \mathbb{S}^{n}. By Corollary 2.3, the operator I is given by

$$
I(X)=\Delta(\Delta X)-2(n-1) \Delta X+(n-1)^{2} X
$$

and

$$
I(X)=0 \Longleftrightarrow \Delta X=(n-1) X
$$

The Hodge decomposition theorem for $C\left(T \mathbb{S}^{n}\right)$ states that

$$
C\left(T \mathbb{S}^{n}\right)=\left\{X \in C\left(T \mathbb{S}^{n}\right) \mid \operatorname{div} X=0\right\} \oplus\left\{\operatorname{grad} f \mid f \in C^{\infty}\left(\mathbb{S}^{n}\right)\right\} .
$$

This decomposition of $C\left(T \mathbb{S}^{n}\right)$ is orthogonal with respect to the scalar product on the real vector space $C\left(T \mathbb{S}^{n}\right)$, and Δ_{H} preserves invariantly these subspaces, where, using the musical isomorphisms,

$$
\Delta_{H}(X)=\left(\bar{\Delta} X^{b}\right)^{\sharp},
$$

$\bar{\Delta}$ being the Laplacian which acts on $\Lambda^{1}\left(\mathbb{S}^{n}\right)$.
It is known that

$$
\Delta X=\Delta_{H}(X)-(n-1) X
$$

(see [5], [11]), so

$$
I(X)=0 \Longleftrightarrow \Delta_{H}(X)=2(n-1) X .
$$

From the Hodge decomposition theorem we write $X=Y+\operatorname{grad} f, \operatorname{div} Y=0$ and we obtain

$$
\Delta_{H}(X)=2(n-1) X \Longleftrightarrow\left\{\begin{array}{l}
\Delta_{H}(Y)=2(n-1) Y \\
\Delta_{H} \operatorname{grad} f=2(n-1) \operatorname{grad} f .
\end{array}\right.
$$

Consequently

$$
I(X)=0 \Longleftrightarrow\left\{\begin{array}{l}
Y \text { is a Killing vector field } \\
\Delta f=2(n-1) f
\end{array}\right.
$$

It is known that the first eigenvalues of Δ which acts on $C^{\infty}\left(\mathbb{S}^{n}\right)$ are $0, n$, $2(n+1)$, and the eigenvalue n has the multiplicity $n+1$. So $2(n-1)$ is an eigenvalue if and only if $n=2$, and in this case its multiplicity is 3 .

It is well known too that

$$
\operatorname{dim}\left\{Y \in C\left(T \mathbb{S}^{n}\right) \mid Y \text { is a Killing vector field }\right\}=\frac{n(n+1)}{2}
$$

Now, the theorem follows.
Theorem 2.5. The canonical inclusion $\boldsymbol{i}: \mathbb{S}^{m} \rightarrow \mathbb{S}^{n}$ is weakly-stable and
a) if $m=2$ then $\operatorname{nullity}(i)=3 n$,
b) if $m>2$ then $\operatorname{nullity}(i)=(n-m)(m+1)+\frac{m(m+1)}{2}$.

Proof. Let $V \in C\left(N \mathbb{S}^{m}\right)$ and $X, Y \in C\left(T \mathbb{S}^{m}\right)$. As i is a totally geodesic map, it results that

$$
\nabla_{X} V=\nabla_{X}^{\perp} V, \Delta V=\Delta^{\perp} V, \nabla_{X} Y={ }^{\mathbb{S}^{m}} \nabla_{X} Y, \Delta X=-\operatorname{trace}^{\mathbb{S}^{m}} \nabla^{2} X
$$

Again, by Corollary 2.3, the operator I is given by

$$
\left\{\begin{array}{l}
I(V)=\Delta^{\perp}\left(\Delta^{\perp} V\right)-2 m \Delta^{\perp} V+m^{2} V \in C\left(N \mathbb{S}^{m}\right) \\
I(X)=\Delta(\Delta X)-2(m-1) \Delta X+(m-1)^{2} X \in C\left(T \mathbb{S}^{m}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
I(V)=0 \Longleftrightarrow \Delta^{\perp} V=m V \\
I(X)=0 \Longleftrightarrow \Delta X=(m-1) X
\end{array}\right.
$$

Now, let $\left\{E_{m+1}, \ldots, E_{n}\right\}$ be the vector fields which give the trivialisation of $N \mathbb{S}^{m}$. We have

$$
\begin{equation*}
\nabla_{X} E_{m+1}=\ldots=\nabla_{X} E_{n}=0, \quad \forall X \in C\left(T \mathbb{S}^{m}\right) \tag{2.7}
\end{equation*}
$$

(see [10]). Since any $V \in C\left(N \mathbb{S}^{m}\right)$ can be written as

$$
V=f^{1} E_{m+1}+\cdots+f^{n-m} E_{n}
$$

where $f^{1}, \ldots, f^{n-m} \in C^{\infty}\left(\mathbb{S}^{m}\right)$, from (2.7) we obtain

$$
\Delta^{\perp} V=m V \Longleftrightarrow \Delta f^{1}=m f^{1}, \ldots, \Delta f^{n-m}=m f^{n-m} .
$$

So we have

$$
\operatorname{dim}\left\{V \in C\left(N \mathbb{S}^{m}\right) \mid I(V)=0\right\}=(n-m)(m+1)
$$

Now, using Theorem 2.4 and the fact that the kernel of I splits in the direct sum of the kernel of I restricted to $C\left(N \mathbb{S}^{m}\right)$ and the kernel of I restricted to $C\left(T \mathbb{S}^{m}\right)$, we conclude.

Acknowledgement. Thanks are due to the referee for helpful remarks and suggestions.

References

[1] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds of \mathbb{S}^{3}, Internat. J. Math. 12 no. 8 (2001), 867-876.
[2] R. Caddeo, S. Montaldo and C. Oniciuc, Biharmonic submanifolds in spheres, Israel Journal of Mathematics (to appear).
[3] B. Y. Chen and S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces, Kyushu J. Math. 52 (1998), 167-185.
[4] D. M. Duc and J. Eells, On the regularity of biharmonic maps, International Centre for Theoretical Physics, 1993, 410.
[5] J. Eells and L. Lemaire, Selected topics in harmonic maps, Conf. Board Math. Sci. 50 (1983).
[6] J. Eells and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964), 109-160.
[7] G. Y. Jiang, 2-harmonic isometric immersions between Riemannian manifolds, Chinese Ann. Math. Ser. A 7 no. 2 (1986), 130-144.
[8] G. Y. JIANG, 2-harmonic maps and their first and second variational formulas, Chinese Ann. Math. Ser. A 7 no. 4 (1986), 389-402.
[9] C. Oniciuc, Biharmonic maps between Riemannian manifolds, An. Stiint. Univ. "Al. I. Cuza" Iasi. Mat. (N.S.) (to appear).
[10] J. Simons, Minimal varieties in Riemannian manifolds, Ann. of Math. 88 (1968), 62-105.
[11] H. Urakawa, Calculus of Variations and Harmonic Maps, Translations of Mathematical Monographs 132 (1993).
C. ONICIUC

FACULTY OF MATHEMATICS
UNIVERSITY "AL.I.CUZA" IAŞI
BD. COPOU NR. 11
6600 IAŞI
ROMANIA
E-mail: oniciucc@uaic.ro
(Received November 9, 2001; revised March 20, 2002)

