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Annihilators of derivations with Engel conditions
on one-sided ideals

By WEN-KWEI SHIUE (Hualien)

Abstract. Let R be a noncommutative prime ring with extended centroid
C, two-sided Martindale quotient ring @ and A a nonzero left ideal of R. Suppose
that D is a nonzero derivation of R and 0 # a € R such that a[D(u*),u*],, = 0
for all u € A\, where k and n are fixed positive integers. Then D = ad (b) for some
b € @ such that Ab = 0 and ab = 0. We also prove an analogous result for right
ideals.

Throughout this paper, unless specially stated, R always denotes a
prime ring with extended centroid C' and two-sided Martindale quotient
ring Q. For z,y € R, we set [z,y|1 = [z,y] = xzy — yx and [z,y], =
[, y]n—1,y] for n > 1. For a subset S of R we denote by r(S) the left
annihilator of S in R, that is, (r(S) ={re R|rs=0forall s € S}. By a
derivation of R, we mean an additive map D from R into itself satisfies the
rule D(zy) = D(x)y + xD(y) for all x,y € R. For b € @), we denote ad(b)
to be the inner derivation induced by b; that is, ad(b)(x) = bz — b for
x € R. In [2] BRESAR proved the theorem: Let R be a semiprime (n — 1)!
torsion-free ring. If D is a nonzero derivation of R such that aD(x)" = 0
for all z € R, where a € R, then aD(R) = 0. In particular, if R is prime
then ¢g(S) = 0, where S = {D(z)" | x € R}. In [8] LEE and LIN proved
Bresar’s result without the (n — 1)! torsion-free assumption on R, where n
is a fixed positive integer. In fact, they studied the Lie ideal case as given
by LANSKI [5] and then obtained Bresar’s result as a corollary to their main
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result. On the other hand, in [3] BRESAR and VUKMAN showed that if R is
a noncommutative prime ring of characteristic not 2, then U, the subring
of R generated by the subset {[D(z),z]| | = € R}, contains a nonzero left
ideal of R. In particular, /g(S) = 0 where S = {[D(z),z]| | x € R}. The
goal of this paper is to extend above results to the case of one-sided ideals.
More precisely, we shall prove the following two theorems

Theorem 1. Let R be a noncommutative prime ring with a nonzero
left ideal A\. Suppose that D is a nonzero derivation of R and 0 # a € R
such that a[D(u"),u*],, = 0 for all u € \, where k and n are fixed positive
integers. Then D = ad(b) for some b € @) such that \b =0 and ab = 0.

Theorem 2. Let R be a noncommutative prime ring with a nonzero
right ideal p. Suppose that D is a nonzero derivation of R and a € R
such that a[D(u"*),u*],, = 0 for all u € p, where k and n are fixed positive
integers. Then aD(p) =0 = ap.

We first prove the special case when A = R.

Proposition 3. Let R be a noncommutative prime ring and 0 # a € R.
Suppose that D is a derivation of R such that a[D(z*), 2], = 0 for all
x € R, where k and n are fixed positive integers. Then D = 0.

PROOF. Suppose on the contrary that D % 0. Assume first that D is
Q@-inner. Thus there exists b € @ \ C such that D = ad(b). This implies
al[b,z*], 2%, = alb,2*¥],41 = 0 for all x € R. Hence alb, X¥],11 is a
nontrivial generalized polynomial identity (GPI) for R because aX*"+1p
occurs nontrivially in a[b, X*],,;1. By [1, Theorem 6.4.1], a[b, X*],,11 is
also a GPI for (). Replacing R by @, we may assume that R is a centrally
closed prime ring having a nonzero socle H. If R is a domain, since a # 0,
then [b, 2*],,41 = 0 for all z € R. By [6], this implies b € C, a contradiction.
So we may assume that R is not a domain. Let e be a nontrivial idempotent
of R. By hypothesis, we have ab, (ze)*],11 = 0 for all z € R. Right-
multiplying by 1—e yields that a(ze)*™*tDb(1—e) = 0. By [7], this implies
axeb(l —e) = 0 for all z € R. Since a # 0, so we have eb(1 —e) = 0.
Replacing e by 1 —e, we get (1 —e)be = 0. This implies [b, e] = 0 for every
nontrivial idempotent e of R. Hence [b, E] = 0, where E is the additive
subgroup generated by all idempotents of R. Since E is a noncentral Lie
ideal of R, this implies b € C, a contradiction.
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Suppose next that D is not Q-inner. To continue the proof we set
gV, X) = Zf:_ol XY XF=1=1 3 noncommuting polynomial in variables X
and Y. Note that D(z*) = g(D(x), x). Hence
a[D(z%),2*],, = alg(D(z),z),2%], = 0 for all z € R. Applying KHARC-
HENKO’s theorem [4] yields that a[g(y, z),2*],, = 0 for all 2,y € R. For
u € R, replacing y by [u, z] and applying the fact that [u, z¥] = g([u, z], )
we see that al[u,z”],z%],, = afu,2*],41 = 0 for all u,z € R. The Q-
inner case implies that v € C for all w € R. Thus R is commutative, a
contradiction. This proves the proposition. O

To continue our proof we need a technical result.

Lemma 4. Let a,b,e € R with e an idempotent. Suppose that
alb, e], = 0, where n is a fixed positive integer. Then a[b,e] = 0.

PROOF. Since €2

afb,e] if n is odd and so we are done in this case. So we may assume
that n is even. Using the fact that [b,e]s = [b, €], this implies that 0 =
alb, €], = alb,e]a = a(be — 2ebe + eb). Right-multiplying by 1 — e yields
that aeb(1—e) = 0 and so aeb = aebe. This implies 0 = a(be —2ebe+ eb) =
a(be — 2eb + eb) = alb, e], proving the lemma. O

= e, we have [b,e]s = [b,e]. Thus 0 = alb,e|,, =

We are now ready to prove the case of left ideals.

PROOF of Theorem 1. Suppose first that D is @Q-inner. Thus there
exists b € @ \ C such that D = ad(b).This implies

a [[b,uk],uk} = ab, uF]pi1 =0 (1)
n
for all w € A. It is enough to show that Ab = 0. Indeed, in this case, (1)
becomes abuf("*t1) = 0 for all u € X\. By [7], this implies abA = 0 and so
ab = 0, as asserted. Suppose on the contrary that Ab # 0. We first claim
that R satisfies a nontrivial GPI. For r € R and = € A, setting u = rx
in (1), we have ab, (rz)*],+1 = 0. If x and xb are linearly dependent over
C for all x € A, then [zb,z] = x[b,z] = 0 for all z € A\. By [9, Lemma 3],
we have A\(b— p) = 0 for some p € C. Since ad(b) = ad(b— p), replacing b
by b— u, this implies Ab = 0, a contradiction. So we may assume that there
exists some v € X such that v and vb are C-independent. This implies that
alb, (Xv)*],,+1 is a nontrivial GPI for R and hence for @ [1, Theorem 6.4.1].
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By MARTINDALE’s Theorem [10], @ is a primitive ring having a nonzero
socle H and we have A\b = 0 if and only if HAb = 0. Replacing R, A
by @, H\ respectively, we may assume that R is a primitive ring having a
nonzero socle H and A\ C H. Let e be an idempotent in A. We claim that
eb € Ce. Suppose eb ¢ Ce. For any x € R, we have ze € \. Setting u = ze
in (1), we get alb, (ze)*],,.1 = 0. This implies a[b, (ze)*],+1(1 —e) = 0 and
so a(ze)*™tp(1 — ¢) = 0. By [7], we have azeb(1 —e) = 0 for all z € R.
Since R is prime and a # 0, this implies eb = ebe. Next setting u = e
in (1), we have alb,e],+1 = 0. By Lemma 4, we have alb,e] = 0. Since
e+(1—e)ze is also an idempotent in A, this implies a[b, e+(1—e)ze] = 0 and
so alb, (1 —e)ze] = 0. Hence ab(1 — e)ze = a(1 —e)zeb for all x € R. Since
eb ¢ Ce, by [1, Theorem 2.3.4], this implies ab(1 —e) = a(1 —e) = 0. So
ab = abe and a = ae. Setting u = exe in (1), we have a[b, (exe)¥], 11 = 0.
This implies ealb, (exe)*] 116 = eaelebe, (exe) )1 = 0 because a = ae.
By Proposition 3, this implies either eae = 0 or ebe € Ce. If ebe € Ce,
then eb = ebe € Ce, a contradiction. So we have eae = 0. But for every
r € R, we have ra[b, (exe)*], 11 = 0. By the same argument of above, we
have erae = 0 for all » € R. This implies a = ae = 0, a contradiction.
We have proved that eb € Ce for any idempotent e € A\. For u € A, since
A C H and H is completely reducible, there exist z € R and an idempotent
e € X such that © = ze. This implies ub = zeb € xCe = Cu for all u € A.
By a standard argument, there exists yu € C' such that ub = pu for all
u € A. This implies A(b — ) = 0. Since ad(b) = ad(b — p), replacing b by
b — p, this implies Ab = 0, a contradiction.

Suppose next that D is not -inner. Let x € R and u € A, then
zu € \. By assumption, a[D((zu)¥), (zu)*], = 0, implying that
alg(D(x)u + xD(u),zu), (zu)*], = 0 for all z € R and u € A, where
g(Y, X) is the polynomial defined in the proof of Proposition 3. Applying
KHARCHENKO'’s theorem [4] yields that

a|g(yu+eDw),au), (@u)] =0
for all z,y € R, and u € \. By the linearity of g(Y, X) in Y, this implies
that a[g(yu, zu), (zu)*], = 0 for all z,y € R, u € \. Replacing y by
[u, x] yields that a[g([u, z]u, zu), (zu)*], = alg([u, zu], zu), (zu)*], = 0. So
alu, (xu)*],41 = 0 for all x € R. Applying the inner case to the left ideal
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Ru yields that au = 0 for all w € A. This implies a = 0, a contradiction.
This proves the theorem. O

We next prove the result about right ideals.

PROOF of Theorem 2. It is enough to show that ap = 0. If ap = 0,
then 0 = a[D(u*),u*),, = aD(u*)u*" for all u € p. For r € R, we have
ur € p and so aD((ur)*)(ur)¥" = 0. This implies aD(u)r(ur)® = 0 for
all 7 € R, where s = kn + k — 1. Hence aD(u)(ru)*T! = 0 for all r € R.
By [7], we have aD(u)ru = 0 for all » € R. This implies, for every u € p,
either aD(u) = 0 or v = 0. In any case we have aD(p) = 0. Suppose on
the contrary that ap # 0. We first assume that D is Q-inner, thus there
exists b € @ \ C such that D = ad(b). This implies

a [[b,uk], uk]n — alb, u¥ps1 = 0 (2)

for all uw € p. Since ap # 0, there exists some v € p such that av # 0.
This implies a[b, (vX)¥],41 is a nontrivial GPI for R and hence for Q [1,
Theorem 6.4.1]. By the same argument in the proof of Theorem 1, we may
assume that R is a primitive ring having a nonzero socle H and p C H.
Since ap # 0 and p C H, there exists some idempotent e € p such that
ae # 0. Setting u = e in (2) and by Lemma 4, we have a[b,e] = 0. Since
e+ ex(1l —e) is also an idempotent in p, this implies a[b,e +ex(1l —e)] =0
and so a[b,ex(1 —e)] = 0. Hence alb,ex(l — e)le = —aex(1l — e)be = 0
for all z € R. Since ae # 0, this implies (1 — e)be = 0 and so be = ebe.
Next setting u = exe in (2), we have ab, (eze)*],4+1 = 0. This implies
alb, (exe)*] 16 = aelbe, (z€)¥],.1 = 0 for all x € R because be = ebe.
Applying Theorem 1 to the left ideal Re yields that Re(be — u) = 0 for
some p € C'. By the same argument in the proof of Theorem 1, we may
assume that ¢ = 0. This implies Rebe = 0 and so be = ebe = 0. Setting
u = ex in (2), we have a[b, (ex)¥],41 = (—1)"Ha(ex)* Db = 0 for all
x € R. By [7], we have aexb = 0 for all z € R. This implies either ae = 0
or b = 0, a contradiction.

Suppose next that D is not Q-inner. Let x € R and u € p, then
ux € p. By assumption, a[D((ux)¥), (ux)¥],, = 0, implying that
alg(D(u)x + uD(x),uz), (uz)¥], = 0 for all z € R and u € p, where
g(Y, X) is the polynomial defined in the proof of Proposition 3. Applying
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KHARCHENKO’s theorem [4] yields that a[g(D(u)z 4 uy, uz), (uz)*], = 0
for all z,y € R, u € p. It follows the linearity of g(Y,X) in Y that
alg(uy, uz), (ur)*), = 0 for all 2,y € R, u € p. Replacing y by [u, 7] yields
that alg(ulu, 2], uz), (uz)*), = alg([u, uz], uz), (uz)*], = 0. This implies
alu, (ux)¥],41 = 0 for all z € R. Applying the inner case to the right
ideal uR yields that au = 0 for all w € p. This means that ap = 0, a

contradiction. This proves the theorem. (Il

Remark. For the case of Lie ideals, the author [11] proved the following
result:

Theorem 5. Let R be a prime ring, L a noncentral Lie ideal of R and
a € R. Suppose that D is a nonzero derivation of R such that a|D(u), u],=0
for all w € L, where n is a fixed positive integer. Then a = 0 except when
char R = 2 and dim¢c RC = 4.

By the same argument of Theorem 5, we get the similar result for
noncentral Lie ideals.

Theorem 6. Let R be a prime ring, L a noncentral Lie ideal of R
and a € R. Suppose that D is a nonzero derivation of R such that
a[D(u*),u*], = 0 for all u € L, where k and n are fixed positive inte-
gers. Then a = 0 except when dimgc RC = 4.
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