Higher-order generalizations of Hadamard's inequality

By MIHÁLY BESSENYEI (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract

In this paper we derive generalizations of Hadamard's classical inequality for higher-order convex functions. In the proof the remainder formula of the Hermite-Fejér interpolation and a smoothing technique is used.

1. Introduction

Hadamard's classical inequality [2] provides the following lower and upper estimates for the integral average of a convex function $f:[a, b] \rightarrow \mathbb{R}$:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} .
$$

An account of various generalizations of Hadamard-type inequalities can be found in a recent book [1] by S. S. Dragomir and C. E. M. Pearce. Interesting historical remarks are due to Mitrinović and Lacković [6].

If $f:[a, b] \rightarrow \mathbb{R}$ is supposed to be monotone increasing, an analogous "Hadamard-type" inequality can trivially be derived:

$$
f(a) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq f(b)
$$

Mathematics Subject Classification: 26A51, 26B25.
Key words and phrases: Hadamard's inequality.
This research has been supported by OTKA Grant T-030082, and by the FKFP Grant 0215/2001.

Our goal is to generalize these inequalities when $f:[a, b] \rightarrow \mathbb{R}$ is n-monotone or, in other terms, $(n-1)$-convex, that is,

$$
(-1)^{n}\left|\begin{array}{ccc}
f\left(x_{0}\right) & \ldots & f\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| \geq 0
$$

whenever $a \leq x_{0}<\cdots<x_{n} \leq b$. Obviously, a function is 1-monotone if and only if it is monotone increasing; similarly, a function is 2 -monotone if and only if it is convex.

In a series of papers [8]-[18], T. Popoviciu introduced and investigated the notion of higher-order convexity. A summary of these results can be found in the book [19] and also in [5]. In our investigations, we need the following two results of T. Popoviciu. The first characterizes n-monotonicity in terms of the nth derivative of f.

Theorem A ([5, Theorem 1. p. 387]). Assume that $f:] a, b[\rightarrow \mathbb{R}$ is an n times differentiable function. Then f is n-monotone if and only if $f^{(n)}(x) \geq 0$ for all $\left.x \in\right] a, b[$.

The second result states that, for $n \geq 2, n$-monotonicity implies regularity properties of f.

Theorem B ([5, Theorem 1. p. 391]). Assume that $f:] a, b[\rightarrow \mathbb{R}$ is an n-monotone function and $n \geq 2$. Then f is $(n-2)$ times differentiable and $f^{(n-2)}$ is continuous.

Applying Theorem A, we will be able to prove Hadamard-type inequalities by using Gauss-type quadrature formulae and their remainder terms for smooth enough functions.

For the general case, when $f:[a, b] \rightarrow \mathbb{R}$ is supposed to be continuous only and n-monotone, a smoothing technique is developed to get Hadamard-type inequalities. As an application, we derive Hadamard-type inequalities for $3-, 4-, 5-, 6-, 8-, 10$-, and 12 -monotone functions.

2. Gauss-type quadrature formulae and remainder terms

Let $f, g:[a, b] \rightarrow \mathbb{R}$ and $\rho:[a, b] \rightarrow] 0,+\infty[$ be continuous functions. The functions f and g are said to be ρ-orthogonal on $[a, b]$ if

$$
\langle f, g\rangle_{\rho}:=\int_{a}^{b} f g \rho=0 .
$$

We say that a system of polynomials is an orthogonal polynomial system on $[a, b]$ with respect to the weight function ρ if each member of the system is ρ-orthogonal to the others on $[a, b]$. Define the moments of ρ by

$$
m_{n}:=\int_{a}^{b} x^{n} \rho(x) d x \quad(n=0,1,2, \ldots) .
$$

It is easy to check, that

$$
P_{n}(x):=\left|\begin{array}{cccc}
1 & m_{0} & \ldots & m_{n-1} \\
x & m_{1} & \ldots & m_{n} \\
\vdots & \vdots & \ddots & \vdots \\
x^{n} & m_{n} & \ldots & m_{2 n-1}
\end{array}\right|
$$

is the nth degree member of the orthogonal polynomial system on $[a, b]$ with respect to the weight function ρ, since it is immediate to see that P_{n} is ρ-orthogonal to the polynomials $1, x, \ldots, x^{n-1}$.

Let us consider the following

$$
\begin{align*}
& \int_{a}^{b} f(x) \rho(x) d x=\sum_{k=1}^{n} c_{k} f\left(\xi_{k}\right) \tag{1}\\
& \int_{a}^{b} f(x) \rho(x) d x=c_{0} f(a)+\sum_{k=1}^{n} c_{k} f\left(\xi_{k}\right) \\
& \int_{a}^{b} f(x) \rho(x) d x=\sum_{k=1}^{n} c_{k} f\left(\xi_{k}\right)+c_{n+1} f(b) \\
& \int_{a}^{b} f(x) \rho(x) d x=c_{0} f(a)+\sum_{k=1}^{n} c_{k} f\left(\xi_{k}\right)+c_{n+1} f(b)
\end{align*}
$$

Gauss-type quadrature formulae, where the constants $c_{0}, c_{1}, \ldots, c_{n}, c_{n+1}$ and $\left.\xi_{1}, \ldots, \xi_{n} \in\right] a, b[$ are to be determined so that (1)-(3), and (4) be
exact when f is a polynomial of degree at most $2 n-1,2 n, 2 n$, and $2 n+1$, respectively. We shall distinguish four cases.

Case A.

Theorem 1. Let P_{n} be the nth degree member of the orthogonal polynomial system on $[a, b]$ with respect to the weight function ρ. Then (1) is exact for polynomials f with $\operatorname{deg} f \leq 2 n-1$ if and only if ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n} and

$$
\begin{equation*}
c_{k}=\int_{a}^{b} \frac{P_{n}(x)}{\left(x-\xi_{k}\right) P_{n}^{\prime}\left(\xi_{k}\right)} \rho(x) d x . \tag{5}
\end{equation*}
$$

Furthermore, ξ_{1}, \ldots, ξ_{n} are pairwise distinct elements of $] a, b\left[\right.$, and $c_{k} \geq 0$ for all $k=1, \ldots, n$.

This theorem follows easily from well known results in numerical analysis [3], [4], [20]. For the sake of completeness, we provide a proof.

Proof. Assume that ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n}. Denote by L_{k} : $[a, b] \rightarrow \mathbb{R}(k=1, \ldots, n)$ the primitive Lagrange interpolation polynomials:

$$
L_{k}(x):= \begin{cases}\frac{P_{n}(x)}{\left(x-\xi_{k}\right) P_{n}^{\prime}\left(\xi_{k}\right)} & \text { if } x \neq \xi_{k} \\ 1 & \text { if } x=\xi_{k}\end{cases}
$$

If Q is a polynomial with $\operatorname{deg} Q \leq 2 n-1$, then using Euclidean algorithm Q can be written in the form

$$
Q=P P_{n}+R
$$

such that $\operatorname{deg} P, \operatorname{deg} R \leq n-1$. The inequality $\operatorname{deg} P \leq n-1$ implies that

$$
\left\langle P, P_{n}\right\rangle_{\varrho}=0,
$$

while $\operatorname{deg} R \leq n-1$ yields that R is equal to its Lagrange interpolation polynomial:

$$
R=\sum_{k=1}^{n} R\left(\xi_{k}\right) L_{k} .
$$

Therefore, by the definition of c_{1}, \ldots, c_{n} in (5),

$$
\begin{aligned}
\int_{a}^{b} Q \rho & =\int_{a}^{b} P P_{n} \rho+\int_{a}^{b} R \rho=\sum_{k=1}^{n} R\left(\xi_{k}\right) \int_{a}^{b} L_{k} \rho \\
& =\sum_{k=1}^{n} c_{k} R\left(\xi_{k}\right)=\sum_{k=1}^{n} c_{k}\left(P\left(\xi_{k}\right) P_{n}\left(\xi_{k}\right)+R\left(\xi_{k}\right)\right)=\sum_{k=1}^{n} c_{k} Q\left(\xi_{k}\right) .
\end{aligned}
$$

That is, (1) is exact for polynomials of degree at most $2 n-1$.
Conversely, assume that (1) is exact for polynomials of degree at most $2 n-1$. Let $Q(x):=\left(x-\xi_{1}\right) \ldots\left(x-\xi_{n}\right)$ and let be P a polynomial with $\operatorname{deg} P \leq n-1$. Then $\operatorname{deg} P Q \leq 2 n-1$, thus

$$
\int_{a}^{b} P Q \rho=c_{1} P\left(\xi_{1}\right) Q\left(\xi_{1}\right)+\cdots+c_{n} P\left(\xi_{n}\right) Q\left(\xi_{n}\right)=0 .
$$

Therefore, Q is ρ-orthogonal to P. Using the uniqueness of P_{n}, we get that $P_{n}=a_{n} Q$ and ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n}. Furthermore, (1) is exact if we substitute $f:=L_{k}$ and $f:=L_{k}^{2}$, respectively. The first substitution gives (5), while the second one shows the nonnegativity of c_{k}.

Case B. Denote by ρ_{a} the weight function defined by

$$
\rho_{a}(x):=(x-a) \rho(x) \quad(x \in[a, b]) .
$$

Theorem 2. Let P_{n} be the nth degree member of the orthogonal polynomial-system on $[a, b]$ with respect to the weight function ρ_{a}. Then (2) is exact for polynomials f with $\operatorname{deg} f \leq 2 n$ if and only if ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n},

$$
\begin{equation*}
c_{0}=\frac{1}{P_{n}^{2}(a)} \int_{a}^{b} P_{n}^{2}(x) \rho(x) d x \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{k}=\frac{1}{\xi_{k}-a} \int_{a}^{b} \frac{P_{n}(x)(x-a)}{\left(x-\xi_{k}\right) P_{n}^{\prime}\left(\xi_{k}\right)} \rho(x) d x . \tag{7}
\end{equation*}
$$

Furthermore, ξ_{1}, \ldots, ξ_{n} are pairwise distinct elements of $] a, b\left[\right.$, and $c_{k} \geq 0$ for all $k=0,1, \ldots, n$.

Proof. Assume that (2) is exact for polynomials of degree at most $2 n$. If P is a polynomial with $\operatorname{deg} P \leq 2 n-1$, then
$\int_{a}^{b} P \rho_{a}=\int_{a}^{b}(x-a) P(x) \rho(x) d x=c_{1}\left(\xi_{1}-a\right) P\left(\xi_{1}\right)+\cdots+c_{n}\left(\xi_{n}-a\right) P\left(\xi_{n}\right)$.
Applying Theorem 1 to the weight function ρ_{a} and the constants

$$
c_{a ; k}:=c_{k}\left(\xi_{k}-a\right)
$$

we get, that ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n}, and the constants $c_{a ; k}(k=$ $1, \ldots, n$) can be computed by the formula (5). Substituting $f:=P_{n}^{2}$ into (2), we obtain that

$$
c_{0}=\frac{1}{P_{n}^{2}(a)} \int_{a}^{b} P_{n}^{2} \rho .
$$

Thus, we get that (6) and (7) are valid and $c_{k} \geq 0$ for $k=1, \ldots, n$.
Conversely, assume that ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n}, and the constants c_{1}, \ldots, c_{n} are given by the formula (7) and $c_{0}=\int_{a}^{b} \rho-\left(c_{1}+\ldots+c_{n}\right)$. If P is a polynomial with $\operatorname{deg} P \leq 2 n$, then there exists a polynomial Q with $\operatorname{deg} Q \leq 2 n-1$ such that

$$
P(x)=Q(x)(x-a)+P(a) .
$$

By Theorem 1,

$$
\int_{a}^{b} Q \rho_{a}=c_{a ; 1} Q\left(\xi_{1}\right)+\cdots+c_{a ; n} Q\left(\xi_{n}\right)
$$

holds. Thus

$$
\begin{aligned}
\int_{a}^{b} P(x) \rho(x) d x & =\int_{a}^{b}(Q(x)(x-a)+P(a)) \rho(x) d x \\
& =\sum_{k=1}^{n} c_{k}\left(\xi_{k}-a\right) Q\left(\xi_{k}\right)+\sum_{k=0}^{n} P(a) c_{k} \\
& =c_{0} P(a)+\sum_{k=1}^{n} c_{k}\left(\left(\xi_{k}-a\right) Q\left(\xi_{k}\right)+P(a)\right) \\
& =c_{0} P(a)+\sum_{k=1}^{n} c_{k} P\left(\xi_{k}\right),
\end{aligned}
$$

which yields that (2) is exact for polynomials of degree at most $2 n$. Therefore, substituting $f:=P_{n}^{2}$ into (2), we get (6).
Case C. Denote by ρ^{b} the weight function defined by

$$
\rho^{b}(x):=(b-x) \rho(x) \quad(x \in[a, b]) .
$$

Theorem 3. Let P_{n} be the nth degree member of the orthogonal polynomial system on $[a, b]$ with respect to the weight function ρ^{b}. Then (3) is exact for polynomials f with $\operatorname{deg} f \leq 2 n$ if and only if ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n},

$$
\begin{equation*}
c_{k}=\frac{1}{b-\xi_{k}} \int_{a}^{b} \frac{P_{n}(x)(b-x)}{\left(x-\xi_{k}\right) P_{n}^{\prime}\left(\xi_{k}\right)} \rho(x) d x \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n+1}=\frac{1}{P_{n}^{2}(b)} \int_{a}^{b} P_{n}^{2}(x) \rho(x) d x \tag{9}
\end{equation*}
$$

Furthermore, ξ_{1}, \ldots, ξ_{n} are pairwise distinct elements of $] a, b\left[\right.$, and $c_{k} \geq 0$ for all $k=1, \ldots, n, n+1$.

Hint. Applying a similar argument as in the previous proof for the weight function ρ^{b}, one can get the statement of the theorem.

Case D. Denote by ρ_{a}^{b} the weight function defined by

$$
\rho_{a}^{b}(x):=(b-x)(x-a) \rho(x) \quad(x \in[a, b]) .
$$

Theorem 4. Let P_{n} be the nth degree member of the orthogonal polynomial-system on $[a, b]$ with respect to the weight function ρ_{a}^{b}. Then (4) is exact for polynomials f with $\operatorname{deg} f \leq 2 n+1$ if and only if ξ_{1}, \ldots, ξ_{n} are the zeros of P_{n},

$$
\begin{gather*}
c_{0}=\frac{1}{(b-a) P_{n}^{2}(a)} \int_{a}^{b} P_{n}^{2}(x)(b-x) \rho(x) d x \tag{10}\\
c_{k}=\frac{1}{\left(b-\xi_{k}\right)\left(\xi_{k}-a\right)} \int_{a}^{b} \frac{P_{n}(x)(b-x)(x-a)}{\left(x-\xi_{k}\right) P_{n}^{\prime}\left(\xi_{k}\right)} \rho(x) d x \tag{11}
\end{gather*}
$$

and

$$
\begin{equation*}
c_{n+1}=\frac{1}{(b-a) P_{n}^{2}(b)} \int_{a}^{b} P_{n}^{2}(x)(x-a) \rho(x) d x . \tag{12}
\end{equation*}
$$

Furthermore, ξ_{1}, \ldots, ξ_{n} are pairwise distinct elements of $] a, b\left[\right.$, and $c_{k} \geq 0$ for all $k=0,1, \ldots, n, n+1$.

Hint. Using Theorem 2 or Theorem 3 and applying a similar argument as in the previous proof for the weight-function ρ_{a}^{b}, one can get the statement of the theorem. A more direct proof can also be done by using Theorem 3. For deriving (10) and (12), substitute $f(x):=(b-x) P_{n}^{2}(x)$ and $f(x):=(x-a) P_{n}^{2}(x)$ into (4).

Remainder term for the Hermite interpolation formula. Let $f:[a, b] \rightarrow \mathbb{R}$ be a differentiable function, x_{1}, \ldots, x_{n} be pairwise distinct elements of $[a, b]$, and $1 \leq r \leq n$ be a fixed integer. Denote by H the Hermite interpolation polynomial satisfying the following conditions:

$$
\begin{aligned}
H\left(x_{k}\right) & =f\left(x_{k}\right) \\
H^{\prime}\left(x_{k}\right) & =f^{\prime}\left(x_{k}\right)
\end{aligned} \quad(k=1, \ldots, n) .
$$

We recall that $\operatorname{deg} H=n+r-1$. From a well known result, (c.f. [3, Section 5.3, pp. 230-231]), if f is $(n+r)$-times differentiable then, for all $x \in[a, b]$, there exists η such that

$$
\begin{equation*}
f(x)-H(x)=\frac{\omega_{n}(x) \omega_{r}(x)}{(n+r)!} f^{(n+r)}(\eta), \tag{13}
\end{equation*}
$$

where

$$
\omega_{k}(x)=\left(x-x_{1}\right) \cdots\left(x-x_{k}\right) .
$$

3. Smoothing n-monotone functions

It is well known that there exists a function φ which possesses the following properties:
(i) $\varphi: \mathbb{R} \rightarrow \mathbb{R}_{+}$is \mathcal{C}^{∞}, i.e., it is infinitely many times differentiable;
(ii) $\operatorname{supp} \varphi \subset[-1,1]$;
(iii) $\int_{\mathbb{R}} \varphi=1$.

Using φ, we define for all $\varepsilon>0$ the function φ_{ε} by

$$
\varphi_{\varepsilon}(x)=\frac{1}{\varepsilon} \varphi\left(\frac{x}{\varepsilon}\right) \quad(x \in \mathbb{R}) .
$$

Then, one can easily check that φ_{ε} satisfies the following conditions:
(i') $\varphi_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{R}_{+}$is \mathcal{C}^{∞};
(ii) $\operatorname{supp} \varphi_{\varepsilon} \subset[-\varepsilon, \varepsilon]$;
(iii') $\int_{\mathbb{R}} \varphi_{\varepsilon}=1$.
Let $I \subset \mathbb{R}$ be a nonempty open interval, $f: I \rightarrow \mathbb{R}$ be a continuous function, and $\varepsilon>0$. We will denote the convolution of f and φ_{ε} by f_{ε}, that is,

$$
f_{\varepsilon}(x):=\int_{\mathbb{R}} \bar{f}(y) \varphi_{\varepsilon}(x-y) d y \quad(x \in \mathbb{R}),
$$

where $\bar{f}(y)=f(y)$ if $y \in I$, otherwise $\bar{f}(y)=0$. We recall, that $f_{\varepsilon} \rightarrow f$ uniformly as $\varepsilon \rightarrow 0$ on each compact subinterval of I, and f_{ε} is infinitely many times differentiable on \mathbb{R}; these important results can be found for example in [21, p. 549].

Theorem 5. Let $I \subset \mathbb{R}$ be a nonempty open interval, $f: I \rightarrow \mathbb{R}$ be an n-monotone continuous function. Then, for all compact subintervals $[a, b]$ of I, there exists a sequence of n-monotone and \mathcal{C}^{∞} functions $\left(f_{k}\right)$ which converges uniformly to f on $[a, b]$.

Proof. Choose $a, b \in I$ and $\varepsilon_{0}>0$ such that the relation $\left[a-\varepsilon_{0}\right.$, $\left.b+\varepsilon_{0}\right] \subset I$ hold. We show that the function $\tau_{\varepsilon} f:[a, b] \rightarrow \mathbb{R}$ defined by

$$
\tau_{\varepsilon} f(x):=f(x-\varepsilon) \quad(x \in[a, b])
$$

is n-monotone on $[a, b]$ for $\varepsilon \in] 0, \varepsilon_{0}\left[\right.$. Let $a \leq x_{0}<\cdots<x_{n} \leq b$ and $k \leq n-1$ be fixed. Using induction, we are going to verify the equality

$$
\left|\begin{array}{ccc}
\tau_{\varepsilon} f\left(x_{0}\right) & \ldots & \tau_{\varepsilon} f\left(x_{n}\right) \tag{14}\\
1 & \ldots & 1 \\
x_{0} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{0}^{k-1} & \ldots & x_{n}^{k-1} \\
x_{0}^{k} & \ldots & x_{n}^{k} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|=\left|\begin{array}{ccc}
\tau_{\varepsilon} f\left(x_{0}\right) & \ldots & \tau_{\varepsilon} f\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0}-\varepsilon & \ldots & x_{n}-\varepsilon \\
\vdots & \ddots & \vdots \\
\left(x_{0}-\varepsilon\right)^{k-1} & \ldots & \left(x_{n}-\varepsilon\right)^{k-1} \\
x_{0}^{k} & \ldots & x_{n}^{k} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| .
$$

If $k=1$, then this equation obviously holds. Assume, for a fixed positive integer $k \leq n-2$, that the equation remains true. By the binomial theorem,

$$
x^{k}=\binom{k}{0} \varepsilon^{k}+\binom{k}{1} \varepsilon^{k-1}(x-\varepsilon)+\cdots+\binom{k}{k}(x-\varepsilon)^{k},
$$

which means, that $(x-\varepsilon)^{k}$ is the linear combination of the elements 1 , $x-\varepsilon, \ldots,(x-\varepsilon)^{k}, x^{k}$. Therefore, adding the adequate linear combination of the 2 nd, $\ldots,(k+1)$ st rows to the $(k+2)$ nd row, we get that the equation

$$
\begin{array}{|ccc}
\tau_{\varepsilon} f\left(x_{0}\right) & \ldots & \tau_{\varepsilon} f\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0}-\varepsilon & \ldots & x_{n}-\varepsilon \\
\vdots & \ddots & \vdots \\
\left(x_{0}-\varepsilon\right)^{k-1} & \ldots & \left(x_{n}-\varepsilon\right)^{k-1} \\
x_{0}^{k} & \ldots & x_{n}^{k} \\
x_{0}^{k+1} & \ldots & x_{n}^{k+1} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\left|=\left|\begin{array}{ccc}
\tau_{\varepsilon} f\left(x_{0}\right) & \ldots & \tau_{\varepsilon} f\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0}-\varepsilon & \ldots & x_{n}-\varepsilon \\
\vdots & \ddots & \vdots \\
\left(x_{0}-\varepsilon\right)^{k-1} & \ldots & \left(x_{n}-\varepsilon\right)^{k-1} \\
\left(x_{0}-\varepsilon\right)^{k} & \ldots & \left(x_{n}-\varepsilon\right)^{k} \\
x_{0}^{k+1} & \ldots & x_{n}^{k+1} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right|\right.
$$

holds. That is, (14) holds for all fixed positive $k(1 \leq k \leq n-1)$. Particularly, if $k=n-1$, we get the n-monotonicity of $\tau_{\varepsilon} f$. Using integral transformation and the previous result,

$$
\begin{aligned}
& (-1)^{n}\left|\begin{array}{ccc}
f_{\varepsilon}\left(x_{0}\right) & \ldots & f_{\varepsilon}\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| \\
& \quad=\int_{\mathbb{R}}(-1)^{n}\left|\begin{array}{ccc}
\\
& \bar{f}(t) \varphi_{\varepsilon}\left(x_{0}-t\right) & \ldots \\
\hline 1 & \ldots & \bar{f}(t) \varphi_{\varepsilon}\left(x_{n}-t\right) \\
x_{0} & \ldots & 1 \\
\vdots & \ddots & x_{n} \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| d t
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{\mathbb{R}}(-1)^{n}\left|\begin{array}{ccc}
\bar{f}\left(x_{0}-s\right) & \ldots & \bar{f}\left(x_{n}-s\right) \\
1 & \ldots & 1 \\
x_{0} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| \varphi_{\varepsilon}(s) d s \\
& =\int_{\mathbb{R}}(-1)^{n}\left|\begin{array}{ccc}
\tau_{s} f\left(x_{0}\right) & \ldots & \tau_{s} f\left(x_{n}\right) \\
1 & \ldots & 1 \\
x_{0} & \ldots & x_{n} \\
\vdots & \ddots & \vdots \\
x_{0}^{n-1} & \ldots & x_{n}^{n-1}
\end{array}\right| \varphi_{\varepsilon}(s) d s \geq 0
\end{aligned}
$$

and we get, that f_{ε} is n-monotone on $[a, b]$ for $\left.\varepsilon \in\right] 0, \varepsilon_{0}[$.
To complete the proof, choose a positive integer n_{0} such that the relation $\frac{1}{n_{0}}<\varepsilon_{0}$ hold. If $\varepsilon_{k}:=\frac{1}{n_{0}+k}(k=1,2, \ldots)$ and $f_{k}:=f_{\varepsilon_{k}}$, then $\left.\varepsilon_{k} \in\right] 0, \varepsilon_{0}\left[\right.$, thus $\left(f_{k}\right)_{k=1}^{\infty}$ satisfies the requirements of the theorem.

4. Generalized Hadamard-inequalities

Our main results concern the cases of odd and even order of convexity separately. First we deal with odd order convex functions.

Theorem 6. Let, for $n \geq 0$,

$$
p_{n}(x):=\left|\begin{array}{cccc}
1 & \frac{1}{2} & \ldots & \frac{1}{n+1} \\
x & \frac{1}{3} & \cdots & \frac{1}{n+2} \\
\vdots & \vdots & \ddots & \vdots \\
x^{n} & \frac{1}{n+2} & \cdots & \frac{1}{2 n+1}
\end{array}\right|,
$$

then p_{n} has n pairwise distinct roots in $] 0,1[$. Denote these roots by $\lambda_{1}, \ldots, \lambda_{n}$, and

$$
\begin{aligned}
& \alpha_{0}:=\frac{1}{p_{n}^{2}(0)} \int_{0}^{1} p_{n}^{2}(x) d x, \\
& \alpha_{k}:=\frac{1}{\lambda_{k}} \int_{0}^{1} \frac{p_{n}(x) x}{\left(x-\lambda_{k}\right) p_{n}^{\prime}\left(\lambda_{k}\right)} d x \quad(k=1, \ldots, n) .
\end{aligned}
$$

Then the following inequalities hold for any $m=2 n+1$-monotone function $f:[a, b] \rightarrow \mathbb{R}:$

$$
\begin{aligned}
\alpha_{0} f(a) & +\sum_{k=1}^{n} \alpha_{k} f\left(\left(1-\lambda_{k}\right) a+\lambda_{k} b\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \sum_{k=1}^{n} \alpha_{k} f\left(\lambda_{k} a+\left(1-\lambda_{k}\right) b\right)+\alpha_{0} f(b)
\end{aligned}
$$

Proof. Observe that p_{n} is the nth degree orthogonal polynomial on $[0,1]$ with respect to the weight function $\rho(x):=x$ (c.f. the beginning of Section 2). First we prove the statement for the special case when $a=0$, $b=1$ and $f:[0,1] \rightarrow \mathbb{R}$ is supposed to be $m=2 n+1$ times differentiable. In this case, $f^{(2 n+1)} \geq 0$ on $] 0,1[$, according to Theorem A.

Let H be the $2 n$th degree Hermite interpolation polynomial which possesses the following properties:

$$
\begin{aligned}
H(0) & =f(0) \\
H\left(\lambda_{k}\right) & =f\left(\lambda_{k}\right) \quad(k=1, \ldots, n) \\
H^{\prime}\left(\lambda_{k}\right) & =f^{\prime}\left(\lambda_{k}\right) \quad(k=1, \ldots, n)
\end{aligned}
$$

By (13), for all $x \in[0,1]$, there exists $\eta \in] 0,1[$ such that

$$
f(x)-H(x)=\frac{x\left(x-\lambda_{1}\right)^{2} \cdots\left(x-\lambda_{n}\right)^{2}}{(2 n+1)!} f^{(2 n+1)}(\eta)
$$

therefore, for all $x \in[0,1]$,

$$
f(x) \geq H(x)
$$

Since H is of degree $2 n$, applying Theorem 2, we get that

$$
\begin{aligned}
\int_{0}^{1} f(x) d x & \geq \int_{0}^{1} H(x) d x=\alpha_{0} H(0)+\sum_{k=1}^{n} \alpha_{k} H\left(\lambda_{k}\right) \\
& =\alpha_{0} f(0)+\sum_{k=1}^{n} \alpha_{k} f\left(\lambda_{k}\right)
\end{aligned}
$$

Now we suppose that $a, b \in \mathbb{R}(a<b)$, but $f:[a, b] \rightarrow \mathbb{R}$ is still $m=2 n+1$ times differentiable. Define the function $F:[0,1] \rightarrow \mathbb{R}$ by

$$
F(t):=f((1-t) a+t b) .
$$

Then, F is m-times differentiable and m-monotone on $[0,1]$. It is easy to check that

$$
\int_{0}^{1} F(x) d x=\frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

The previous result applied to the function F, yields

$$
\alpha_{0} f(a)+\sum_{k=1}^{n} \alpha_{k} f\left(\left(1-\lambda_{k}\right) a+\lambda_{k} b\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x .
$$

Finally, let $f:[a, b] \rightarrow \mathbb{R}$ be an arbitrary m-monotone function. Without the loss of generality we may assume that $m>1$; by Theorem B , in this case f is continuous. Choose $\varepsilon>0$. According to Theorem 5, there exists a sequence of \mathcal{C}^{∞} functions $\left(f_{i}\right)_{i=1}^{\infty}$ whose members are defined on $[a, b]$, $f_{i} \rightarrow f$ uniformly on $[a+\varepsilon, b-\varepsilon]$, and f_{i} is m-monotone on $[a+\varepsilon, b-\varepsilon]$. Then, applying the previous step on the interval $[a+\varepsilon, b-\varepsilon]$, we get

$$
\begin{aligned}
& \alpha_{0} f_{i}(a+\varepsilon)+\sum_{k=1}^{n} \alpha_{k} f_{i}\left(\left(1-\lambda_{k}\right)(a+\varepsilon)+\lambda_{k}(b-\varepsilon)\right) \\
& \leq \frac{1}{b-a-2 \varepsilon} \int_{a+\varepsilon}^{b-\varepsilon} f_{i}(x) d x
\end{aligned}
$$

Letting $i \rightarrow \infty$ and then $\varepsilon \rightarrow 0$, we get the left hand side inequality to be proved.

Now define the function $F:[a, b] \rightarrow \mathbb{R}$ by

$$
F(x):=-f(a+b-x) .
$$

Then F is m-monotone on $[a, b]$. Using the left hand side inequality for F, the right hand side inequality for f follows.

Our second main result offers Hadamard-type inequalities for evenorder convex functions.

Theorem 7. Let, for $n \geq 1$,

$$
\begin{aligned}
& p_{n}(x):=\left|\begin{array}{cccc}
1 & 1 & \ldots & \frac{1}{n} \\
x & \frac{1}{2} & \ldots & \frac{1}{n+1} \\
\vdots & \vdots & \ddots & \vdots \\
x^{n} & \frac{1}{n+1} & \ldots & \frac{1}{2 n}
\end{array}\right|, \\
& q_{n}(x):=\left|\begin{array}{cccc}
1 & \frac{1}{2 \cdot 3} & \cdots & \frac{1}{n(n+1)} \\
x & \frac{1}{3 \cdot 4} & \cdots & \frac{1}{(n+1)(n+2)} \\
\vdots & \vdots & \ddots & \vdots \\
x^{n-1} & \frac{1}{(n+1)(n+2)} & \cdots & \frac{1}{(2 n-1) 2 n}
\end{array}\right|
\end{aligned}
$$

then p_{n} has n, and q_{n} has $n-1$ pairwise distinct roots in $] 0,1[$. Denote these roots by $\lambda_{1}, \ldots, \lambda_{n}$ and $\mu_{1}, \ldots, \mu_{n-1}$, respectively. Let

$$
\alpha_{k}=\int_{0}^{1} \frac{p_{n}(x)}{\left(x-\lambda_{k}\right) p_{n}^{\prime}\left(\lambda_{k}\right)} d x \quad(k=1, \ldots, n)
$$

and

$$
\begin{aligned}
& \beta_{0}:=\frac{1}{q_{n}^{2}(0)} \int_{0}^{1} q_{n}^{2}(x)(1-x) d x \\
& \beta_{k}:=\frac{1}{\left(1-\mu_{k}\right) \mu_{k}} \int_{0}^{1} \frac{q_{n}(x) x(1-x)}{\left(x-\mu_{k}\right) q_{n}^{\prime}\left(\mu_{k}\right)} d x \quad(k=1, \ldots, n-1), \\
& \beta_{n}:=\frac{1}{q_{n}^{2}(1)} \int_{0}^{1} q_{n}^{2}(x) x d x,
\end{aligned}
$$

then the following inequalities hold for any $m=2 n$-monotone function $f:[a, b] \rightarrow \mathbb{R}:$

$$
\begin{aligned}
& \sum_{k=1}^{n} \alpha_{k} f\left(\left(1-\lambda_{k}\right) a+\lambda_{k} b\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \beta_{0} f(a)+\sum_{k=1}^{n-1} \beta_{k} f\left(\left(1-\mu_{k}\right) a+\mu_{k} b\right)+\beta_{n} f(b)
\end{aligned}
$$

An inequality analogous to the left hand side inequality was also established by T. Popoviciu in [12].

Proof. Observe that p_{n} is the nth degree orthogonal polynomial on $[0,1]$ with respect to the weight function $\rho(x):=1$; similarly, q_{n} is the $(n-1)$ st degree orthogonal polynomial on $[0,1]$ with respect to the weight function $\rho(x):=(1-x) x$. First, just as before, we prove the statement for the special case when $a=0, b=1$ and $f:[0,1] \rightarrow \mathbb{R}$ is supposed to be $m=2 n$ times differentiable. In this case, $f^{(2 n)} \geq 0$ on $] 0,1[$ according to Theorem A.

Let H be the $(2 n-1)$ st degree Hermite interpolation polynomial which possesses the following properties:

$$
\begin{aligned}
H\left(\lambda_{k}\right) & =f\left(\lambda_{k}\right) \\
H^{\prime}\left(\lambda_{k}\right) & =f^{\prime}\left(\lambda_{k}\right) \quad(k=1, \ldots, n) .
\end{aligned}
$$

By (13), for all $x \in[0,1]$, there exists $\eta \in] 0,1[$ such that

$$
f(x)-H(x)=\frac{\left(x-\lambda_{1}\right)^{2} \ldots\left(x-\lambda_{n}\right)^{2}}{(2 n)!} f^{(2 n)}(\eta) .
$$

Therefore, for all $x \in[0,1]$,

$$
f(x) \geq H(x) .
$$

Since H is of degree $2 n-1$, applying Theorem 1, we get that

$$
\int_{0}^{1} f(x) d x \geq \int_{0}^{1} H(x) d x=\sum_{k=1}^{n} \alpha_{k} H\left(\lambda_{k}\right)=\sum_{k=1}^{n} \alpha_{k} f\left(\lambda_{k}\right) .
$$

Now let H be the $(2 n-1)$ st degree Hermite interpolation polynomial which possesses the following properties:

$$
\begin{aligned}
H(0) & =f(0) \\
H\left(\mu_{k}\right) & =f\left(\mu_{k}\right) \\
H^{\prime}\left(\mu_{k}\right) & =f^{\prime}\left(\mu_{k}\right) \quad(k=1, \ldots, n-1), \\
H(1) & =f(1)
\end{aligned}
$$

By (13), for all $x \in[0,1]$, there exists $\eta \in] 0,1[$ such that

$$
f(x)-H(x)=\frac{(x-1) x\left(x-\mu_{1}\right)^{2} \ldots\left(x-\mu_{n-1}\right)^{2}}{(2 n)!} f^{(2 n)}(\eta) .
$$

Therefore, for $x \in[0,1]$,

$$
f(x) \leq H(x)
$$

Since H is of degree $2 n-1$, applying Theorem 4, we get that

$$
\begin{aligned}
\int_{0}^{1} f(x) d x \leq \int_{0}^{1} H(x) d x & =\beta_{0} H(0)+\sum_{k=1}^{n-1} \beta_{k} H\left(\mu_{k}\right)+\beta_{n} H(1) \\
& =\beta_{0} f(0)+\sum_{k=1}^{n-1} \beta_{k} f\left(\mu_{k}\right)+\beta_{n} f(1)
\end{aligned}
$$

From this point, an analogous argument as in the previous proof gives the statement of the theorem, for arbitrary interval $[a, b]$ without differentiability assumptions on the function f.

5. Applications:
 $2-, 3-, 4-, 5-, 6-, 8-, 10-$ and $12-$ monotone functions

In the subsequent corollaries we state Hadamard-type inequalities in those cases when the roots of the polynomials in Theorem 6 and Theorem 7 can explicitly be computed.

Corollary 1. If $f:[a, b] \rightarrow \mathbb{R}$ is a 2 -monotone (i.e. convex) function, then the following inequalities hold:

$$
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2}
$$

Corollary 2. If $f:[a, b] \rightarrow \mathbb{R}$ is a 3-monotone function, then the following inequalities hold:

$$
\frac{1}{4} f(a)+\frac{3}{4} f\left(\frac{a+2 b}{3}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{3}{4} f\left(\frac{2 a+b}{3}\right)+\frac{1}{4} f(b)
$$

Corollary 3. If $f:[a, b] \rightarrow \mathbb{R}$ is a 4-monotone function, then the following inequalities hold:

$$
\begin{aligned}
& \frac{1}{2} f\left(\frac{3+\sqrt{3}}{6} a+\frac{3-\sqrt{3}}{6} b\right)+\frac{1}{2} f\left(\frac{3-\sqrt{3}}{6} a+\frac{3+\sqrt{3}}{6} b\right) \\
& \quad \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{1}{6} f(a)+\frac{2}{3} f\left(\frac{a+b}{2}\right)+\frac{1}{6} f(b) .
\end{aligned}
$$

Corollary 4. If $f:[a, b] \rightarrow \mathbb{R}$ is a 5 -monotone function, then the following inequalities hold:

$$
\begin{aligned}
& \frac{1}{9} f(a)+ \frac{16+\sqrt{6}}{36} f\left(\frac{4+\sqrt{6}}{10} a+\frac{6-\sqrt{6}}{10} b\right) \\
&+\frac{16-\sqrt{6}}{36} f\left(\frac{4-\sqrt{6}}{10} a+\frac{6+\sqrt{6}}{10} b\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \leq \frac{16-\sqrt{6}}{36} f\left(\frac{6+\sqrt{6}}{10} a+\frac{4-\sqrt{6}}{10} b\right) \\
& \quad+\frac{16+\sqrt{6}}{36} f\left(\frac{6-\sqrt{6}}{10} a+\frac{4+\sqrt{6}}{10} b\right)+\frac{1}{9} f(b) .
\end{aligned}
$$

Corollary 5. If $f:[a, b] \rightarrow \mathbb{R}$ is a 6 -monotone function, then the following inequalities hold:

$$
\begin{aligned}
& \frac{5}{18} f\left(\frac{5+\sqrt{15}}{10} a+\frac{5-\sqrt{15}}{10} b\right)+\frac{4}{9} f\left(\frac{a+b}{2}\right) \\
& \quad+\frac{5}{18} f\left(\frac{5-\sqrt{15}}{10} a+\frac{5+\sqrt{15}}{10} b\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \quad \leq \frac{1}{12} f(a)+\frac{5}{12} f\left(\frac{5+\sqrt{5}}{10} a+\frac{5-\sqrt{5}}{10} b\right) \\
& \quad+\frac{5}{12} f\left(\frac{5-\sqrt{5}}{10} a+\frac{5+\sqrt{5}}{10} b\right)+\frac{1}{12} f(b) .
\end{aligned}
$$

In the other cases analogous statements can be formulated by applying Theorem 7. For simplicity, instead of writing down these corollaries explicitly, we shall present a list which contains the roots of p_{n} (denoted by λ_{k}), and the coefficients α_{k} for the left hand side inequality, furthermore the roots of q_{n} (denoted by μ_{k}), and the coefficients β_{k} for the right hand side inequality, respectively.

Case $m=8$. The roots of p_{4} :

$$
\begin{array}{ll}
\frac{1}{2}-\frac{\sqrt{525+70 \sqrt{30}}}{70}, & \frac{1}{2}-\frac{\sqrt{525-70 \sqrt{30}}}{70} \\
\frac{1}{2}+\frac{\sqrt{525-70 \sqrt{30}}}{70}, & \frac{1}{2}+\frac{\sqrt{525+70 \sqrt{30}}}{70}
\end{array}
$$

the corresponding coefficients:

$$
\frac{1}{4}-\frac{\sqrt{30}}{72}, \quad \frac{1}{4}+\frac{\sqrt{30}}{72}, \quad \frac{1}{4}+\frac{\sqrt{30}}{72}, \quad \frac{1}{4}-\frac{\sqrt{30}}{72} .
$$

The roots of q_{4} :

$$
\frac{1}{2}-\frac{\sqrt{21}}{14}, \quad \frac{1}{2}, \quad \frac{1}{2}+\frac{\sqrt{21}}{14}
$$

the corresponding coefficients:

$$
\frac{1}{20}, \quad \frac{49}{180}, \quad \frac{16}{45}, \quad \frac{49}{180}, \quad \frac{1}{20} .
$$

Case $m=10$. The roots of p_{5} :

$$
\begin{aligned}
& \frac{1}{2}-\frac{\sqrt{245+14 \sqrt{70}}}{42}, \quad \frac{1}{2}-\frac{\sqrt{245-14 \sqrt{70}}}{42} \\
& \frac{1}{2}, \quad \frac{1}{2}+\frac{\sqrt{245-14 \sqrt{70}}}{42}, \quad \frac{1}{2}+\frac{\sqrt{245+14 \sqrt{70}}}{42}
\end{aligned}
$$

the corresponding coefficients:

$$
\frac{322-13 \sqrt{70}}{1800}, \quad \frac{322+13 \sqrt{70}}{1800}, \quad \frac{64}{225}, \quad \frac{322+13 \sqrt{70}}{1800}, \quad \frac{322-13 \sqrt{70}}{1800} .
$$

The roots of q_{5} :

$$
\begin{array}{ll}
\frac{1}{2}-\frac{\sqrt{147+42 \sqrt{7}}}{42}, & \frac{1}{2}-\frac{\sqrt{147-42 \sqrt{7}}}{42} \\
\frac{1}{2}+\frac{\sqrt{147-42 \sqrt{7}}}{42}, & \frac{1}{2}+\frac{\sqrt{147+42 \sqrt{7}}}{42} ;
\end{array}
$$

the corresponding coefficients:

$$
\frac{1}{30}, \quad \frac{14-\sqrt{7}}{60}, \quad \frac{14+\sqrt{7}}{60}, \quad \frac{14+\sqrt{7}}{60}, \quad \frac{14-\sqrt{7}}{60}, \quad \frac{1}{30} .
$$

Case $m=12$ (right hand side inequality). The roots of q_{6} :

$$
\begin{aligned}
& \frac{1}{2}-\frac{\sqrt{495+66 \sqrt{15}}}{66}, \quad \frac{1}{2}-\frac{\sqrt{495-66 \sqrt{15}}}{66} \\
& \frac{1}{2}, \quad \frac{1}{2}+\frac{\sqrt{495-66 \sqrt{15}}}{66}, \quad \frac{1}{2}+\frac{\sqrt{495+66 \sqrt{15}}}{66}
\end{aligned}
$$

the corresponding coefficients:

$$
\begin{array}{lll}
\frac{1}{42}, \quad \frac{124-7 \sqrt{15}}{700}, \quad \frac{124+7 \sqrt{15}}{700}, & \frac{128}{525} \\
\frac{124+7 \sqrt{15}}{700}, & \frac{124-7 \sqrt{15}}{700}, & \frac{1}{42}
\end{array}
$$

During the investigations of the higher-order cases, we were able to use the symmetry of the roots of the orthogonal polynomials with respect to $1 / 2$, and therefore the calculations lead to solving at most quadratic equations. The first case where "casus irreducibilis" appears, is the 7monotone case; similarly, this is the reason for presenting only the right hand side inequality when the function was supposed to be 12 -monotone.

Acknowledgement. The authors wish to express their gratitude to Attila HÁzy for his help in calculating the parameters of Hadamard-type inequalities of higher-order.

References

[1] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, Victoria University, 2000, (http://rgmia.vu.edu.au/monographs/hermite_hadamard.html).
[2] J. Hadamard, Étude sur les propiété des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171-215.
[3] G. Hämmerlin and K. H. Hoffmann, Numerische Mathematik, Springer, Berlin, 1994.
[4] F. John, Lectures on Advanced Numerical Analysis, Gordon and Breach, London, 1966.
[5] M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Uniwersytet Ślaski, Warszawa-Kraków -Katowice, 1985.
[6] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math. 28 (1985), 229-232.
[7] T. Popoviciu, Sur l'approximation des fonctions convexes d'ordre supérieur, Bull. Sect. Sci. Acad. Roum. 20 (1938), 192-195, (or 50-53) (1939).
[8] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (VI), Rev. Math. Union Interbalkan. 2 (1939), 31-40.
[9] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (VII), Acad. Roum. Bull. Sect. Sci. 22 (1939), 29-33.
[10] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur. III, Mathematica, Cluj 16 (1940), 74-86.
[11] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur. IV, Disquisit. Math. Phys. 1 (1940), 163-171.
[12] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur (V), Acad. Roum. Bull. Sect. Sci. 22 (1940), 351-356.
[13] T. Popoviciu, Notes sur les généralisations des fonctions convexes d'ordre supérieur, I, Disquisit. Math. Phys. 1 (1940), 35-42.
[14] T. Popoviciu, Notes sur les généralisations des fonctions convexes d'ordre supérieur (II), Acad. Roum. Bull. Sect. Sci. 22 (1940), 473-477.
[15] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur. IX. Inégalités linéaires et bilinéaires entre les fonctions convexes. Quelques généralisations d'une inégalité de Tchebycheff, Bull. Math. Soc. Roumaine Sci. 43 (1941), 85-141.
[16] T. Popoviciu, Notes sur les fonctions convexes d'ordre supérieur. X. Sur quelques propriétés des différences divisées et des polynomes de Lagrange, Ann. Sci. Univ. Jassy. Sect. I. 28 (1942), 161-207.
[17] T. Popoviciu, Notes sur les généralisations des fonctions convexes d'ordre supérieur, IV, Disquisit. Math. Phys. 2 (1942), 127-148.
[18] T. Popoviciu, Notes sur les généralisations des fonctions convexes d'ordre supérieur, III, Acad. Roum. Bull. Sect. Sci. 24 (1943), 409-416.
[19] T. Popoviciu, Les fonctions convexes, Hermann et Cie, Paris, 1944.
[20] G. Szeqő, Orthogonal Polynomials, American Math. Society, Providence, Rhode Island, 1939.
[21] E. Zeidler, Nonlinear Functional Analysis and its Applications I, Springer, New York-Berlin-Heidelberg, 1986.
M. BESSENYEI

INSTITUTE OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: bessenyei@riesz.math.klte.hu

ZS. PÁLES
INSTITUTE OF MATHEMATICS AND INFORMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY
E-mail: pales@math.klte.hu
(Received December 5, 2001; revised June 20, 2002)

