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On the number of simple zeros of certain polynomials
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1. Introduction

The purpose of the present note is to study the number of simple
zeros of a large class of integer-valued polynomials. Combining our result
with a well-known theorem on superelliptic equations we obtain an effec-
tive finiteness statement for a general diophantine equation. The proof
of our Theorem is based on some properties of the canonical mapping
Z[X] → Zp[X] (p is a prime). We remark that this method has been ap-
plied fruitfully by several authors, especially to Bernoulli polynomials; see
e.g. [2],[3],[4],[5],[9],[10].

2. The Theorem

Let n be a positive integer, and set
(
X
n

)
= X(X−1)···(X−n+1)

n! . Further-
more, let f(X) be an integer-valued polynomial with deg f(X) ≤ n − 1,
and let g(X) ∈ Z[X].

Theorem. Suppose that n ≥ 6 and let p denote a prime for which

2
3
n < p ≤ n.

If an is an integer not divisible by p then the polynomial

F (X) = an

(
X

n

)
+ f(X) + g(X)
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has at least
[

n
3

]
+ 1 simple zeros.

Proof. Put fi(X) = X(X − 1) · · · (X − i + 1) for i = 1, . . . , n and
f0(X) = 1. Since f(X) is an integer-valued polynomial, thus (cf. [7])

f(X) = an−1

(
X

n− 1

)
+ . . . + a1

(
X

1

)
+ a0,

where the coefficients an−1, . . . , a1, a0 are rational integers. We get

n!F (X) = anfn(X)+ . . .+apn(n−1) · · · (p+1)fp(X)+ . . .+n!a0 +n!g(X)

∈ Z[X] .

For S(X) ∈ Z[X], we denote by (S(X))p the image of S in Zp[X] under
the canonical homomorphism Z→ Zp. There is a h(X) ∈ Z[X] such that

(n!F (X))p = (fp(X))p(h(X))p

and deg(h(X))p = n − p. Since all the zeros of (fp(X))p are simple,
the polynomial (n!F (X))p as well as the polynomial n!F (X) has at least
p− (n− p) = 2p− n > n

3 simple zeros.

3. An application to diophantine equations

Let F (X) be as above, and let a be a non-zero integer.

Corollary. All the solutions of the equation

(1) F (x) = aym in integers x, y, m with | y |> 1 and m > 1

satisfy
max(x, | y |,m) < c,

where c is an effectively computable constant depending only on F (X) and
a.

Our Corollary is a consequence of our Theorem and of the following
powerful result from the theory of diophantine equations.

Lemma. Let t(X) ∈ Q[X] and suppose that the polynomial t(X)
possesses at least three simple zeros. Then the equation

t(x) = ym in integers x, y,m with | y |> 1 and m > 1

implies that
max(| x |, | y |,m) < c1,

where c1 is an effectively computable constant depending only on the poly-
nomial t(X).

Proof. See Theorem 9.1 in [8].
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Remark. Several special cases of the equation (1) have been consid-
ered and have been applied to certain combinatorial diophantine problems.
The equations

(2)
(

x

n

)
=

(
y

2

)
and

(
x

n

)
=

(
y

4

)

lead to equations

8
(

x

n

)
+ 1 = (2y − 1)2 and 24

(
x

n

)
+ 1 = (y2 − 3y − 1)2, respectively.

Applying the Corollary to the polynomials F (X) = 8
(

x
n

)
+ 1 and F (X) =

24
(

x
n

)
+ 1, respectively, we have that all the solutions of the equations (2)

are bounded by an effectively computable constant depending only on n.
By using another approach Kiss [6] (in the case n is a prime number) and
Brindza [1] have proved that all the zeros of the polynomial 8

(
x
n

)
+ 1 are

simple, thus the first equation of (2) has only finitely many solutions.

Acknowledgements. The author is grateful to the referee for his valu-
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