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Higher-order generalizations of Hadamard’s inequality

By MIHÁLY BESSENYEI (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract. In this paper we derive generalizations of Hadamard’s classical in-
equality for higher-order convex functions. In the proof the remainder formula of the
Hermite–Fejér interpolation and a smoothing technique is used.

1. Introduction

Hadamard’s classical inequality [2] provides the following lower and
upper estimates for the integral average of a convex function f : [a, b] → R:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

.

An account of various generalizations of Hadamard-type inequalities can
be found in a recent book [1] by S. S. Dragomir and C. E. M. Pearce.
Interesting historical remarks are due to Mitrinović and Lacković [6].

If f : [a, b] → R is supposed to be monotone increasing, an analogous
“Hadamard-type” inequality can trivially be derived:

f(a) ≤ 1
b− a

∫ b

a

f(x)dx ≤ f(b).
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Our goal is to generalize these inequalities when f : [a, b] → R is n-mono-
tone or, in other terms, (n− 1)-convex , that is,

(−1)n

∣∣∣∣∣∣∣∣∣∣∣

f(x0) . . . f(xn)
1 . . . 1
x0 . . . xn
...

. . .
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣

≥ 0

whenever a ≤ x0 < · · · < xn ≤ b. Obviously, a function is 1-monotone if
and only if it is monotone increasing; similarly, a function is 2-monotone
if and only if it is convex.

In a series of papers [8]–[18], T. Popoviciu introduced and investi-
gated the notion of higher-order convexity. A summary of these results
can be found in the book [19] and also in [5]. In our investigations, we
need the following two results of T. Popoviciu. The first characterizes
n-monotonicity in terms of the nth derivative of f .

Theorem A ([5, Theorem 1. p. 387]). Assume that f : ] a, b [ → R
is an n times differentiable function. Then f is n-monotone if and only if

f (n)(x) ≥ 0 for all x ∈ ] a, b [.

The second result states that, for n ≥ 2, n-monotonicity implies reg-
ularity properties of f .

Theorem B ([5, Theorem 1. p. 391]). Assume that f : ] a, b [ → R is

an n-monotone function and n ≥ 2. Then f is (n− 2) times differentiable

and f (n−2) is continuous.

Applying Theorem A, we will be able to prove Hadamard-type in-
equalities by using Gauss-type quadrature formulae and their remainder
terms for smooth enough functions.

For the general case, when f : [a, b] → R is supposed to be contin-
uous only and n-monotone, a smoothing technique is developed to get
Hadamard-type inequalities. As an application, we derive Hadamard-type
inequalities for 3-, 4-, 5-, 6-, 8-, 10-, and 12-monotone functions.
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2. Gauss-type quadrature formulae and remainder terms

Let f, g : [a, b] → R and ρ : [a, b] → ] 0, +∞ [ be continuous functions.
The functions f and g are said to be ρ-orthogonal on [a, b] if

〈f, g〉ρ :=
∫ b

a

fgρ = 0.

We say that a system of polynomials is an orthogonal polynomial system
on [a, b] with respect to the weight function ρ if each member of the system
is ρ-orthogonal to the others on [a, b]. Define the moments of ρ by

mn :=
∫ b

a

xnρ(x)dx (n = 0, 1, 2, . . . ).

It is easy to check, that

Pn(x) :=

∣∣∣∣∣∣∣∣∣

1 m0 . . . mn−1

x m1 . . . mn
...

...
. . .

...
xn mn . . . m2n−1

∣∣∣∣∣∣∣∣∣

is the nth degree member of the orthogonal polynomial system on [a, b]
with respect to the weight function ρ, since it is immediate to see that Pn

is ρ-orthogonal to the polynomials 1, x, . . . , xn−1.
Let us consider the following

∫ b

a

f(x)ρ(x)dx =
n∑

k=1

ckf(ξk)(1)

∫ b

a

f(x)ρ(x)dx = c0f(a) +
n∑

k=1

ckf(ξk)(2)

∫ b

a

f(x)ρ(x)dx =
n∑

k=1

ckf(ξk) + cn+1f(b)(3)

∫ b

a

f(x)ρ(x)dx = c0f(a) +
n∑

k=1

ckf(ξk) + cn+1f(b)(4)

Gauss-type quadrature formulae, where the constants c0, c1, . . . , cn, cn+1

and ξ1, . . . , ξn ∈ ] a, b [ are to be determined so that (1)–(3), and (4) be
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exact when f is a polynomial of degree at most 2n−1, 2n, 2n, and 2n+1,
respectively. We shall distinguish four cases.

Case A.

Theorem 1. Let Pn be the nth degree member of the orthogonal

polynomial system on [a, b] with respect to the weight function ρ. Then

(1) is exact for polynomials f with deg f ≤ 2n− 1 if and only if ξ1, . . . , ξn

are the zeros of Pn and

(5) ck =
∫ b

a

Pn(x)
(x− ξk)P ′n(ξk)

ρ(x)dx.

Furthermore, ξ1, . . . , ξn are pairwise distinct elements of ]a, b[, and ck ≥ 0
for all k = 1, . . . , n.

This theorem follows easily from well known results in numerical anal-
ysis [3], [4], [20]. For the sake of completeness, we provide a proof.

Proof. Assume that ξ1, . . . , ξn are the zeros of Pn. Denote by Lk :
[a, b] → R (k = 1, . . . , n) the primitive Lagrange interpolation polynomials:

Lk(x) :=





Pn(x)
(x− ξk)P ′n(ξk)

if x 6= ξk

1 if x = ξk.

If Q is a polynomial with deg Q ≤ 2n− 1, then using Euclidean algorithm
Q can be written in the form

Q = PPn + R

such that deg P, deg R ≤ n− 1. The inequality deg P ≤ n− 1 implies that

〈P, Pn〉% = 0,

while deg R ≤ n − 1 yields that R is equal to its Lagrange interpolation
polynomial:

R =
n∑

k=1

R(ξk)Lk.
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Therefore, by the definition of c1, . . . , cn in (5),

∫ b

a

Qρ =
∫ b

a

PPnρ +
∫ b

a

Rρ =
n∑

k=1

R(ξk)
∫ b

a

Lkρ

=
n∑

k=1

ckR(ξk) =
n∑

k=1

ck

(
P (ξk)Pn(ξk) + R(ξk)

)
=

n∑

k=1

ckQ(ξk).

That is, (1) is exact for polynomials of degree at most 2n− 1.
Conversely, assume that (1) is exact for polynomials of degree at most

2n − 1. Let Q(x) := (x − ξ1) . . . (x − ξn) and let be P a polynomial with
deg P ≤ n− 1. Then deg PQ ≤ 2n− 1, thus

∫ b

a

PQρ = c1P (ξ1)Q(ξ1) + · · ·+ cnP (ξn)Q(ξn) = 0.

Therefore, Q is ρ-orthogonal to P . Using the uniqueness of Pn, we get that
Pn = anQ and ξ1, . . . , ξn are the zeros of Pn. Furthermore, (1) is exact
if we substitute f := Lk and f := L2

k, respectively. The first substitution
gives (5), while the second one shows the nonnegativity of ck. ¤

Case B. Denote by ρa the weight function defined by

ρa(x) := (x− a)ρ(x) (x ∈ [a, b]).

Theorem 2. Let Pn be the nth degree member of the orthogonal

polynomial-system on [a, b] with respect to the weight function ρa. Then

(2) is exact for polynomials f with deg f ≤ 2n if and only if ξ1, . . . , ξn are

the zeros of Pn,

c0 =
1

P 2
n(a)

∫ b

a

P 2
n(x)ρ(x)dx(6)

and

ck =
1

ξk − a

∫ b

a

Pn(x)(x− a)
(x− ξk)P ′n(ξk)

ρ(x)dx.(7)

Furthermore, ξ1, . . . , ξn are pairwise distinct elements of ] a, b [, and ck ≥ 0
for all k = 0, 1, . . . , n.
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Proof. Assume that (2) is exact for polynomials of degree at most
2n. If P is a polynomial with deg P ≤ 2n− 1, then
∫ b

a

Pρa =
∫ b

a

(x−a)P (x)ρ(x)dx = c1(ξ1−a)P (ξ1)+ · · ·+cn(ξn−a)P (ξn).

Applying Theorem 1 to the weight function ρa and the constants

ca;k := ck(ξk − a)

we get, that ξ1, . . . , ξn are the zeros of Pn, and the constants ca;k (k =
1, . . . , n) can be computed by the formula (5). Substituting f := P 2

n into
(2), we obtain that

c0 =
1

P 2
n(a)

∫ b

a

P 2
nρ.

Thus, we get that (6) and (7) are valid and ck ≥ 0 for k = 1, . . . , n.
Conversely, assume that ξ1, . . . , ξn are the zeros of Pn, and the con-

stants c1, . . . , cn are given by the formula (7) and c0 =
∫ b

a
ρ−(c1+. . .+cn).

If P is a polynomial with deg P ≤ 2n, then there exists a polynomial Q
with deg Q ≤ 2n− 1 such that

P (x) = Q(x)(x− a) + P (a).

By Theorem 1,
∫ b

a

Qρa = ca;1Q(ξ1) + · · ·+ ca;nQ(ξn)

holds. Thus
∫ b

a

P (x)ρ(x)dx =
∫ b

a

(
Q(x)(x− a) + P (a)

)
ρ(x)dx

=
n∑

k=1

ck(ξk − a)Q(ξk) +
n∑

k=0

P (a)ck

= c0P (a) +
n∑

k=1

ck

(
(ξk − a)Q(ξk) + P (a)

)

= c0P (a) +
n∑

k=1

ckP (ξk),
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which yields that (2) is exact for polynomials of degree at most 2n. There-
fore, substituting f := P 2

n into (2), we get (6). ¤
Case C. Denote by ρb the weight function defined by

ρb(x) := (b− x)ρ(x) (x ∈ [a, b]).

Theorem 3. Let Pn be the nth degree member of the orthogonal
polynomial system on [a, b] with respect to the weight function ρb. Then
(3) is exact for polynomials f with deg f ≤ 2n if and only if ξ1, . . . , ξn are
the zeros of Pn,

ck =
1

b− ξk

∫ b

a

Pn(x)(b− x)
(x− ξk)P ′n(ξk)

ρ(x)dx(8)

and

cn+1 =
1

P 2
n(b)

∫ b

a

P 2
n(x)ρ(x)dx.(9)

Furthermore, ξ1, . . . , ξn are pairwise distinct elements of ] a, b [, and ck ≥ 0
for all k = 1, . . . , n, n + 1.

Hint. Applying a similar argument as in the previous proof for the
weight function ρb, one can get the statement of the theorem. ¤
Case D. Denote by ρb

a the weight function defined by

ρb
a(x) := (b− x)(x− a)ρ(x) (x ∈ [a, b]).

Theorem 4. Let Pn be the nth degree member of the orthogonal
polynomial-system on [a, b] with respect to the weight function ρb

a. Then
(4) is exact for polynomials f with deg f ≤ 2n + 1 if and only if ξ1, . . . , ξn

are the zeros of Pn,

c0 =
1

(b− a)P 2
n(a)

∫ b

a

P 2
n(x)(b− x)ρ(x)dx,(10)

ck =
1

(b− ξk)(ξk − a)

∫ b

a

Pn(x)(b− x)(x− a)
(x− ξk)P ′n(ξk)

ρ(x)dx,(11)

and

cn+1 =
1

(b− a)P 2
n(b)

∫ b

a

P 2
n(x)(x− a)ρ(x)dx.(12)
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Furthermore, ξ1, . . . , ξn are pairwise distinct elements of ] a, b [, and ck ≥ 0
for all k = 0, 1, . . . , n, n + 1.

Hint. Using Theorem 2 or Theorem 3 and applying a similar argu-
ment as in the previous proof for the weight-function ρb

a, one can get the
statement of the theorem. A more direct proof can also be done by using
Theorem 3. For deriving (10) and (12), substitute f(x) := (b − x)P 2

n(x)
and f(x) := (x− a)P 2

n(x) into (4). ¤

Remainder term for the Hermite interpolation formula. Let f : [a, b]→R
be a differentiable function, x1, . . . , xn be pairwise distinct elements of
[a, b], and 1 ≤ r ≤ n be a fixed integer. Denote by H the Hermite inter-
polation polynomial satisfying the following conditions:

H(xk) = f(xk) (k = 1, . . . , n)

H ′(xk) = f ′(xk) (k = 1, . . . , r).

We recall that deg H = n + r − 1. From a well known result, (c.f. [3,
Section 5.3, pp. 230–231]), if f is (n + r)-times differentiable then, for all
x ∈ [a, b], there exists η such that

(13) f(x)−H(x) =
ωn(x)ωr(x)

(n + r)!
f (n+r)(η),

where
ωk(x) = (x− x1) · · · (x− xk).

3. Smoothing n-monotone functions

It is well known that there exists a function ϕ which possesses the
following properties:

(i) ϕ : R→ R+ is C∞, i.e., it is infinitely many times differentiable;

(ii) supp ϕ ⊂ [−1, 1];

(iii)
∫
R ϕ = 1.

Using ϕ, we define for all ε > 0 the function ϕε by

ϕε(x) =
1
ε
ϕ
(x

ε

)
(x ∈ R).
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Then, one can easily check that ϕε satisfies the following conditions:

(i’) ϕε : R→ R+ is C∞;

(ii’) supp ϕε ⊂ [−ε, ε];

(iii’)
∫
R ϕε = 1.

Let I ⊂ R be a nonempty open interval, f : I → R be a continuous
function, and ε > 0. We will denote the convolution of f and ϕε by fε,
that is,

fε(x) :=
∫

R
f̄(y)ϕε(x− y)dy (x ∈ R),

where f̄(y) = f(y) if y ∈ I, otherwise f̄(y) = 0. We recall, that fε → f

uniformly as ε → 0 on each compact subinterval of I, and fε is infinitely
many times differentiable on R; these important results can be found for
example in [21, p. 549].

Theorem 5. Let I ⊂ R be a nonempty open interval, f : I → R be an

n-monotone continuous function. Then, for all compact subintervals [a, b]
of I, there exists a sequence of n-monotone and C∞ functions (fk) which

converges uniformly to f on [a, b].

Proof. Choose a, b ∈ I and ε0 > 0 such that the relation [a − ε0,

b + ε0] ⊂ I hold. We show that the function τεf : [a, b] → R defined by

τεf(x) := f(x− ε) (x ∈ [a, b])

is n-monotone on [a, b] for ε ∈ ]0, ε0[. Let a ≤ x0 < · · · < xn ≤ b and
k ≤ n− 1 be fixed. Using induction, we are going to verify the equality

(14)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) . . . τεf(xn)
1 . . . 1
x0 . . . xn
...

. . .
...

xk−1
0 . . . xk−1

n

xk
0 . . . xk

n
...

. . .
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) . . . τεf(xn)
1 . . . 1

x0 − ε . . . xn − ε
...

. . .
...

(x0 − ε)k−1 . . . (xn − ε)k−1

xk
0 . . . xk

n
...

. . .
...

xn−1
0 . . . xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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If k = 1, then this equation obviously holds. Assume, for a fixed positive
integer k ≤ n−2, that the equation remains true. By the binomial theorem,

xk =
(

k

0

)
εk +

(
k

1

)
εk−1(x− ε) + · · ·+

(
k

k

)
(x− ε)k,

which means, that (x − ε)k is the linear combination of the elements 1,
x− ε, . . . , (x− ε)k, xk. Therefore, adding the adequate linear combination
of the 2nd,. . . , (k+1)st rows to the (k+2)nd row, we get that the equation

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) . . . τεf(xn)

1 . . . 1
x0 − ε . . . xn − ε

...
. . .

...
(x0 − ε)k−1 . . . (xn − ε)k−1

xk
0 . . . xk

n

xk+1
0 . . . xk+1

n

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

τεf(x0) . . . τεf(xn)

1 . . . 1
x0 − ε . . . xn − ε

...
. . .

...
(x0 − ε)k−1 . . . (xn − ε)k−1

(x0 − ε)k . . . (xn − ε)k

xk+1
0 . . . xk+1

n

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

holds. That is, (14) holds for all fixed positive k (1 ≤ k ≤ n − 1). Par-
ticularly, if k = n − 1, we get the n-monotonicity of τεf . Using integral
transformation and the previous result,

(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

fε(x0) . . . fε(xn)

1 . . . 1
x0 . . . xn

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

f̄(t)ϕε(x0 − t) . . . f̄(t)ϕε(xn − t)

1 . . . 1
x0 . . . xn

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

dt
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=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

f̄(x0 − s) . . . f̄(xn − s)

1 . . . 1
x0 . . . xn

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

ϕε(s)ds

=
∫

R
(−1)n

∣∣∣∣∣∣∣∣∣∣∣∣

τsf(x0) . . . τsf(xn)

1 . . . 1
x0 . . . xn

...
. . .

...
xn−1

0 . . . xn−1
n

∣∣∣∣∣∣∣∣∣∣∣∣

ϕε(s)ds ≥ 0

and we get, that fε is n-monotone on [a, b] for ε ∈ ] 0, ε0 [ .
To complete the proof, choose a positive integer n0 such that the

relation 1
n0

< ε0 hold. If εk := 1
n0+k (k = 1, 2, . . . ) and fk := fεk

, then
εk ∈ ] 0, ε0 [ , thus (fk)∞k=1 satisfies the requirements of the theorem. ¤

4. Generalized Hadamard-inequalities

Our main results concern the cases of odd and even order of convexity
separately. First we deal with odd order convex functions.

Theorem 6. Let, for n ≥ 0,

pn(x) :=

∣∣∣∣∣∣∣∣∣∣

1 1
2 . . . 1

n+1

x 1
3 . . . 1

n+2

...
...

. . .
...

xn 1
n+2 . . . 1

2n+1

∣∣∣∣∣∣∣∣∣∣

,

then pn has n pairwise distinct roots in ]0, 1[. Denote these roots by

λ1, . . . , λn, and

α0 :=
1

p2
n(0)

∫ 1

0

p2
n(x)dx,

αk :=
1
λk

∫ 1

0

pn(x)x
(x− λk)p′n(λk)

dx (k = 1, . . . , n).
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Then the following inequalities hold for any m = 2n+1-monotone function

f : [a, b] → R:

α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

) ≤ 1
b− a

∫ b

a

f(x)dx

≤
n∑

k=1

αkf
(
λka + (1− λk)b

)
+ α0f(b).

Proof. Observe that pn is the nth degree orthogonal polynomial on
[0, 1] with respect to the weight function ρ(x) := x (c.f. the beginning of
Section 2). First we prove the statement for the special case when a = 0,
b = 1 and f : [0, 1] → R is supposed to be m = 2n + 1 times differentiable.
In this case, f (2n+1) ≥ 0 on ]0, 1[, according to Theorem A.

Let H be the 2nth degree Hermite interpolation polynomial which
possesses the following properties:

H(0) = f(0),

H(λk) = f(λk) (k = 1, . . . , n),

H ′(λk) = f ′(λk) (k = 1, . . . , n).

By (13), for all x ∈ [0, 1], there exists η ∈ ] 0, 1 [ such that

f(x)−H(x) =
x(x− λ1)2 · · · (x− λn)2

(2n + 1)!
f (2n+1)(η);

therefore, for all x ∈ [0, 1],

f(x) ≥ H(x).

Since H is of degree 2n, applying Theorem 2, we get that

∫ 1

0

f(x)dx ≥
∫ 1

0

H(x)dx = α0H(0) +
n∑

k=1

αkH(λk)

= α0f(0) +
n∑

k=1

αkf(λk).
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Now we suppose that a, b ∈ R (a < b), but f : [a, b] → R is still
m = 2n + 1 times differentiable. Define the function F : [0, 1] → R by

F (t) := f
(
(1− t)a + tb

)
.

Then, F is m-times differentiable and m-monotone on [0, 1]. It is easy to
check that ∫ 1

0

F (x)dx =
1

b− a

∫ b

a

f(x)dx.

The previous result applied to the function F , yields

α0f(a) +
n∑

k=1

αkf
(
(1− λk)a + λkb

) ≤ 1
b− a

∫ b

a

f(x)dx.

Finally, let f : [a, b] → R be an arbitrary m-monotone function. With-
out the loss of generality we may assume that m > 1; by Theorem B, in this
case f is continuous. Choose ε > 0. According to Theorem 5, there exists
a sequence of C∞ functions (fi)∞i=1 whose members are defined on [a, b],
fi → f uniformly on [a + ε, b− ε], and fi is m-monotone on [a + ε, b− ε].
Then, applying the previous step on the interval [a + ε, b− ε], we get

α0fi(a + ε) +
n∑

k=1

αkfi

(
(1− λk)(a + ε) + λk(b− ε)

)

≤ 1
b− a− 2ε

∫ b−ε

a+ε

fi(x)dx.

Letting i →∞ and then ε → 0, we get the left hand side inequality to be
proved.

Now define the function F : [a, b] → R by

F (x) := −f(a + b− x).

Then F is m-monotone on [a, b]. Using the left hand side inequality for F ,
the right hand side inequality for f follows. ¤

Our second main result offers Hadamard-type inequalities for even-
order convex functions.
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Theorem 7. Let, for n ≥ 1,

pn(x) :=

∣∣∣∣∣∣∣∣∣∣

1 1 . . . 1
n

x 1
2 . . . 1

n+1

...
...

. . .
...

xn 1
n+1 . . . 1

2n

∣∣∣∣∣∣∣∣∣∣

,

qn(x) :=

∣∣∣∣∣∣∣∣∣∣

1 1
2·3 . . . 1

n(n+1)

x 1
3·4 . . . 1

(n+1)(n+2)

...
...

. . .
...

xn−1 1
(n+1)(n+2) . . . 1

(2n−1)2n

∣∣∣∣∣∣∣∣∣∣

then pn has n, and qn has n − 1 pairwise distinct roots in ]0, 1[. Denote
these roots by λ1, . . . , λn and µ1, . . . , µn−1, respectively. Let

αk =
∫ 1

0

pn(x)
(x− λk)p′n(λk)

dx (k = 1, . . . , n),

and

β0 :=
1

q2
n(0)

∫ 1

0

q2
n(x)(1− x)dx,

βk :=
1

(1− µk)µk

∫ 1

0

qn(x)x(1− x)
(x− µk)q′n(µk)

dx (k = 1, . . . , n− 1),

βn :=
1

q2
n(1)

∫ 1

0

q2
n(x)xdx,

then the following inequalities hold for any m = 2n-monotone function
f : [a, b] → R:

n∑

k=1

αkf
(
(1− λk)a + λkb

) ≤ 1
b− a

∫ b

a

f(x)dx

≤ β0f(a) +
n−1∑

k=1

βkf
(
(1− µk)a + µkb

)
+ βnf(b).

An inequality analogous to the left hand side inequality was also es-
tablished by T. Popoviciu in [12].
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Proof. Observe that pn is the nth degree orthogonal polynomial on
[0, 1] with respect to the weight function ρ(x) := 1; similarly, qn is the
(n−1)st degree orthogonal polynomial on [0, 1] with respect to the weight
function ρ(x) := (1 − x)x. First, just as before, we prove the statement
for the special case when a = 0, b = 1 and f : [0, 1] → R is supposed to be
m = 2n times differentiable. In this case, f (2n) ≥ 0 on ]0, 1[ according to
Theorem A.

Let H be the (2n−1)st degree Hermite interpolation polynomial which
possesses the following properties:

H(λk) = f(λk),

H ′(λk) = f ′(λk) (k = 1, . . . , n).

By (13), for all x ∈ [0, 1], there exists η ∈ ] 0, 1 [ such that

f(x)−H(x) =
(x− λ1)2 . . . (x− λn)2

(2n)!
f (2n)(η).

Therefore, for all x ∈ [0, 1],

f(x) ≥ H(x).

Since H is of degree 2n− 1, applying Theorem 1, we get that

∫ 1

0

f(x)dx ≥
∫ 1

0

H(x)dx =
n∑

k=1

αkH(λk) =
n∑

k=1

αkf(λk).

Now let H be the (2n− 1)st degree Hermite interpolation polynomial
which possesses the following properties:

H(0) = f(0),

H(µk) = f(µk),

H ′(µk) = f ′(µk) (k = 1, . . . , n− 1),

H(1) = f(1).

By (13), for all x ∈ [0, 1], there exists η ∈ ] 0, 1 [ such that

f(x)−H(x) =
(x− 1)x(x− µ1)2 . . . (x− µn−1)2

(2n)!
f (2n)(η).
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Therefore, for x ∈ [0, 1],

f(x) ≤ H(x).

Since H is of degree 2n− 1, applying Theorem 4, we get that

∫ 1

0

f(x)dx ≤
∫ 1

0

H(x)dx = β0H(0) +
n−1∑

k=1

βkH(µk) + βnH(1)

= β0f(0) +
n−1∑

k=1

βkf(µk) + βnf(1).

From this point, an analogous argument as in the previous proof gives the
statement of the theorem, for arbitrary interval [a, b] without differentia-
bility assumptions on the function f . ¤

5. Applications:
2-, 3-, 4-, 5-, 6-, 8-, 10- and 12-monotone functions

In the subsequent corollaries we state Hadamard-type inequalities in
those cases when the roots of the polynomials in Theorem 6 and Theorem 7
can explicitly be computed.

Corollary 1. If f : [a, b] → R is a 2-monotone (i.e. convex) function,

then the following inequalities hold:

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

.

Corollary 2. If f : [a, b] → R is a 3-monotone function, then the

following inequalities hold:

1
4
f(a) +

3
4
f

(
a + 2b

3

)
≤ 1

b− a

b∫

a

f(x)dx ≤ 3
4
f

(
2a + b

3

)
+

1
4
f(b).
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Corollary 3. If f : [a, b] → R is a 4-monotone function, then the
following inequalities hold:

1
2
f

(
3 +

√
3

6
a +

3−√3
6

b

)
+

1
2
f

(
3−√3

6
a +

3 +
√

3
6

b

)

≤ 1
b− a

b∫

a

f(x)dx ≤ 1
6
f(a) +

2
3
f

(
a + b

2

)
+

1
6
f(b).

Corollary 4. If f : [a, b] → R is a 5-monotone function, then the
following inequalities hold:

1
9
f(a) +

16 +
√

6
36

f

(
4 +

√
6

10
a +

6−√6
10

b

)

+
16−√6

36
f

(
4−√6

10
a +

6 +
√

6
10

b

)
≤ 1

b− a

∫ b

a

f(x)dx

≤ 16−√6
36

f

(
6 +

√
6

10
a +

4−√6
10

b

)

+
16 +

√
6

36
f

(
6−√6

10
a +

4 +
√

6
10

b

)
+

1
9
f(b).

Corollary 5. If f : [a, b] → R is a 6-monotone function, then the
following inequalities hold:

5
18

f

(
5 +

√
15

10
a +

5−√15
10

b

)
+

4
9
f

(
a + b

2

)

+
5
18

f

(
5−√15

10
a +

5 +
√

15
10

b

)
≤ 1

b− a

∫ b

a

f(x)dx

≤ 1
12

f(a) +
5
12

f

(
5 +

√
5

10
a +

5−√5
10

b

)

+
5
12

f

(
5−√5

10
a +

5 +
√

5
10

b

)
+

1
12

f(b).
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In the other cases analogous statements can be formulated by apply-
ing Theorem 7. For simplicity, instead of writing down these corollaries
explicitly, we shall present a list which contains the roots of pn (denoted
by λk), and the coefficients αk for the left hand side inequality, further-
more the roots of qn (denoted by µk), and the coefficients βk for the right
hand side inequality, respectively.

Case m = 8. The roots of p4:

1
2
−

√
525 + 70

√
30

70
,

1
2
−

√
525− 70

√
30

70
,

1
2

+

√
525− 70

√
30

70
,

1
2

+

√
525 + 70

√
30

70
;

the corresponding coefficients:

1
4
−
√

30
72

,
1
4

+
√

30
72

,
1
4

+
√

30
72

,
1
4
−
√

30
72

.

The roots of q4:
1
2
−
√

21
14

,
1
2
,

1
2

+
√

21
14

;

the corresponding coefficients:

1
20

,
49
180

,
16
45

,
49
180

,
1
20

.

Case m = 10. The roots of p5:

1
2
−

√
245 + 14

√
70

42
,

1
2
−

√
245− 14

√
70

42
,

1
2
,

1
2

+

√
245− 14

√
70

42
,

1
2

+

√
245 + 14

√
70

42
;

the corresponding coefficients:

322− 13
√

70
1800

,
322 + 13

√
70

1800
,

64
225

,
322 + 13

√
70

1800
,

322− 13
√

70
1800

.
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The roots of q5:

1
2
−

√
147 + 42

√
7

42
,

1
2
−

√
147− 42

√
7

42
,

1
2

+

√
147− 42

√
7

42
,

1
2

+

√
147 + 42

√
7

42
;

the corresponding coefficients:

1
30

,
14−√7

60
,

14 +
√

7
60

,
14 +

√
7

60
,

14−√7
60

,
1
30

.

Case m = 12 (right hand side inequality). The roots of q6:

1
2
−

√
495 + 66

√
15

66
,

1
2
−

√
495− 66

√
15

66
,

1
2
,

1
2

+

√
495− 66

√
15

66
,

1
2

+

√
495 + 66

√
15

66
;

the corresponding coefficients:

1
42

,
124− 7

√
15

700
,

124 + 7
√

15
700

,
128
525

,

124 + 7
√

15
700

,
124− 7

√
15

700
,

1
42

.

During the investigations of the higher-order cases, we were able to
use the symmetry of the roots of the orthogonal polynomials with respect
to 1/2, and therefore the calculations lead to solving at most quadratic
equations. The first case where “casus irreducibilis” appears, is the 7-
monotone case; similarly, this is the reason for presenting only the right
hand side inequality when the function was supposed to be 12-monotone.

Acknowledgement. The authors wish to express their gratitude to At-
tila Házy for his help in calculating the parameters of Hadamard-type
inequalities of higher-order.
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inégalité de Tchebycheff, Bull. Math. Soc. Roumaine Sci. 43 (1941), 85–141.

[16] T. Popoviciu, Notes sur les fonctions convexes d’ordre supérieur. X. Sur quelques
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