On zeros of reciprocal polynomials

By PIROSKA LAKATOS (Debrecen)

Abstract

The purpose of this paper is to show that all zeros of the reciprocal polynomial $$
P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k} \quad(z \in \mathbb{C})
$$

of degree $m \geq 2$ with real coefficients $A_{k} \in \mathbb{R}$ (i.e. $A_{m} \neq 0$ and $A_{k}=A_{m-k}$ for all $\left.k=0, \ldots,\left[\frac{m}{2}\right]\right)$ are on the unit circle, provided that the "coefficient condition"

$$
\left|A_{m}\right| \geq \sum_{k=1}^{m-1}\left|A_{k}-A_{m}\right|
$$

is satisfied.
Moreover, if the "coefficient condition" holds, then all zeros $e^{i u_{j}},(j=1,2, \ldots, m)$ can be arranged such that

$$
\left|e^{i \frac{2 \pi j}{m+1}}-e^{i u_{j}}\right|<\frac{\pi}{m+1} \quad(j=1, \ldots, m)
$$

If $m=2 n+1$ is odd, then $-1=e^{i u_{n+1}}$ is always a zero, and all zeros of $P_{2 n+1}$ are single.
If $m=2 n$ is even, if the "coefficient condition" holds with equality and if

$$
\operatorname{sgn} A_{2 n}=\operatorname{sgn}(-1)^{k+1}\left(A_{k}-A_{2 n}\right)=\operatorname{sgn}(-1)^{n+1} \frac{A_{n}-A_{2 n}}{2} \quad(k=1,2, \ldots, n-1)
$$

then $u_{n}=u_{n+1}=\pi$, the number $-1=e^{i u_{n}}=e^{i u_{n+1}}$ is a double zero of $P_{2 n}$. Otherwise all zeros of $P_{2 n}$ are single.

[^0]
1. Introduction

The Coxeter transformation was introduced in the representation theory of finite dimensional algebras (see [2]). The characteristic polynomial of the Coxeter transformation of an oriented graph whose underlying graph is a wild star is a Salem polynomial (see [3], [4]).

Allowing circles in the underlying graph, the spectral properties of the Coxeter transformations get much more complicated. These properties are related to polynomials of the form

$$
l\left(z^{m}+z^{m-1}+\cdots+z+1\right)+\left(z^{k}+z^{m-k}\right) \quad(z \in \mathbb{C})
$$

where m, k are fixed non-negative integers with $m \geq 2,1 \leq k \leq\left[\frac{m}{2}\right]$ and l is a fixed real number.

The zeros of the first expression $l\left(z^{m}+z^{m-1}+\cdots+z+1\right)$ are

$$
\epsilon_{j}=e^{i \frac{j}{m+1} 2 \pi} \quad(j=1,2, \ldots, m)
$$

the $(m+1)$ st roots of unity except 1 , they are on the unit circle. It is surprising that adding $z^{k}+z^{m-k}$ to the first expression the polynomial obtained inherits this property. Moreover, not just all zeros remain on the unit circle but they move away from ϵ_{j} just a little even if we add a linear combination $\sum_{k=1}^{\left[\frac{m}{2}\right]} a_{k}\left(z^{k}+z^{m-k}\right)$ to the expression $l\left(z^{m}+z^{m-1}+\cdots+z+1\right)$, provided that $|l|$ is large enough. This leads to the main result of the paper: giving a sufficient condition for reciprocal polynomials to have all of their zeros on the unit circle and also giving the location of the zeros.

Our basic tool is a transformation of semi-reciprocal polynomials called the Chebyshev transformation. Although this transformation seems to be well known we could not find a suitable reference. In Section 2, based on [1], we summarize the properties of the Chebyshev transformation. In Section 3 we formulate our results and prove them. In Section 4 we discuss the necessity of our sufficient condition.

2. The Chebyshev transformation

A polynomial p of the form $p(z)=\sum_{j=0}^{m} a_{j} z^{j}(z \in \mathbb{C})$ where $a_{j} \in \mathbb{C}$ are given numbers with $a_{m} \neq 0, a_{j}=a_{m-j}\left(j=0, \ldots,\left[\frac{m}{2}\right]\right)$ is called a reciprocal polynomial of degree m.

We need a more general class of reciprocal polynomials (of even degree).

Definition 1. A polynomial p of the form

$$
\begin{equation*}
p(z)=\sum_{j=0}^{2 n} a_{j} z^{j} \quad(z \in \mathbb{C}) \tag{1}
\end{equation*}
$$

where $n \in \mathbb{N}, a_{0}, \ldots, a_{2 n} \in \mathbb{R}$ and

$$
\begin{equation*}
a_{j}=a_{2 n-j}(j=0, \ldots, n-1) \tag{2}
\end{equation*}
$$

is called a real semi-reciprocal polynomial of degree at most $2 n$. If $a_{2 n} \neq 0$ we call p a real reciprocal polynomial of degree $2 n$.

Denote by $\mathcal{R}_{2 n}$ the set of all real semi-reciprocal polynomials of degree at most $2 n$.

If $p \in \mathcal{R}_{2 n}, p \neq o(o=$ the zero polynomial $)$, then there is an integer k, $0 \leq k \leq n$, such that

$$
\begin{gather*}
a_{2 n}=a_{2 n-1}=\cdots=a_{n+k+1}=0=a_{n-k-1}=\cdots=a_{0} \\
\text { but } \quad a_{n+k}=a_{n-k} \neq 0 . \tag{3}
\end{gather*}
$$

Hence
(4) $p(z)=\sum_{j=0}^{2 n} a_{j} z^{j}=z^{n}\left[a_{n+k}\left(z^{k}+\frac{1}{z^{k}}\right)+\cdots+a_{n+1}\left(z+\frac{1}{z}\right)+a_{n}\right]$.

Let T_{j} be the j th Chebyshev polynomial of the first kind, defined by

$$
T_{j}(\cos x)=\cos j x \quad(j=0,1, \ldots)
$$

With $z+\frac{1}{z}=x$ we have $z^{j}+\frac{1}{z^{j}}=C_{j}(x)(j=1,2, \ldots)$ (see e.g. [6], p. 224) where

$$
C_{j}(x):=2 T_{j}\left(\frac{x}{2}\right) \quad(x \in \mathbb{C}, j=1,2, \ldots)
$$

are the normalized Chebyshev polynomials of the first kind. For us it will be now more convenient to define C_{0} by

$$
C_{0}(x):=T_{0}(x) \quad(x \in \mathbb{C})
$$

Hence, from (4)

$$
\begin{equation*}
p(z)=z^{n} \sum_{j=0}^{k} a_{n+j} C_{j}(x)=a_{n+k} z^{n} \prod_{j=1}^{k}\left(x-\alpha_{j}\right) \tag{5}
\end{equation*}
$$

where $\alpha_{j} \in \mathbb{C}(j=1, \ldots, k)$ are the zeros of the polynomial $\sum_{j=0}^{k} a_{n+j} C_{j}(x)$. Equation (5) remains true in the case when $k=0$, i.e. $p(z)=a_{n} z^{n}$ if we agree that

$$
\begin{equation*}
\prod_{j=1}^{0} b_{j}:=1 \tag{6}
\end{equation*}
$$

Going back to the variable z we get that

$$
p(z)=a_{n+k} z^{n-k} \prod_{j=1}^{k} z\left(z+\frac{1}{z}-\alpha_{j}\right)=a_{n+k} z^{n-k} \prod_{j=1}^{k}\left(z^{2}-\alpha_{j} z+1\right)
$$

With this we have justified
Proposition 1. Every non-zero polynomial $p \in \mathcal{R}_{2 n}$ has the decomposition

$$
\begin{equation*}
p(z)=a_{n+k} z^{n-k} \prod_{j=1}^{k}\left(z^{2}-\alpha_{j} z+1\right) \tag{7}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{k} \in \mathbb{C}, a_{n+k} \neq 0$ for some k with $0 \leq k \leq n$ and the convention (6) is adopted. If $p \in \mathcal{R}_{2 n}$ is a reciprocal polynomial of degree $2 n$, then (7) holds with $k=n$.

Definition 2. The Chebyshev transform of a non-zero polynomial $p \in$ $\mathcal{R}_{2 n}$ having the decomposition (7) is defined by

$$
\begin{equation*}
\mathcal{T} p(x)=a_{n+k} \prod_{j=1}^{k}\left(x-\alpha_{j}\right) \tag{8}
\end{equation*}
$$

(with (6) adopted) while for the zero polynomial $p=o$ let

$$
\begin{equation*}
\mathcal{T} o(x)=0 \tag{9}
\end{equation*}
$$

It is clear that \mathcal{T} maps $\mathcal{R}_{2 n}$ into the set \mathcal{P}_{n} of all polynomials of degree $\leq n$ with real coefficients.

Proposition 2. The Chebyshev transform \mathcal{T} is an isomorphism of the (real) vector space $\mathcal{R}_{2 n}$ onto \mathcal{P}_{n}.

Proof. (i) \mathcal{T} preserves the addition and the multiplication by a real constant. Using (5) and (3) (to include also the zero coefficients into the sum) we can write $\mathcal{T} p$ into the form

$$
\mathcal{T} p(x)=a_{n+k} \prod_{j=1}^{k}\left(x-\alpha_{j}\right)=\sum_{j=0}^{k} a_{n+j} C_{j}(x)=\sum_{j=0}^{n} a_{n+j} C_{j}(x)
$$

and the last form of $\mathcal{T} p$ is valid also for the zero polynomial. Taking now another $q \in \mathcal{R}_{2 n}$ with $q(z)=\sum_{j=0}^{2 n} b_{j} z^{j}\left(b_{j}=b_{2 n-j}\right.$ for $\left.j=0, \ldots, n-1\right)$ and constants $\alpha, \beta \in \mathbb{R}$ we have

$$
(\alpha p+\beta q)(z)=\sum_{j=0}^{2 n}\left(\alpha a_{j}+\beta b_{j}\right) z^{j}
$$

thus

$$
\begin{aligned}
& \mathcal{T}(\alpha p+\beta q)(x)=\sum_{j=0}^{n}\left(\alpha a_{n+j}+\beta b_{n+j}\right) C_{j}(x) \\
& \quad=\alpha \sum_{j=0}^{n} a_{n+j} C_{j}(x)+\beta \sum_{j=0}^{n} b_{n+j} C_{j}(x)=\alpha(\mathcal{T} p(x))+\beta(\mathcal{T} q(x)) .
\end{aligned}
$$

(ii) \mathcal{T} maps onto \mathcal{P}_{n}. Every polynomial $\tilde{r} \in \mathcal{P}_{n}$ can uniquely be written as a (real) linear combination of $C_{0}, C_{1}, \ldots, C_{n}$ in the form $\tilde{r}(x)=$ $\sum_{j=0}^{n} A_{n+j} C_{j}(x)\left(A_{n+j} \in \mathbb{R}\right)$. With $r(z):=\sum_{j=0}^{2 n} A_{j} z^{j}$ where $A_{j}:=$ $A_{2 n-j}$ for $j=0, \ldots, n-1$ we have $r \in \mathcal{R}_{2 n}$ and $\mathcal{T} r=\tilde{r}$ proving our claim.
(iii) \mathcal{T} is one-to-one. Namely, if $\mathcal{T} p=\mathcal{T} q$ for $p, q \in \mathcal{R}_{2 n}$, then $\mathcal{T} p-$ $\mathcal{T} q=\mathcal{T}(p-q)=o$ hence, by (8), (9) $p-q=o, p=q$.

Lemma 1. (i) Let p be a real reciprocal polynomial of degree $2 n$. Then all zeros of p are on the unit circle if and only if all zeros of its Chebyshev transform $\mathcal{T} p$ are in the closed interval $[-2,2]$.
(ii) Moreover, if all zeros α_{j} of $\mathcal{T} p$ are in [-2,2], written as $\alpha_{j}=$ $2 \cos u_{j}$ with $u_{j} \in[0, \pi](j=1,2, \ldots, n)$, then all zeros of p are given by

$$
e^{ \pm i u_{j}} \quad(j=1,2, \ldots, n)
$$

The multiplicity of $\alpha_{j} \neq \pm 2$ is the same as the multiplicities of $e^{i u_{j}}$ and $e^{-i u_{j}}(j=1,2, \ldots, n)$ while in the case of $\alpha_{j}= \pm 2$ the multiplicities of the corresponding zeros $e^{i u_{j}}= \pm 1$ of p are doubled.

Proof. (i) Necessity. Suppose that all zeros of p are on the unit circle. They can be arranged in conjugate pairs $\left(\beta_{1}, \bar{\beta}_{1}\right),\left(\beta_{2}, \bar{\beta}_{2}\right) \ldots\left(\beta_{n}, \bar{\beta}_{n}\right)$. By assumption $\left|\beta_{j}\right|^{2}=\beta_{j} \bar{\beta}_{j}=1, \bar{\beta}_{j}=\frac{1}{\beta_{j}}(j=1, \ldots n)$, hence

$$
p(z)=a_{2 n} \prod_{j=1}^{n}\left(z-\beta_{j}\right)\left(z-\bar{\beta}_{j}\right)=a_{2 n} \prod_{j=1}^{n}\left(z^{2}-\left(\beta_{j}+\bar{\beta}_{j}\right) z+1\right)
$$

and

$$
\mathcal{T} p(x)=a_{2 n} \prod_{j=1}^{n}\left(x-\left(\beta_{j}+\bar{\beta}_{j}\right)\right) .
$$

It is clear that $\left|\beta_{j}+\bar{\beta}_{j}\right|=\left|2 \operatorname{Re}\left(\beta_{j}\right)\right| \leq 2\left|\beta_{j}\right|=2$.
(i) Sufficiency. Assume that the Chebyshev transform has the form

$$
\mathcal{T} p(x)=a_{2 n} \prod_{j=1}^{n}\left(x-\alpha_{j}\right)
$$

where $a_{2 n} \neq 0$ and $\alpha_{j} \in[-2,2](j=1, \ldots, n)$. Then

$$
p(z)=a_{2 n} \prod_{j=1}^{n}\left(z^{2}-\alpha_{j} z+1\right) .
$$

Since $\alpha_{j} \in[-2,2]$ we have $z^{2}-\alpha_{j} z+1=\left(z-\beta_{j}\right)\left(z-\bar{\beta}_{j}\right)$ with $\beta_{j} \bar{\beta}_{j}=$ $1=\left|\beta_{j}\right|^{2}$ proving that all zeros $\beta_{1}, \bar{\beta}_{1}, \beta_{2}, \bar{\beta}_{2} \ldots \beta_{n}, \bar{\beta}_{n}$ of p are on the unit circle.
(ii) We have $\alpha_{j}=2 \cos u_{j}=\beta_{j}+\bar{\beta}_{j}$. Writing β_{j} as $e^{i q_{j}}$ (here we may suppose that $0 \leq q_{j} \leq \pi$) we obtain that $2 \cos u_{j}=e^{i q_{j}}+e^{-i q_{j}}=$ $2 \cos q_{j}$ hence $u_{j}=q_{j}(j=1,2, \ldots, n)$. The statement concerning the multiplicities is obvious.

3. Results and proofs

Theorem 1. All zeros of the (real reciprocal) polynomial

$$
\begin{equation*}
h_{m}(z)=l\left(z^{m}+z^{m-1}+\cdots+z+1\right)+\sum_{k=1}^{\left[\frac{m}{2}\right]} a_{k}\left(z^{m-k}+z^{k}\right) \quad(z \in \mathbb{C}) \tag{10}
\end{equation*}
$$

of degree m where $l, a_{1}, \ldots, a_{\left[\frac{m}{2}\right]} \in \mathbb{R}, l \neq 0, m \in \mathbb{N}, m \geq 2$, are on the unit circle if

$$
\begin{equation*}
|l| \geq 2 \sum_{k=1}^{\left[\frac{m}{2}\right]}\left|a_{k}\right| \tag{11}
\end{equation*}
$$

Moreover, if (11) is satisfied, then for even $m=2 n$ all zeros of h_{m} can be given as

$$
e^{i u_{j}}, \quad e^{-i u_{j}} \quad(j=1,2, \ldots, n)
$$

where

$$
\begin{aligned}
& \frac{j-\frac{1}{2}}{m+1} 2 \pi<u_{j}<\frac{j+\frac{1}{2}}{m+1} 2 \pi \quad(j=1,2, \ldots, n-1) \\
& \frac{n-\frac{1}{2}}{m+1} 2 \pi<u_{n} \leq \pi .
\end{aligned}
$$

In the last inequality $u_{n} \leq \pi$, we have equality if and only if

$$
\begin{gather*}
|l|=2 \sum_{k=1}^{\left[\frac{m}{2}\right]}\left|a_{k}\right| \quad \text { and } \quad \operatorname{sgn} l=\operatorname{sgn}(-1)^{k+1} \operatorname{sgn} a_{k} \tag{12}\\
\text { for all } k=1,2, \ldots, n .
\end{gather*}
$$

If (12) holds, then $-1=e^{i \pi}=e^{-i \pi}$ is a double zero of h_{m} and all other zeros are single.

For odd $m=2 n+1$ all zeros of h_{m} are single, they can be given as

$$
-1, e^{i u_{j}}, e^{-i u_{j}} \quad(j=1,2, \ldots, n)
$$

where

$$
\frac{j-\frac{1}{2}}{m+1} 2 \pi<u_{j}<\frac{j+\frac{1}{2}}{m+1} 2 \pi \quad(j=1,2, \ldots, n) .
$$

Remark 1. The statement concerning the location of the zeros of h_{m} can also be formulated as follows.

If (11) is satisfied, then all the zeros $e^{i u_{j}}(j=1,2, \ldots, m)$ of h_{m} can be arranged such that

$$
\left|\epsilon_{j}-e^{i u_{j}}\right|<\frac{\pi}{m+1} \quad(j=1, \ldots, m)
$$

where, as in the introduction, ϵ_{j} are the $(m+1)$ st roots of unity, except 1 .
Namely, for even $m=2 n$, let $u_{j}(j=1,2, \ldots, n)$ be the same as in Theorem 1 and $u_{n+j}:=2 \pi-u_{n+1-j}(j=1,2, \ldots, n)$. If (12) does not hold, then all zeros of h_{m} are single. If (12) holds, then $u_{n}=u_{n+1}=\pi$ and $-1=e^{i u_{n}}=e^{i u_{n+1}}$ is a double zero and all other zeros are single.

For odd $m=2 n+1$ let $u_{j}(j=1,2, \ldots, n)$ be the same as in Theorem $1, u_{n+1}:=\pi$ and $u_{n+1+j}:=2 \pi-u_{n+1-j}(j=1,2, \ldots, n)$. The number $-1=e^{i u_{n+1}}$ is always a zero and all zeros are single.

Proof. The basic idea of our proof is the following. Assume that (11) holds and let

$$
x_{j}=2 \cos \frac{j+\frac{1}{2}}{m+1} 2 \pi \quad\left(j=0, \ldots,\left[\frac{m}{2}\right]\right)
$$

If $m=2 n$ is an even number, we show that $\operatorname{sgn} \mathcal{T} h_{2 n}\left(x_{j}\right)=\operatorname{sgn}(-1)^{j} \operatorname{sgn} l$ ($j=0,1, \ldots, n-1$) and $\mathcal{T} h_{2 n}\left(x_{n}\right)=0$ if (12) holds, otherwise
$\operatorname{sgn} \mathcal{T} h_{2 n}\left(x_{j}\right)=\operatorname{sgn}(-1)^{j} \operatorname{sgn} l(j=0, \ldots, n)$.
If $m=2 n+1$ is odd, then $h_{2 n+1}(z)=(z+1) \bar{h}_{2 n}(z)$ with a suitable reciprocal polynomial $\bar{h}_{2 n}$ from $\mathcal{R}_{2 n}$. We show that $\operatorname{sgn} \mathcal{T} \bar{h}_{2 n}\left(x_{j}\right)=$ $\operatorname{sgn} l \operatorname{sgn}(-1)^{j}(j=0,1, \ldots, n)$.

Applying Lemma 1 completes the proof.
Case 1: $m=2 n$. With the notation $v_{j}(z)=z^{j}+z^{j-1}+\cdots+1=$ $\frac{z^{j+1}-1}{z-1}, e_{j}(z)=z^{j}, w_{j}(z)=z^{j}+1(j=0,1, \ldots)$ we have

$$
\begin{aligned}
h_{2 n}(z) & =l v_{2 n}(z)+\sum_{k=1}^{n} a_{k} e_{k}(z) \cdot w_{2 n-2 k}(z), \\
\mathcal{T} h_{2 n}(x) & =l \mathcal{T} v_{2 n}(x)+\sum_{k=1}^{n} a_{k} \mathcal{T}\left(e_{k} \cdot w_{2 n-2 k}\right)(x) .
\end{aligned}
$$

The zeros of $v_{2 n}$ are the $(2 n+1)$ st roots of unity, except 1 : $e^{\frac{2 j \pi i}{2 n+1}}$ $(j=1,2, \ldots, 2 n)$. They can be arranged into conjugate pairs: $\left(e^{\frac{2 j \pi i}{2 n+1}}, e^{\frac{2(2 n+1-j) \pi i}{2 n+1}}\right)=\left(e^{\frac{2 j j i}{2 n+1}}, e^{-\frac{2 j \pi i}{2 n+1}}\right)(j=1, \ldots, n)$, thus

$$
v_{2 n}(z)=\prod_{j=1}^{2 n}\left(z-e^{\frac{2 j \pi i}{2 n+1}}\right)=\prod_{j=1}^{n}\left(z-e^{\frac{2 j \pi i}{2 n+1}}\right)\left(z-e^{-\frac{2 j \pi i}{2 n+1}}\right)
$$

$$
\begin{aligned}
& =\prod_{j=1}^{n}\left(z^{2}-2 \cos \frac{2 j \pi}{2 n+1} z+1\right) \\
\mathcal{T} v_{2 n}(x) & =\prod_{j=1}^{n}\left(x-2 \cos \frac{2 j \pi}{2 n+1}\right)
\end{aligned}
$$

Similarly, for each $0 \leq k \leq n$ the zeros of $w_{2 n-2 k}$ are the $(2 n-2 k)$ st roots of $-1: e^{\frac{(2 j-1) \pi i}{2 n-2 k}}(j=1, \ldots, 2 n-2 k)$. They can be arranged into conjugate pairs

$$
\left(e^{\frac{(2 j-1) \pi i}{2 n-2 k}}, e^{\frac{(2(2 n-2 k+1-j)-1) \pi i}{2 n-2 k}}\right)=\left(e^{\frac{(2 j-1) \pi i}{2 n-2 k}}, e^{-\frac{(2 j-1) \pi i}{2 n-2 k}}\right) \quad(j=1, \ldots, n-k)
$$

Therefore

$$
\begin{aligned}
w_{2 n-2 k}(z)= & \prod_{j=1}^{2 n-2 k}\left(z-e^{\frac{(2 j-1) \pi i}{2 n-2 k}}\right)=\prod_{j=1}^{n-k}\left(z^{2}-2 \cos \frac{(2 j-1) \pi}{2 n-2 k} z+1\right) \\
& \mathcal{T}\left(e_{k} w_{2 n-2 k}\right)(x)=\prod_{j=1}^{n-k}\left(x-2 \cos \frac{(2 j-1) \pi}{2 n-2 k}\right)
\end{aligned}
$$

Denote by U_{n} the nth Chebyshev polynomial of the second kind (see for example in $[6]$), defined by

$$
U_{n}(\cos x)=\frac{\sin (n+1) x}{\sin x} \quad(n=0,1, \ldots)
$$

We claim that

$$
\begin{align*}
& \mathcal{T} v_{2 n}(x)=U_{n}\left(\frac{x}{2}\right)+U_{n-1}\left(\frac{x}{2}\right) \tag{13}\\
& \mathcal{T}\left(e_{k} \cdot w_{2 n-2 k}\right)(x)=2 T_{n-k}\left(\frac{x}{2}\right) \tag{14}
\end{align*}
$$

To justify the first identity we note that

$$
\begin{align*}
U_{n}(\cos y)+U_{n-1}(\cos y) & =\frac{\sin (n+1) y+\sin n y}{\sin y} \\
& =2 \frac{\sin \frac{(2 n+1) y}{2} \cos \frac{y}{2}}{\sin y}=\frac{\sin \frac{(2 n+1) y}{2}}{\sin \frac{y}{2}} \tag{15}
\end{align*}
$$

The right hand side is zero if and only if $y=\frac{2 j \pi}{2 n+1}(j \in \mathbb{Z} \backslash\{0\})$ hence all zeros of $U_{n}\left(\frac{x}{2}\right)+U_{n-1}\left(\frac{x}{2}\right)$ are $2 \cos \frac{2 j \pi}{2 n+1}(j=1, \ldots, n)$. Since both sides of (13) are monics which have the same zeros, they are identical.

The zeros of T_{p} can be calculated easily from their definition, for $p \in \mathbb{N}$ they are

$$
\cos \frac{(2 j-1) \pi}{2 p} \quad(j=1, \ldots, p)
$$

Thus for $k<n$ the zeros of the monic $2 T_{n-k}\left(\frac{x}{2}\right)$ are $2 \cos \frac{(2 j-1) \pi}{2 n-2 k}(j=$ $1, \ldots, n-k)$. They are the same as the zeros of $\mathcal{T}\left(e_{k} \cdot w_{2 n-2 k}\right)$, hence (14) holds. It also holds for $k=n$ since then both sides of (14) are equal to 2 .

Next we evaluate $\mathcal{T} h_{2 n}$ at the points

$$
x_{j}=2 \cos \frac{j+\frac{1}{2}}{m+1} 2 \pi \quad(j=0, \ldots, n)
$$

of the interval $[-2,2]$. Since $x_{j}=2 \cos y_{j}$ with $y_{j}=\frac{j+\frac{1}{2}}{2 n+1} 2 \pi$ we have by (13), (14)

$$
\begin{aligned}
\mathcal{T} h_{2 n}\left(x_{j}\right) & =l\left(U_{n}\left(\frac{x_{j}}{2}\right)+U_{n-1}\left(\frac{x_{j}}{2}\right)\right)+\sum_{k=1}^{n} 2 a_{k} T_{n-k}\left(\frac{x_{j}}{2}\right) \\
& =2\left[\frac{\frac{l}{2} \sin \frac{2 n+1}{2} y_{j}}{\sin \frac{1}{2} y_{j}}+\sum_{k=1}^{n} a_{k} \cos (n-k) y_{j}\right] \\
& =2\left[\frac{\frac{l}{2}(-1)^{j}}{\sin \frac{y_{j}}{2}}+\sum_{k=1}^{n} a_{k} \cos (n-k) y_{j}\right]
\end{aligned}
$$

If $j=0,1, \ldots, n-1$, then $0<\sin \frac{y_{j}}{2}<1, \sum_{k=1}^{n}\left|a_{k} \cos (n-k) y_{j}\right| \leq$ $\sum_{k=1}^{n}\left|a_{k}\right|$ and by (11) the sign of the expression in the bracket is $(-1)^{j} \operatorname{sgn} l$.

If $j=n$, then $y_{n}=\pi$ and the expression in the bracket is

$$
\frac{l}{2}(-1)^{n}+\sum_{k=1}^{n} a_{k}(-1)^{n-k}=(-1)^{n}\left(\frac{l}{2}+\sum_{k=1}^{n} a_{k}(-1)^{k}\right)
$$

Its sign is $(-1)^{n} \operatorname{sgn} l$ if in (11) strict inequality holds or if in (11) we have equality and at least for one $k(1 \leq k \leq n)$ we have $\operatorname{sgn} l=\operatorname{sgn}(-1)^{k} \operatorname{sgn} a_{k}$. If we have equality in (11) and $\operatorname{sgn} l=\operatorname{sgn}(-1)^{k+1} \operatorname{sgn} a_{k}$ for all $k=$ $1, \ldots, n$, then the expression in the bracket is zero.

Thus either $\operatorname{sgn} \mathcal{T} h_{2 n}\left(x_{j}\right)=\operatorname{sgn}(-1)^{j} \operatorname{sgn} l(j=0, \ldots, n)$ or $\operatorname{sgn} \mathcal{T} h_{2 n}\left(x_{j}\right)=\operatorname{sgn}(-1)^{j} \operatorname{sgn} l(j=0,1, \ldots, n-1)$ and $\mathcal{T} h_{2 n}\left(x_{n}\right)=0$. In both cases $\mathcal{T} h_{2 n}$ has n distinct zeros in the interval [$-2,2$]. Writing these in the form $2 \cos u_{j}$ with $0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n} \leq \pi$ and applying Lemma 1 we can complete the proof in the first case.

Case 2: $m=2 n+1$. We have $h_{2 n+1}(z)=(z+1) \bar{h}_{2 n}(z)$ with

$$
\bar{h}_{2 n}(z)=l \bar{v}_{2 n}(z)+\sum_{k=1}^{n} a_{k} z^{k} \bar{w}_{2 n-2 k}(z)
$$

where

$$
\begin{aligned}
\bar{v}_{2 n}(z) & =z^{2 n}+z^{2 n-2}+\cdots+z^{2}+1=v_{n}\left(z^{2}\right) \\
\bar{w}_{2 n-2 k}(z) & =\frac{w_{2 n+1-2 k}(z)}{z+1}=\frac{z^{2 n+1-2 k}+1}{z+1}
\end{aligned}
$$

Using the factorization of v_{n} we get

$$
\bar{v}_{2 n}(z)=v_{n}\left(z^{2}\right)=\prod_{j=1}^{n}\left(z^{2}-e^{\frac{2 j \pi i}{n+1}}\right)=\prod_{j=1}^{n}\left(z-e^{\frac{j \pi i}{n+1}}\right)\left(z-e^{\frac{j \pi i}{2 n+1}-\pi i}\right) .
$$

Arranging the zeros of $\bar{v}_{2 n}$ into conjugate pairs $\left(e^{\frac{j \pi i}{n+1}}, e^{-\frac{j \pi i}{n+1}}\right)(j=1, \ldots, n)$ we have

$$
\bar{v}_{2 n}(z)=\prod_{j=1}^{n}\left(z-e^{\frac{j \pi i}{n+1}}\right)\left(z-e^{-\frac{j \pi i}{n+1}}\right)=\prod_{j=1}^{n}\left(z^{2}-2 \cos \frac{2 j \pi}{2 n+1} z+1\right)
$$

therefore

$$
\mathcal{T} \bar{v}_{2 n}(x)=\prod_{j=1}^{n}\left(x-2 \cos \frac{j \pi}{n+1}\right) .
$$

We can easily calculate the zeros of $\bar{w}_{2 n-2 k}$ (we omit this elementary calculation) and obtain the factorization

$$
\begin{aligned}
\bar{w}_{2 n-2 k}(z) & =\prod_{j=1}^{n-k}\left(z-e^{\frac{(2 j-1) \pi i}{2 n-2 k+1}}\right)\left(z-e^{-\frac{(2 j-1) \pi i}{2 n-2 k+1}}\right) \\
& =\prod_{j=1}^{n-k}\left(z^{2}-2 \cos \frac{(2 j-1) \pi}{2 n-2 k+1} z+1\right)
\end{aligned}
$$

therefore

$$
\mathcal{T}\left(e_{k} \cdot \bar{w}_{2 n-2 k}\right)(x)=\prod_{j=1}^{n-k}\left(x-2 \cos \frac{(2 j-1) \pi}{2 n-2 k+1}\right) .
$$

Next we show that

$$
\begin{gather*}
\mathcal{T} \bar{v}_{2 n}(x)=U_{n}\left(\frac{x}{2}\right), \tag{16}\\
\mathcal{T}\left(e_{k} \cdot \bar{w}_{2 n-2 k}\right)(x)=U_{n-k}\left(\frac{x}{2}\right)-U_{n-k-1}\left(\frac{x}{2}\right) . \tag{17}
\end{gather*}
$$

where we have to adopt the convention

$$
\begin{equation*}
U_{-1}(x)=0 \quad(x \in \mathbb{C}) . \tag{18}
\end{equation*}
$$

The first identity follows from the fact that the zeros of both sides are the same.

To justify the second we note that

$$
\begin{aligned}
U_{n-k}(\cos y)-U_{n-k-1}(\cos y) & =\frac{\sin (n-k+1) y-\sin (n-k) y}{\sin y} \\
& =\frac{2 \cos \frac{(2 n-2 k+1) y}{2} \sin \frac{y}{2}}{\sin y}=\frac{\cos \frac{(2 n-2 k+1) y}{2}}{\cos \frac{y}{2}}
\end{aligned}
$$

for all $k=0, \ldots, n$ provided that the convention (18) is adopted.
If $k=n$, then both sides of (17) are equal to 1 thus (17) holds. For $k<n$ the right hand side of (17) is zero if and only if $y=\frac{(2 j-1) \pi}{2 n-2 k+1}$ $(j \in \mathbb{Z})$ hence all zeros of $U_{n-k}\left(\frac{x}{2}\right)-U_{n-k-1}\left(\frac{x}{2}\right)$ are $2 \cos \frac{(2 j-1) \pi}{2 n-2 k+1}(j=$ $1, \ldots, n-k)$, they are the same as the zeros of $\mathcal{T}\left(e_{k} \cdot \bar{w}_{2 n-2 k}\right)$ proving (17).

By the linearity of the Chebyshev transform and by (16), (17) we have

$$
\begin{aligned}
\mathcal{T} \bar{h}_{2 n}(x) & =l \mathcal{T} \bar{v}_{2 n}(x)+\sum_{k=1}^{n} a_{k} \mathcal{T}\left(e_{k} \cdot \bar{w}_{2 n-2 k}\right)(x) \\
& =l U_{n}\left(\frac{x}{2}\right)+\sum_{k=1}^{n} a_{k}\left[U_{n-k}\left(\frac{x}{2}\right)-U_{n-k-1}\left(\frac{x}{2}\right)\right] .
\end{aligned}
$$

Next we evaluate $\mathcal{T} \bar{h}_{2 n}$ at the points

$$
\bar{x}_{j}=x_{j}=2 \cos \frac{j+\frac{1}{2}}{2 n+2} 2 \pi \quad(j=0, \ldots, n)
$$

of the interval $[-2,2]$. Since $\bar{x}_{j}=2 \cos \bar{y}_{j}$ with $\bar{y}_{j}=\frac{j+\frac{1}{2}}{2 n+2} 2 \pi$ we have

$$
\begin{aligned}
\mathcal{T} \bar{h}_{2 n}\left(\bar{x}_{j}\right) & =2\left[\frac{l}{2} \frac{\sin (n+1) \bar{y}_{j}}{\sin \bar{y}_{j}}+\frac{\sum_{k=1}^{n} a_{k} \cos \frac{2 n-2 k+1}{2} \bar{y}_{j}}{2 \cos \frac{\bar{y}_{j}}{2}}\right] \\
& =2\left[\frac{l}{2} \frac{(-1)^{j}}{\sin \bar{y}_{j}}+\sum_{k=1}^{n} a_{k} \frac{\cos \frac{2 n-2 k+1}{2} \bar{y}_{j}}{2 \cos \frac{\bar{y}_{j}}{2}}\right] \\
& =2 \frac{\frac{l}{2}(-1)^{j}+\sum_{k=1}^{n} a_{k} \sin \frac{\bar{y}_{j}}{2} \cos \frac{2 n-2 k+1}{2} \bar{y}_{j}}{\sin \bar{y}_{j}} .
\end{aligned}
$$

Since $\left.\bar{y}_{j} \in\right] 0, \pi\left[\right.$ we have $\sin \bar{y}_{j}>0,0<\sin \frac{\bar{y}_{j}}{2}<1,\left|\cos \frac{2 n-2 k+1}{2} \bar{y}_{j}\right| \leq 1$ for all $k=1, \ldots, n$ therefore the sign of the expression in the bracket is $\operatorname{sgn} l \operatorname{sgn}(-1)^{j}$. Thus $\operatorname{sgn}\left(\mathcal{T} \bar{h}_{2 n}\left(x_{j}\right)\right)=\operatorname{sgn} l \operatorname{sgn}(-1)^{j}(j=0,1, \ldots, n)$ proving that $\mathcal{T} \bar{h}_{2 n}$ has n different zeros in $[-2,2]$. Writing these zeros in the form $2 \cos u_{j}$ with $0 \leq u_{1} \leq u_{2} \leq \cdots \leq u_{n} \leq \pi$ and applying Lemma 1 the proof is completed in the second case as well.

We can formulate Theorem 1 in a more symmetric way. This formulation explains, in a certain way, the appearance of the factor 2 in (11).

Theorem 2. All zeros of the reciprocal polynomial

$$
\begin{equation*}
P_{m}(z)=\sum_{k=0}^{m} A_{k} z^{k} \quad(z \in \mathbb{C}) \tag{19}
\end{equation*}
$$

of degree $m \geq 2$ with real coefficients $A_{k} \in \mathbb{R}$ (i.e. $A_{m} \neq 0$ and $A_{k}=A_{m-k}$ for all $\left.k=0, \ldots,\left[\frac{m}{2}\right]\right)$ are on the unit circle, provided that

$$
\begin{equation*}
\left|A_{m}\right| \geq \sum_{k=1}^{m-1}\left|A_{k}-A_{m}\right| . \tag{20}
\end{equation*}
$$

If (20) holds, then all zeros $e^{i u_{j}}(j=1,2, \ldots, m)$ of P_{m} can be arranged such that

$$
\left|\epsilon_{j}-e^{i u_{j}}\right|<\frac{\pi}{m+1} \quad(j=1, \ldots, m)
$$

If $m=2 n+1$ is odd, then $-1=e^{i u_{n+1}}$ is always a zero and all zeros of P_{m} are single.

If $m=2 n$ is even

$$
\left\{\begin{array}{l}
\left|A_{2 n}\right|=\sum_{k=1}^{2 n-1}\left|A_{k}-A_{2 n}\right| \text { and } \tag{21}\\
\operatorname{sgn} A_{2 n}=\operatorname{sgn}(-1)^{k+1}\left(A_{k}-A_{2 n}\right)=\operatorname{sgn}(-1)^{n+1} \frac{A_{n}-A_{2 n}}{2} \\
\quad(k=1,2, \ldots, n-1)
\end{array}\right.
$$

holds, then $u_{n}=u_{n+1}=\pi$, the number $-1=e^{i u_{n}}=e^{i u_{n+1}}$ is a double zero of P_{m} and all other zeros are single. Otherwise (i.e. if $m=2 n$, (21) does not hold) all zeros of P_{m} are single.

Proof. Comparing the coefficients of z^{j} in h_{m} and P_{m} we see that for even $m=2 n$

$$
\begin{gathered}
A_{2 n}=A_{0}=l, A_{2 n-1}=A_{1}=l+a_{1}, \ldots, A_{n+1}=A_{n-1}=l+a_{n-1}, \\
A_{n}=l+2 a_{n}
\end{gathered}
$$

thus $l=A_{2 n}, a_{k}=A_{2 n-k}-A_{2 n}=A_{k}-A_{2 n}$ for $k=1,2, \ldots, n-1$ and $2 a_{n}=A_{n}-A_{2 n}$. Therefore the condition (11)

$$
|l| \geq 2 \sum_{k=1}^{n}\left|a_{k}\right|
$$

can be written as

$$
\left|A_{2 n}\right| \geq 2 \sum_{k=1}^{n-1}\left|A_{k}-A_{2 n}\right|+\left|A_{n}-A_{2 n}\right|=\sum_{k=1}^{2 n-1}\left|A_{k}-A_{2 n}\right|
$$

which is the same as (20).
For odd $m=2 n+1$ the comparison of the coefficients gives that

$$
A_{2 n+1}=A_{0}=l, A_{2 n}=A_{1}=l+a_{1}, \ldots, A_{n+1}=A_{n}=l+a_{n}
$$

thus $l=A_{2 n+1}, a_{k}=A_{2 n+1-k}-A_{2 n+1}=A_{k}-A_{2 n+1}$ for $k=1,2, \ldots, n$
and (11) can be written as

$$
\begin{aligned}
\left|A_{2 n+1}\right| \geq 2 \sum_{k=1}^{n}\left|A_{k}-A_{2 n+1}\right| & =\sum_{k=1}^{n}\left(\left|A_{k}-A_{2 n+1}\right|+\left|A_{2 n+1-k}-A_{2 n+1}\right|\right) \\
& =\sum_{k=1}^{2 n}\left|A_{k}-A_{2 n+1}\right|
\end{aligned}
$$

proving (20). The statement concerning the location of the zeros follows from Remark 1.

4. Necessary and sufficient conditions

If the degree m of P_{m} is small we can easily obtain necessary and sufficient conditions for all zeros of P_{m} to be on the unit circle.

If $m=2$, then $P_{2}(z)=A_{2} z^{2}+A_{1} z+A_{2}=z\left(A_{2}\left(z+\frac{1}{z}\right)+A_{1}\right)$ hence $\mathcal{T} P_{2}(x)=A_{2} x+A_{1}$. The only zero of $\mathcal{T} P_{2}$ is in [-2,2] if and only if

$$
\begin{equation*}
\left|A_{2}\right| \geq \frac{1}{2}\left|A_{1}\right| . \tag{22}
\end{equation*}
$$

This is the criteria for P_{2} to have all zeros on the unit circle.
If $m=3$, then $P_{3}(z)=A_{3} z^{3}+A_{2} z^{2}+A_{2} z+A_{3}=(z+1)\left(A_{3} z^{2}+\right.$ $\left.\left(A_{2}-A_{3}\right) z+A_{3}\right)$. By (22) the zeros of P_{3} are on the unit circle if and only if

$$
\begin{equation*}
\left|A_{3}\right| \geq \frac{1}{2}\left|A_{2}-A_{3}\right| . \tag{23}
\end{equation*}
$$

If $m=4$, then $P_{4}(z)=A_{4} z^{4}+A_{3} z^{3}+A_{2} z^{2}+A_{3} z+A_{4}=z^{2}\left(A_{4}\left(z^{2}+\frac{1}{z^{2}}\right)+\right.$ $\left.A_{3}\left(z+\frac{1}{z}\right)+A_{2}\right)$ hence with $x=z+\frac{1}{z}$ we get that $\mathcal{T} P_{4}(x)=A_{4}\left(x^{2}-2\right)+$ $A_{3} x+A_{2}$. By Lemma 1 all zeros of P_{4} are on the unit circle if and only if the discriminant of $\mathcal{T} P_{4}$ is non-negative:

$$
\begin{equation*}
A_{3}^{2}-4 A_{4}\left(A_{2}-2 A_{4}\right) \geq 0 \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
-2 \leq x_{1}, \quad x_{2} \leq 2 \tag{25}
\end{equation*}
$$

hold where $x_{1} \leq x_{2}$ are the real zeros of $\mathcal{T} P_{4}$. A simple calculation shows that (24) and (25) are equivalent to

$$
\begin{align*}
2 \sqrt{\max \left\{A_{2} A_{4}-2 A_{4}^{2}, 0\right\}} & \leq\left|A_{3}\right| \\
& \leq \min \left\{4\left|A_{4}\right|,\left|A_{4}\right|+\frac{1}{2} A_{2} \operatorname{sgn} A_{4}\right\} . \tag{26}
\end{align*}
$$

This is the criterion for P_{4} to have all of its zeros on the unit circle.
For $m=2(22)$ holds if and only if

$$
A_{1} \in\left[-2\left|A_{2}\right|, 2\left|A_{2}\right|\right]
$$

while (20) gives only the smaller interval

$$
A_{1} \in\left[A_{2}-\left|A_{2}\right|, A_{2}+\left|A_{2}\right|\right] .
$$

This shows that (20) for $m=2$ is not necessary. The situation is similar for $m=3$.

For $m=4$ the necessary and sufficient condition (26) is non-linear in the coefficients, while our sufficient condition (20) is linear for all $m \geq 2$. In some special cases we get necessary and sufficient conditions.

Corollary 1. All zeros of the polynomial

$$
l\left(z^{m}+z^{m-1}+\cdots+z+1\right)+\left(z^{k}+z^{m-k}\right) \quad(z \in \mathbb{C})
$$

where m, k are fixed non-negative integers with $m \geq 2,1 \leq k \leq\left[\frac{m}{2}\right]$ and l is a fixed positive number, are on the unit circle for all $m \geq 2$ and for all $k=1,2, \ldots,\left[\frac{m}{2}\right]$ if and only if $l \geq 2$.

Namely, taking $m=2, k=1$ by (22) all zeros of the resulting polynomial $l z^{2}+(l+2) z+l$ are on the unit circle if and only if $l \notin\left(-\frac{2}{3}, 2\right)$ therefore $l \geq 2$. On the other hand if $l \geq 2$, then by Theorem 1 all zeros of the polynomial $l\left(z^{m}+z^{m-1}+\cdots+z+1\right)+\left(z^{k}+z^{m-k}\right)$ are on the unit circle.

Remark 2. A preliminary version of some parts of this paper was reported in [5].
A. Schinzel [7] generalized Theorem 2 to the case of self-inversive polynomials over \mathbb{C}, i.e. polynomials $P_{m}(z)=\sum_{k=0}^{n} A_{k} z^{k}$ for which $A_{k} \in \mathbb{C}$,
$A_{m} \neq 0, \epsilon \bar{A}_{k}=A_{m-k}$ for all $k=0, \ldots, m$ with a fixed $\epsilon \in \mathbb{C},|\epsilon|=1$. He proved that all zeros of P_{m} are on the unit circle, provided that

$$
\left|A_{m}\right| \geq \inf \sum_{k=0}^{m}\left|c A_{k}-d^{m-j} A_{m}\right|,
$$

where the infimum is taken over all $c, d \in \mathbb{C}$ and $|d|=1$.

References

[1] J. W. Cannon and P. Wagreich, Geowth function of surface groups, Math. Ann. 293 (1992), 239-257.
[2] V. Dlab and C. M. Ringel, Indecomposable representations of graphs and algebras, Memoirs of the Amer. Math. Soc. 173 (1976), 1-57.
[3] J. F. McKee, P. Rowlinson and C. J. Smyth, Salem numbers and Pisot numbers from stars, Number theory in progress, Proc. Internat. Conf. Banach Internat. Math. Center, vol 1: Diophantine problems and polynomials (K. Győry, et al., eds.), de Gruyter, Berlin, 1999.
[4] P. Lakatos, Salem numbers, PV numbers and spectral radii of Coxeter transformations, C. R. Math. Acad. Sci. Soc. R. Can. 23 no. 3 (2001), 71-77.
[5] P. Lakatos, On polynomials having zeros on the unit circle, C. R. Math. Acad. Sci. Soc. R. Can. 24 no. 2 (2002), 91-96.
[6] T. J. Rivlin, Chebyshev polynomials, A Wiley-Interscience Publication, 1990.
[7] A. Schinzel, Self-inversive polynomials with all zeros on the unit circle (to appear).

PIROSKA LAKATOS
INSTITUTE OF MATHEMATICS AND INFORMATICS
DEBRECEN UNIVERSITY
4010 DEBRECEN, P.O. BOX 12
hUNGARY
E-mail: lapi@math.klte.hu
(Received March 7, 2002; revised August 27, 2002)

[^0]: Mathematics Subject Classification: Primary 30C15; Secondary 12D10, 42C05.
 Key words and phrases: reciprocal, semi-reciprocal polynomials, Chebyshev transform, zeros on the unit circle.
 Research partially supported by Hungarian NFSR grant No. TO 29525.

