Publ. Math. Debrecen 61 / 3-4 (2002), 623–643

Higher-order generalizations of Hadamard's inequality

By MIHÁLY BESSENYEI (Debrecen) and ZSOLT PÁLES (Debrecen)

Abstract. In this paper we derive generalizations of Hadamard's classical inequality for higher-order convex functions. In the proof the remainder formula of the Hermite–Fejér interpolation and a smoothing technique is used.

1. Introduction

Hadamard's classical inequality [2] provides the following lower and upper estimates for the integral average of a convex function $f : [a, b] \to \mathbb{R}$:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a)+f(b)}{2}.$$

An account of various generalizations of Hadamard-type inequalities can be found in a recent book [1] by S. S. DRAGOMIR and C. E. M. PEARCE. Interesting historical remarks are due to MITRINOVIĆ and LACKOVIĆ [6].

If $f : [a, b] \to \mathbb{R}$ is supposed to be monotone increasing, an analogous "Hadamard-type" inequality can trivially be derived:

$$f(a) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le f(b).$$

Mathematics Subject Classification: 26A51, 26B25.

Key words and phrases: Hadamard's inequality.

This research has been supported by OTKA Grant T-030082, and by the FKFP Grant 0215/2001.

Our goal is to generalize these inequalities when $f : [a, b] \to \mathbb{R}$ is *n*-monotone or, in other terms, (n-1)-convex, that is,

$$(-1)^{n} \begin{vmatrix} f(x_{0}) & \dots & f(x_{n}) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} \ge 0$$

whenever $a \le x_0 < \cdots < x_n \le b$. Obviously, a function is 1-monotone if and only if it is monotone increasing; similarly, a function is 2-monotone if and only if it is convex.

In a series of papers [8]–[18], T. POPOVICIU introduced and investigated the notion of higher-order convexity. A summary of these results can be found in the book [19] and also in [5]. In our investigations, we need the following two results of T. POPOVICIU. The first characterizes *n*-monotonicity in terms of the *n*th derivative of f.

Theorem A ([5, Theorem 1. p. 387]). Assume that $f :]a, b[\to \mathbb{R}$ is an *n* times differentiable function. Then *f* is *n*-monotone if and only if $f^{(n)}(x) \ge 0$ for all $x \in]a, b[$.

The second result states that, for $n \ge 2$, *n*-monotonicity implies regularity properties of f.

Theorem B ([5, Theorem 1. p. 391]). Assume that $f :]a, b[\to \mathbb{R}$ is an *n*-monotone function and $n \ge 2$. Then f is (n-2) times differentiable and $f^{(n-2)}$ is continuous.

Applying Theorem A, we will be able to prove Hadamard-type inequalities by using Gauss-type quadrature formulae and their remainder terms for smooth enough functions.

For the general case, when $f : [a, b] \to \mathbb{R}$ is supposed to be continuous only and *n*-monotone, a smoothing technique is developed to get Hadamard-type inequalities. As an application, we derive Hadamard-type inequalities for 3-, 4-, 5-, 6-, 8-, 10-, and 12-monotone functions.

Higher-order generalizations of Hadamard's inequality

2. Gauss-type quadrature formulae and remainder terms

Let $f, g: [a, b] \to \mathbb{R}$ and $\rho: [a, b] \to]0, +\infty$ [be continuous functions. The functions f and g are said to be ρ -orthogonal on [a, b] if

$$\langle f,g\rangle_{\rho} := \int_{a}^{b} fg\rho = 0.$$

We say that a system of polynomials is an *orthogonal polynomial system* on [a, b] with respect to the weight function ρ if each member of the system is ρ -orthogonal to the others on [a, b]. Define the moments of ρ by

$$m_n := \int_a^b x^n \rho(x) dx$$
 $(n = 0, 1, 2, ...).$

It is easy to check, that

$$P_n(x) := \begin{vmatrix} 1 & m_0 & \dots & m_{n-1} \\ x & m_1 & \dots & m_n \\ \vdots & \vdots & \ddots & \vdots \\ x^n & m_n & \dots & m_{2n-1} \end{vmatrix}$$

is the *n*th degree member of the orthogonal polynomial system on [a, b] with respect to the weight function ρ , since it is immediate to see that P_n is ρ -orthogonal to the polynomials $1, x, \ldots, x^{n-1}$.

Let us consider the following

(1)
$$\int_{a}^{b} f(x)\rho(x)dx = \sum_{k=1}^{n} c_k f(\xi_k)$$

(2)
$$\int_{a}^{b} f(x)\rho(x)dx = c_{0}f(a) + \sum_{k=1}^{n} c_{k}f(\xi_{k})$$

(3)
$$\int_{a}^{b} f(x)\rho(x)dx = \sum_{k=1}^{n} c_{k}f(\xi_{k}) + c_{n+1}f(b)$$

(4)
$$\int_{a}^{b} f(x)\rho(x)dx = c_{0}f(a) + \sum_{k=1}^{n} c_{k}f(\xi_{k}) + c_{n+1}f(b)$$

Gauss-type quadrature formulae, where the constants $c_0, c_1, \ldots, c_n, c_{n+1}$ and $\xi_1, \ldots, \xi_n \in]a, b[$ are to be determined so that (1)–(3), and (4) be exact when f is a polynomial of degree at most 2n-1, 2n, 2n, and 2n+1, respectively. We shall distinguish four cases.

Case A.

Theorem 1. Let P_n be the *n*th degree member of the orthogonal polynomial system on [a, b] with respect to the weight function ρ . Then (1) is exact for polynomials f with deg $f \leq 2n - 1$ if and only if ξ_1, \ldots, ξ_n are the zeros of P_n and

(5)
$$c_k = \int_a^b \frac{P_n(x)}{(x - \xi_k) P'_n(\xi_k)} \rho(x) dx.$$

Furthermore, ξ_1, \ldots, ξ_n are pairwise distinct elements of]a, b[, and $c_k \ge 0$ for all $k = 1, \ldots, n$.

This theorem follows easily from well known results in numerical analysis [3], [4], [20]. For the sake of completeness, we provide a proof.

PROOF. Assume that ξ_1, \ldots, ξ_n are the zeros of P_n . Denote by $L_k : [a, b] \to \mathbb{R}$ $(k = 1, \ldots, n)$ the primitive Lagrange interpolation polynomials:

$$L_k(x) := \begin{cases} \frac{P_n(x)}{(x-\xi_k)P'_n(\xi_k)} & \text{if } x \neq \xi_k\\ 1 & \text{if } x = \xi_k. \end{cases}$$

If Q is a polynomial with deg $Q \le 2n-1$, then using Euclidean algorithm Q can be written in the form

$$Q = PP_n + R$$

such that deg P, deg $R \le n-1$. The inequality deg $P \le n-1$ implies that

$$\langle P, P_n \rangle_{\rho} = 0$$

while deg $R \leq n-1$ yields that R is equal to its Lagrange interpolation polynomial:

$$R = \sum_{k=1}^{n} R(\xi_k) L_k.$$

Therefore, by the definition of c_1, \ldots, c_n in (5),

$$\int_{a}^{b} Q\rho = \int_{a}^{b} PP_{n}\rho + \int_{a}^{b} R\rho = \sum_{k=1}^{n} R(\xi_{k}) \int_{a}^{b} L_{k}\rho$$
$$= \sum_{k=1}^{n} c_{k}R(\xi_{k}) = \sum_{k=1}^{n} c_{k} \left(P(\xi_{k})P_{n}(\xi_{k}) + R(\xi_{k}) \right) = \sum_{k=1}^{n} c_{k}Q(\xi_{k}).$$

That is, (1) is exact for polynomials of degree at most 2n - 1.

Conversely, assume that (1) is exact for polynomials of degree at most 2n-1. Let $Q(x) := (x - \xi_1) \dots (x - \xi_n)$ and let be P a polynomial with deg $P \le n-1$. Then deg $PQ \le 2n-1$, thus

$$\int_{a}^{b} PQ\rho = c_1 P(\xi_1) Q(\xi_1) + \dots + c_n P(\xi_n) Q(\xi_n) = 0.$$

Therefore, Q is ρ -orthogonal to P. Using the uniqueness of P_n , we get that $P_n = a_n Q$ and ξ_1, \ldots, ξ_n are the zeros of P_n . Furthermore, (1) is exact if we substitute $f := L_k$ and $f := L_k^2$, respectively. The first substitution gives (5), while the second one shows the nonnegativity of c_k .

Case B. Denote by ρ_a the weight function defined by

$$\rho_a(x) := (x - a)\rho(x) \qquad (x \in [a, b]).$$

Theorem 2. Let P_n be the *n*th degree member of the orthogonal polynomial-system on [a, b] with respect to the weight function ρ_a . Then (2) is exact for polynomials f with deg $f \leq 2n$ if and only if ξ_1, \ldots, ξ_n are the zeros of P_n ,

(6)
$$c_0 = \frac{1}{P_n^2(a)} \int_a^b P_n^2(x) \rho(x) dx$$

and

(7)
$$c_k = \frac{1}{\xi_k - a} \int_a^b \frac{P_n(x)(x - a)}{(x - \xi_k)P'_n(\xi_k)} \rho(x) dx.$$

Furthermore, ξ_1, \ldots, ξ_n are pairwise distinct elements of]a, b[, and $c_k \ge 0$ for all $k = 0, 1, \ldots, n$.

PROOF. Assume that (2) is exact for polynomials of degree at most 2n. If P is a polynomial with deg $P \leq 2n - 1$, then

$$\int_{a}^{b} P\rho_{a} = \int_{a}^{b} (x-a)P(x)\rho(x)dx = c_{1}(\xi_{1}-a)P(\xi_{1}) + \dots + c_{n}(\xi_{n}-a)P(\xi_{n}).$$

Applying Theorem 1 to the weight function ρ_a and the constants

$$c_{a;k} := c_k(\xi_k - a)$$

we get, that ξ_1, \ldots, ξ_n are the zeros of P_n , and the constants $c_{a;k}$ $(k = 1, \ldots, n)$ can be computed by the formula (5). Substituting $f := P_n^2$ into (2), we obtain that

$$c_0 = \frac{1}{P_n^2(a)} \int_a^b P_n^2 \rho.$$

Thus, we get that (6) and (7) are valid and $c_k \ge 0$ for k = 1, ..., n.

Conversely, assume that ξ_1, \ldots, ξ_n are the zeros of P_n , and the constants c_1, \ldots, c_n are given by the formula (7) and $c_0 = \int_a^b \rho - (c_1 + \ldots + c_n)$. If P is a polynomial with deg $P \leq 2n$, then there exists a polynomial Q with deg $Q \leq 2n - 1$ such that

$$P(x) = Q(x)(x-a) + P(a).$$

By Theorem 1,

$$\int_a^b Q\rho_a = c_{a;1}Q(\xi_1) + \dots + c_{a;n}Q(\xi_n)$$

holds. Thus

$$\int_{a}^{b} P(x)\rho(x)dx = \int_{a}^{b} (Q(x)(x-a) + P(a))\rho(x)dx$$

= $\sum_{k=1}^{n} c_{k}(\xi_{k} - a)Q(\xi_{k}) + \sum_{k=0}^{n} P(a)c_{k}$
= $c_{0}P(a) + \sum_{k=1}^{n} c_{k}((\xi_{k} - a)Q(\xi_{k}) + P(a))$
= $c_{0}P(a) + \sum_{k=1}^{n} c_{k}P(\xi_{k}),$

which yields that (2) is exact for polynomials of degree at most 2n. Therefore, substituting $f := P_n^2$ into (2), we get (6).

Case C. Denote by ρ^b the weight function defined by

$$\rho^{b}(x) := (b - x)\rho(x) \qquad (x \in [a, b]),$$

Theorem 3. Let P_n be the *n*th degree member of the orthogonal polynomial system on [a, b] with respect to the weight function ρ^b . Then (3) is exact for polynomials f with deg $f \leq 2n$ if and only if ξ_1, \ldots, ξ_n are the zeros of P_n ,

(8)
$$c_k = \frac{1}{b - \xi_k} \int_a^b \frac{P_n(x)(b - x)}{(x - \xi_k)P'_n(\xi_k)} \rho(x) dx$$

and

(9)
$$c_{n+1} = \frac{1}{P_n^2(b)} \int_a^b P_n^2(x)\rho(x)dx.$$

Furthermore, ξ_1, \ldots, ξ_n are pairwise distinct elements of]a, b[, and $c_k \ge 0$ for all $k = 1, \ldots, n, n+1$.

HINT. Applying a similar argument as in the previous proof for the weight function ρ^b , one can get the statement of the theorem.

Case D. Denote by ρ_a^b the weight function defined by

$$\rho_a^b(x) := (b - x)(x - a)\rho(x) \qquad (x \in [a, b]).$$

Theorem 4. Let P_n be the *n*th degree member of the orthogonal polynomial-system on [a, b] with respect to the weight function ρ_a^b . Then (4) is exact for polynomials f with deg $f \leq 2n + 1$ if and only if ξ_1, \ldots, ξ_n are the zeros of P_n ,

(10)
$$c_0 = \frac{1}{(b-a)P_n^2(a)} \int_a^b P_n^2(x)(b-x)\rho(x)dx,$$

(11)
$$c_k = \frac{1}{(b-\xi_k)(\xi_k-a)} \int_a^b \frac{P_n(x)(b-x)(x-a)}{(x-\xi_k)P'_n(\xi_k)} \rho(x) dx,$$

and

(12)
$$c_{n+1} = \frac{1}{(b-a)P_n^2(b)} \int_a^b P_n^2(x)(x-a)\rho(x)dx.$$

Furthermore, ξ_1, \ldots, ξ_n are pairwise distinct elements of]a, b[, and $c_k \ge 0$ for all $k = 0, 1, \ldots, n, n + 1$.

HINT. Using Theorem 2 or Theorem 3 and applying a similar argument as in the previous proof for the weight-function ρ_a^b , one can get the statement of the theorem. A more direct proof can also be done by using Theorem 3. For deriving (10) and (12), substitute $f(x) := (b - x)P_n^2(x)$ and $f(x) := (x - a)P_n^2(x)$ into (4).

Remainder term for the Hermite interpolation formula. Let $f : [a, b] \to \mathbb{R}$ be a differentiable function, x_1, \ldots, x_n be pairwise distinct elements of [a, b], and $1 \le r \le n$ be a fixed integer. Denote by H the Hermite interpolation polynomial satisfying the following conditions:

$$H(x_k) = f(x_k)$$
 $(k = 1, ..., n)$
 $H'(x_k) = f'(x_k)$ $(k = 1, ..., r).$

We recall that deg H = n + r - 1. From a well known result, (c.f. [3, Section 5.3, pp. 230–231]), if f is (n + r)-times differentiable then, for all $x \in [a, b]$, there exists η such that

(13)
$$f(x) - H(x) = \frac{\omega_n(x)\omega_r(x)}{(n+r)!}f^{(n+r)}(\eta),$$

where

$$\omega_k(x) = (x - x_1) \cdots (x - x_k).$$

3. Smoothing *n*-monotone functions

It is well known that there exists a function φ which possesses the following properties:

- (i) $\varphi : \mathbb{R} \to \mathbb{R}_+$ is \mathcal{C}^{∞} , i.e., it is infinitely many times differentiable;
- (ii) supp $\varphi \in [-1,1]$;
- (iii) $\int_{\mathbb{R}} \varphi = 1.$

Using φ , we define for all $\varepsilon > 0$ the function φ_{ε} by

$$\varphi_{\varepsilon}(x) = \frac{1}{\varepsilon}\varphi\left(\frac{x}{\varepsilon}\right) \qquad (x \in \mathbb{R}).$$

- (i') $\varphi_{\varepsilon} : \mathbb{R} \to \mathbb{R}_+ \text{ is } \mathcal{C}^{\infty};$
- (ii') supp $\varphi_{\varepsilon} \subset [-\varepsilon, \varepsilon];$
- (iii') $\int_{\mathbb{R}} \varphi_{\varepsilon} = 1.$

Let $I \subset \mathbb{R}$ be a nonempty open interval, $f: I \to \mathbb{R}$ be a continuous function, and $\varepsilon > 0$. We will denote the convolution of f and φ_{ε} by f_{ε} , that is,

$$f_{\varepsilon}(x) := \int_{\mathbb{R}} \bar{f}(y) \varphi_{\varepsilon}(x-y) dy \qquad (x \in \mathbb{R}),$$

where $\bar{f}(y) = f(y)$ if $y \in I$, otherwise $\bar{f}(y) = 0$. We recall, that $f_{\varepsilon} \to f$ uniformly as $\varepsilon \to 0$ on each compact subinterval of I, and f_{ε} is infinitely many times differentiable on \mathbb{R} ; these important results can be found for example in [21, p. 549].

Theorem 5. Let $I \subset \mathbb{R}$ be a nonempty open interval, $f : I \to \mathbb{R}$ be an *n*-monotone continuous function. Then, for all compact subintervals [a, b] of I, there exists a sequence of *n*-monotone and \mathcal{C}^{∞} functions (f_k) which converges uniformly to f on [a, b].

PROOF. Choose $a, b \in I$ and $\varepsilon_0 > 0$ such that the relation $[a - \varepsilon_0, b + \varepsilon_0] \subset I$ hold. We show that the function $\tau_{\varepsilon} f : [a, b] \to \mathbb{R}$ defined by

$$\tau_{\varepsilon}f(x) := f(x - \varepsilon) \qquad (x \in [a, b])$$

is *n*-monotone on [a, b] for $\varepsilon \in [0, \varepsilon_0[$. Let $a \leq x_0 < \cdots < x_n \leq b$ and $k \leq n-1$ be fixed. Using induction, we are going to verify the equality

(14)
$$\begin{vmatrix} \tau_{\varepsilon}f(x_{0}) & \dots & \tau_{\varepsilon}f(x_{n}) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{k-1} & \dots & x_{n}^{k-1} \\ \vdots & \ddots & \vdots \\ x_{0}^{n} & \dots & x_{n}^{n} \end{vmatrix} = \begin{vmatrix} \tau_{\varepsilon}f(x_{0}) & \dots & \tau_{\varepsilon}f(x_{n}) \\ 1 & \dots & 1 \\ x_{0} - \varepsilon & \dots & x_{n} - \varepsilon \\ \vdots & \ddots & \vdots \\ (x_{0} - \varepsilon)^{k-1} & \dots & (x_{n} - \varepsilon)^{k-1} \\ x_{0}^{k} & \dots & x_{n}^{k} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} .$$

If k = 1, then this equation obviously holds. Assume, for a fixed positive integer $k \le n-2$, that the equation remains true. By the binomial theorem,

$$x^{k} = \binom{k}{0}\varepsilon^{k} + \binom{k}{1}\varepsilon^{k-1}(x-\varepsilon) + \dots + \binom{k}{k}(x-\varepsilon)^{k},$$

which means, that $(x - \varepsilon)^k$ is the linear combination of the elements 1, $x - \varepsilon, \ldots, (x - \varepsilon)^k, x^k$. Therefore, adding the adequate linear combination of the 2nd,..., (k+1)st rows to the (k+2)nd row, we get that the equation

holds. That is, (14) holds for all fixed positive k $(1 \le k \le n-1)$. Particularly, if k = n - 1, we get the *n*-monotonicity of $\tau_{\varepsilon} f$. Using integral transformation and the previous result,

$$(-1)^{n} \begin{vmatrix} f_{\varepsilon}(x_{0}) & \dots & f_{\varepsilon}(x_{n}) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix}$$
$$= \int_{\mathbb{R}} (-1)^{n} \begin{vmatrix} \bar{f}(t)\varphi_{\varepsilon}(x_{0}-t) & \dots & \bar{f}(t)\varphi_{\varepsilon}(x_{n}-t) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} dt$$

Higher-order generalizations of Hadamard's inequality

$$= \int_{\mathbb{R}} (-1)^{n} \begin{vmatrix} \bar{f}(x_{0} - s) & \dots & \bar{f}(x_{n} - s) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} \varphi_{\varepsilon}(s) ds$$
$$= \int_{\mathbb{R}} (-1)^{n} \begin{vmatrix} \tau_{s} f(x_{0}) & \dots & \tau_{s} f(x_{n}) \\ 1 & \dots & 1 \\ x_{0} & \dots & x_{n} \\ \vdots & \ddots & \vdots \\ x_{0}^{n-1} & \dots & x_{n}^{n-1} \end{vmatrix} \varphi_{\varepsilon}(s) ds \ge 0$$

and we get, that f_{ε} is *n*-monotone on [a, b] for $\varepsilon \in [0, \varepsilon_0[$.

To complete the proof, choose a positive integer n_0 such that the relation $\frac{1}{n_0} < \varepsilon_0$ hold. If $\varepsilon_k := \frac{1}{n_0+k}$ (k = 1, 2, ...) and $f_k := f_{\varepsilon_k}$, then $\varepsilon_k \in]0, \varepsilon_0[$, thus $(f_k)_{k=1}^{\infty}$ satisfies the requirements of the theorem. \Box

4. Generalized Hadamard-inequalities

Our main results concern the cases of odd and even order of convexity separately. First we deal with odd order convex functions.

Theorem 6. Let, for $n \ge 0$,

$$p_n(x) := \begin{vmatrix} 1 & \frac{1}{2} & \dots & \frac{1}{n+1} \\ x & \frac{1}{3} & \dots & \frac{1}{n+2} \\ \vdots & \vdots & \ddots & \vdots \\ x^n & \frac{1}{n+2} & \dots & \frac{1}{2n+1} \end{vmatrix},$$

then p_n has n pairwise distinct roots in]0,1[. Denote these roots by $\lambda_1, \ldots, \lambda_n$, and

$$\alpha_0 := \frac{1}{p_n^2(0)} \int_0^1 p_n^2(x) dx,$$

$$\alpha_k := \frac{1}{\lambda_k} \int_0^1 \frac{p_n(x)x}{(x - \lambda_k)p'_n(\lambda_k)} dx \quad (k = 1, \dots, n).$$

Then the following inequalities hold for any m = 2n+1-monotone function $f : [a, b] \to \mathbb{R}$:

$$\alpha_0 f(a) + \sum_{k=1}^n \alpha_k f((1-\lambda_k)a + \lambda_k b) \le \frac{1}{b-a} \int_a^b f(x) dx$$
$$\le \sum_{k=1}^n \alpha_k f(\lambda_k a + (1-\lambda_k)b) + \alpha_0 f(b).$$

PROOF. Observe that p_n is the *n*th degree orthogonal polynomial on [0,1] with respect to the weight function $\rho(x) := x$ (c.f. the beginning of Section 2). First we prove the statement for the special case when a = 0, b = 1 and $f : [0,1] \to \mathbb{R}$ is supposed to be m = 2n + 1 times differentiable. In this case, $f^{(2n+1)} \ge 0$ on]0, 1[, according to Theorem A.

Let H be the 2nth degree Hermite interpolation polynomial which possesses the following properties:

$$H(0) = f(0),$$

$$H(\lambda_k) = f(\lambda_k) \quad (k = 1, \dots, n),$$

$$H'(\lambda_k) = f'(\lambda_k) \quad (k = 1, \dots, n).$$

By (13), for all $x \in [0, 1]$, there exists $\eta \in [0, 1]$ such that

$$f(x) - H(x) = \frac{x(x - \lambda_1)^2 \cdots (x - \lambda_n)^2}{(2n+1)!} f^{(2n+1)}(\eta);$$

therefore, for all $x \in [0, 1]$,

$$f(x) \ge H(x).$$

Since H is of degree 2n, applying Theorem 2, we get that

$$\int_0^1 f(x)dx \ge \int_0^1 H(x)dx = \alpha_0 H(0) + \sum_{k=1}^n \alpha_k H(\lambda_k)$$
$$= \alpha_0 f(0) + \sum_{k=1}^n \alpha_k f(\lambda_k).$$

Now we suppose that $a, b \in \mathbb{R}$ (a < b), but $f : [a, b] \to \mathbb{R}$ is still m = 2n + 1 times differentiable. Define the function $F : [0, 1] \to \mathbb{R}$ by

$$F(t) := f((1-t)a + tb).$$

Then, F is *m*-times differentiable and *m*-monotone on [0, 1]. It is easy to check that

$$\int_0^1 F(x)dx = \frac{1}{b-a} \int_a^b f(x)dx.$$

The previous result applied to the function F, yields

$$\alpha_0 f(a) + \sum_{k=1}^n \alpha_k f((1-\lambda_k)a + \lambda_k b) \le \frac{1}{b-a} \int_a^b f(x) dx.$$

Finally, let $f : [a, b] \to \mathbb{R}$ be an arbitrary *m*-monotone function. Without the loss of generality we may assume that m > 1; by Theorem B, in this case f is continuous. Choose $\varepsilon > 0$. According to Theorem 5, there exists a sequence of \mathcal{C}^{∞} functions $(f_i)_{i=1}^{\infty}$ whose members are defined on [a, b], $f_i \to f$ uniformly on $[a + \varepsilon, b - \varepsilon]$, and f_i is *m*-monotone on $[a + \varepsilon, b - \varepsilon]$. Then, applying the previous step on the interval $[a + \varepsilon, b - \varepsilon]$, we get

$$\alpha_0 f_i(a+\varepsilon) + \sum_{k=1}^n \alpha_k f_i \left((1-\lambda_k)(a+\varepsilon) + \lambda_k(b-\varepsilon) \right) \\ \leq \frac{1}{b-a-2\varepsilon} \int_{a+\varepsilon}^{b-\varepsilon} f_i(x) dx.$$

Letting $i \to \infty$ and then $\varepsilon \to 0$, we get the left hand side inequality to be proved.

Now define the function $F : [a, b] \to \mathbb{R}$ by

$$F(x) := -f(a+b-x).$$

Then F is m-monotone on [a, b]. Using the left hand side inequality for F, the right hand side inequality for f follows.

Our second main result offers Hadamard-type inequalities for evenorder convex functions. **Theorem 7.** Let, for $n \ge 1$,

$$p_n(x) := \begin{vmatrix} 1 & 1 & \dots & \frac{1}{n} \\ x & \frac{1}{2} & \dots & \frac{1}{n+1} \\ \vdots & \vdots & \ddots & \vdots \\ x^n & \frac{1}{n+1} & \dots & \frac{1}{2n} \end{vmatrix},$$
$$q_n(x) := \begin{vmatrix} 1 & \frac{1}{2\cdot3} & \dots & \frac{1}{n(n+1)} \\ x & \frac{1}{3\cdot4} & \dots & \frac{1}{(n+1)(n+2)} \\ \vdots & \vdots & \ddots & \vdots \\ x^{n-1} & \frac{1}{(n+1)(n+2)} & \dots & \frac{1}{(2n-1)2n} \end{vmatrix}$$

then p_n has n, and q_n has n-1 pairwise distinct roots in]0,1[. Denote these roots by $\lambda_1, \ldots, \lambda_n$ and μ_1, \ldots, μ_{n-1} , respectively. Let

$$\alpha_k = \int_0^1 \frac{p_n(x)}{(x - \lambda_k)p'_n(\lambda_k)} dx \quad (k = 1, \dots, n),$$

and

$$\beta_0 := \frac{1}{q_n^2(0)} \int_0^1 q_n^2(x)(1-x)dx,$$

$$\beta_k := \frac{1}{(1-\mu_k)\mu_k} \int_0^1 \frac{q_n(x)x(1-x)}{(x-\mu_k)q_n'(\mu_k)}dx \quad (k = 1, \dots, n-1),$$

$$\beta_n := \frac{1}{q_n^2(1)} \int_0^1 q_n^2(x)xdx,$$

then the following inequalities hold for any m = 2n-monotone function $f: [a, b] \to \mathbb{R}$:

$$\sum_{k=1}^{n} \alpha_k f\left((1-\lambda_k)a + \lambda_k b\right) \le \frac{1}{b-a} \int_a^b f(x) dx$$
$$\le \beta_0 f(a) + \sum_{k=1}^{n-1} \beta_k f\left((1-\mu_k)a + \mu_k b\right) + \beta_n f(b).$$

An inequality analogous to the left hand side inequality was also established by T. POPOVICIU in [12].

PROOF. Observe that p_n is the *n*th degree orthogonal polynomial on [0, 1] with respect to the weight function $\rho(x) := 1$; similarly, q_n is the (n-1)st degree orthogonal polynomial on [0, 1] with respect to the weight function $\rho(x) := (1 - x)x$. First, just as before, we prove the statement for the special case when a = 0, b = 1 and $f : [0, 1] \to \mathbb{R}$ is supposed to be m = 2n times differentiable. In this case, $f^{(2n)} \ge 0$ on]0, 1[according to Theorem A.

Let H be the (2n-1)st degree Hermite interpolation polynomial which possesses the following properties:

$$H(\lambda_k) = f(\lambda_k),$$

$$H'(\lambda_k) = f'(\lambda_k) \quad (k = 1, \dots, n).$$

By (13), for all $x \in [0, 1]$, there exists $\eta \in [0, 1]$ such that

$$f(x) - H(x) = \frac{(x - \lambda_1)^2 \dots (x - \lambda_n)^2}{(2n)!} f^{(2n)}(\eta).$$

Therefore, for all $x \in [0, 1]$,

$$f(x) \ge H(x).$$

Since H is of degree 2n - 1, applying Theorem 1, we get that

$$\int_0^1 f(x)dx \ge \int_0^1 H(x)dx = \sum_{k=1}^n \alpha_k H(\lambda_k) = \sum_{k=1}^n \alpha_k f(\lambda_k).$$

Now let H be the (2n-1)st degree Hermite interpolation polynomial which possesses the following properties:

$$H(0) = f(0),$$

$$H(\mu_k) = f(\mu_k),$$

$$H'(\mu_k) = f'(\mu_k) \quad (k = 1, \dots, n-1),$$

$$H(1) = f(1).$$

By (13), for all $x \in [0, 1]$, there exists $\eta \in [0, 1]$ such that

$$f(x) - H(x) = \frac{(x-1)x(x-\mu_1)^2 \dots (x-\mu_{n-1})^2}{(2n)!} f^{(2n)}(\eta).$$

Therefore, for $x \in [0, 1]$,

 $f(x) \le H(x).$

Since H is of degree 2n - 1, applying Theorem 4, we get that

$$\int_0^1 f(x)dx \le \int_0^1 H(x)dx = \beta_0 H(0) + \sum_{k=1}^{n-1} \beta_k H(\mu_k) + \beta_n H(1)$$
$$= \beta_0 f(0) + \sum_{k=1}^{n-1} \beta_k f(\mu_k) + \beta_n f(1).$$

From this point, an analogous argument as in the previous proof gives the statement of the theorem, for arbitrary interval [a, b] without differentiability assumptions on the function f.

5. Applications: 2-, 3-, 4-, 5-, 6-, 8-, 10- and 12-monotone functions

In the subsequent corollaries we state Hadamard-type inequalities in those cases when the roots of the polynomials in Theorem 6 and Theorem 7 can explicitly be computed.

Corollary 1. If $f : [a, b] \to \mathbb{R}$ is a 2-monotone (i.e. convex) function, then the following inequalities hold:

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x) dx \le \frac{f(a)+f(b)}{2}.$$

Corollary 2. If $f : [a,b] \to \mathbb{R}$ is a 3-monotone function, then the following inequalities hold:

$$\frac{1}{4}f(a) + \frac{3}{4}f\left(\frac{a+2b}{3}\right) \le \frac{1}{b-a}\int_{a}^{b}f(x)dx \le \frac{3}{4}f\left(\frac{2a+b}{3}\right) + \frac{1}{4}f(b).$$

Corollary 3. If $f : [a, b] \to \mathbb{R}$ is a 4-monotone function, then the following inequalities hold:

$$\frac{1}{2}f\left(\frac{3+\sqrt{3}}{6}a+\frac{3-\sqrt{3}}{6}b\right) + \frac{1}{2}f\left(\frac{3-\sqrt{3}}{6}a+\frac{3+\sqrt{3}}{6}b\right)$$
$$\leq \frac{1}{b-a}\int_{a}^{b}f(x)dx \leq \frac{1}{6}f(a) + \frac{2}{3}f\left(\frac{a+b}{2}\right) + \frac{1}{6}f(b).$$

Corollary 4. If $f : [a, b] \to \mathbb{R}$ is a 5-monotone function, then the following inequalities hold:

$$\begin{aligned} \frac{1}{9}f(a) &+ \frac{16 + \sqrt{6}}{36}f\left(\frac{4 + \sqrt{6}}{10}a + \frac{6 - \sqrt{6}}{10}b\right) \\ &+ \frac{16 - \sqrt{6}}{36}f\left(\frac{4 - \sqrt{6}}{10}a + \frac{6 + \sqrt{6}}{10}b\right) \le \frac{1}{b - a}\int_{a}^{b}f(x)dx \\ &\le \frac{16 - \sqrt{6}}{36}f\left(\frac{6 + \sqrt{6}}{10}a + \frac{4 - \sqrt{6}}{10}b\right) \\ &+ \frac{16 + \sqrt{6}}{36}f\left(\frac{6 - \sqrt{6}}{10}a + \frac{4 + \sqrt{6}}{10}b\right) + \frac{1}{9}f(b). \end{aligned}$$

Corollary 5. If $f : [a, b] \to \mathbb{R}$ is a 6-monotone function, then the following inequalities hold:

$$\begin{aligned} \frac{5}{18}f\left(\frac{5+\sqrt{15}}{10}a+\frac{5-\sqrt{15}}{10}b\right) + \frac{4}{9}f\left(\frac{a+b}{2}\right) \\ &+ \frac{5}{18}f\left(\frac{5-\sqrt{15}}{10}a+\frac{5+\sqrt{15}}{10}b\right) \le \frac{1}{b-a}\int_{a}^{b}f(x)dx \\ &\le \frac{1}{12}f(a) + \frac{5}{12}f\left(\frac{5+\sqrt{5}}{10}a+\frac{5-\sqrt{5}}{10}b\right) \\ &+ \frac{5}{12}f\left(\frac{5-\sqrt{5}}{10}a+\frac{5+\sqrt{5}}{10}b\right) + \frac{1}{12}f(b). \end{aligned}$$

M. Bessenyei and Zs. Páles

In the other cases analogous statements can be formulated by applying Theorem 7. For simplicity, instead of writing down these corollaries explicitly, we shall present a list which contains the roots of p_n (denoted by λ_k), and the coefficients α_k for the left hand side inequality, furthermore the roots of q_n (denoted by μ_k), and the coefficients β_k for the right hand side inequality, respectively.

Case m = 8. The roots of p_4 :

$$\begin{aligned} &\frac{1}{2} - \frac{\sqrt{525 + 70\sqrt{30}}}{70}, \quad \frac{1}{2} - \frac{\sqrt{525 - 70\sqrt{30}}}{70}, \\ &\frac{1}{2} + \frac{\sqrt{525 - 70\sqrt{30}}}{70}, \quad \frac{1}{2} + \frac{\sqrt{525 + 70\sqrt{30}}}{70}; \end{aligned}$$

the corresponding coefficients:

$$\frac{1}{4} - \frac{\sqrt{30}}{72}, \quad \frac{1}{4} + \frac{\sqrt{30}}{72}, \quad \frac{1}{4} + \frac{\sqrt{30}}{72}, \quad \frac{1}{4} - \frac{\sqrt{30}}{72}.$$

The roots of q_4 :

$$\frac{1}{2} - \frac{\sqrt{21}}{14}, \quad \frac{1}{2}, \quad \frac{1}{2} + \frac{\sqrt{21}}{14};$$

the corresponding coefficients:

$$\frac{1}{20}, \quad \frac{49}{180}, \quad \frac{16}{45}, \quad \frac{49}{180}, \quad \frac{1}{20}.$$

Case m = 10. The roots of p_5 :

$$\begin{aligned} &\frac{1}{2} - \frac{\sqrt{245 + 14\sqrt{70}}}{42}, \quad \frac{1}{2} - \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \\ &\frac{1}{2}, \quad \frac{1}{2} + \frac{\sqrt{245 - 14\sqrt{70}}}{42}, \quad \frac{1}{2} + \frac{\sqrt{245 + 14\sqrt{70}}}{42}; \end{aligned}$$

the corresponding coefficients:

$$\frac{322 - 13\sqrt{70}}{1800}, \quad \frac{322 + 13\sqrt{70}}{1800}, \quad \frac{64}{225}, \quad \frac{322 + 13\sqrt{70}}{1800}, \quad \frac{322 - 13\sqrt{70}}{1800},$$

The roots of q_5 :

$$\frac{1}{2} - \frac{\sqrt{147 + 42\sqrt{7}}}{42}, \quad \frac{1}{2} - \frac{\sqrt{147 - 42\sqrt{7}}}{42}, \\ \frac{1}{2} + \frac{\sqrt{147 - 42\sqrt{7}}}{42}, \quad \frac{1}{2} + \frac{\sqrt{147 + 42\sqrt{7}}}{42};$$

the corresponding coefficients:

$$\frac{1}{30}, \quad \frac{14-\sqrt{7}}{60}, \quad \frac{14+\sqrt{7}}{60}, \quad \frac{14+\sqrt{7}}{60}, \quad \frac{14-\sqrt{7}}{60}, \quad \frac{14-\sqrt{7}}{30}.$$

Case m = 12 (right hand side inequality). The roots of q_6 :

$$\frac{1}{2} - \frac{\sqrt{495 + 66\sqrt{15}}}{66}, \quad \frac{1}{2} - \frac{\sqrt{495 - 66\sqrt{15}}}{66},$$
$$\frac{1}{2}, \quad \frac{1}{2} + \frac{\sqrt{495 - 66\sqrt{15}}}{66}, \quad \frac{1}{2} + \frac{\sqrt{495 + 66\sqrt{15}}}{66};$$

the corresponding coefficients:

$$\frac{1}{42}, \quad \frac{124 - 7\sqrt{15}}{700}, \quad \frac{124 + 7\sqrt{15}}{700}, \quad \frac{128}{525},$$
$$\frac{124 + 7\sqrt{15}}{700}, \quad \frac{124 - 7\sqrt{15}}{700}, \quad \frac{1}{42}.$$

During the investigations of the higher-order cases, we were able to use the symmetry of the roots of the orthogonal polynomials with respect to 1/2, and therefore the calculations lead to solving at most quadratic equations. The first case where "casus irreducibilis" appears, is the 7monotone case; similarly, this is the reason for presenting only the right hand side inequality when the function was supposed to be 12-monotone.

Acknowledgement. The authors wish to express their gratitude to AT-TILA HÁZY for his help in calculating the parameters of Hadamard-type inequalities of higher-order.

References

 S. S. DRAGOMIR and C. E. M. PEARCE, Selected Topics on Hermite-Hadamard Inequalities, RGMIA Monographs, *Victoria University*, 2000, (http://rgmia.vu.edu.au/monographs/hermite_hadamard.html).

M. Bessenyei and Zs. Páles

- [2] J. HADAMARD, Étude sur les propiété des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl. 58 (1893), 171–215.
- [3] G. HÄMMERLIN and K. H. HOFFMANN, Numerische Mathematik, Springer, Berlin, 1994.
- [4] F. JOHN, Lectures on Advanced Numerical Analysis, Gordon and Breach, London, 1966.
- [5] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, Państwowe Wydawnictwo Naukowe, Uniwersytet Śląski, Warszawa-Kraków -Katowice, 1985.
- [6] D. S. MITRINOVIĆ and I. B. LACKOVIĆ, Hermite and convexity, Aequationes Math. 28 (1985), 229–232.
- T. POPOVICIU, Sur l'approximation des fonctions convexes d'ordre supérieur, Bull. Sect. Sci. Acad. Roum. 20 (1938), 192–195, (or 50–53) (1939).
- [8] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur (VI), Rev. Math. Union Interbalkan. 2 (1939), 31–40.
- [9] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur (VII), Acad. Roum. Bull. Sect. Sci. 22 (1939), 29–33.
- [10] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur. III, Mathematica, Cluj 16 (1940), 74–86.
- [11] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur. IV, Disquisit. Math. Phys. 1 (1940), 163–171.
- [12] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur (V), Acad. Roum. Bull. Sect. Sci. 22 (1940), 351–356.
- [13] T. POPOVICIU, Notes sur les généralisations des fonctions convexes d'ordre supérieur, I, Disquisit. Math. Phys. 1 (1940), 35–42.
- [14] T. POPOVICIU, Notes sur les généralisations des fonctions convexes d'ordre supérieur (II), Acad. Roum. Bull. Sect. Sci. 22 (1940), 473–477.
- [15] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur. IX. Inégalités linéaires et bilinéaires entre les fonctions convexes. Quelques généralisations d'une inégalité de Tchebycheff, Bull. Math. Soc. Roumaine Sci. 43 (1941), 85–141.
- [16] T. POPOVICIU, Notes sur les fonctions convexes d'ordre supérieur. X. Sur quelques propriétés des différences divisées et des polynomes de Lagrange, Ann. Sci. Univ. Jassy. Sect. I. 28 (1942), 161–207.
- [17] T. POPOVICIU, Notes sur les généralisations des fonctions convexes d'ordre supérieur, IV, Disquisit. Math. Phys. 2 (1942), 127–148.
- [18] T. POPOVICIU, Notes sur les généralisations des fonctions convexes d'ordre supérieur, III, Acad. Roum. Bull. Sect. Sci. 24 (1943), 409–416.
- [19] T. POPOVICIU, Les fonctions convexes, Hermann et Cie, Paris, 1944.
- [20] G. SZEGŐ, Orthogonal Polynomials, American Math. Society, Providence, Rhode Island, 1939.

Higher-order generalizations of Hadamard's inequality

[21] E. ZEIDLER, Nonlinear Functional Analysis and its Applications I, Springer, New York–Berlin–Heidelberg, 1986.

M. BESSENYEI INSTITUTE OF MATHEMATICS AND INFORMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, P.O. BOX 12 HUNGARY

E-mail: bessenyei@riesz.math.klte.hu

ZS. PÁLES INSTITUTE OF MATHEMATICS AND INFORMATICS UNIVERSITY OF DEBRECEN H-4010 DEBRECEN, P.O. BOX 12 HUNGARY

E-mail: pales@math.klte.hu

(Received December 5, 2001; revised June 20, 2002)