Annihilators of derivations with Engel conditions on one-sided ideals

By WEN-KWEI SHIUE (Hualien)

Abstract

Let R be a noncommutative prime ring with extended centroid C, two-sided Martindale quotient ring Q and λ a nonzero left ideal of R. Suppose that D is a nonzero derivation of R and $0 \neq a \in R$ such that $a\left[D\left(u^{k}\right), u^{k}\right]_{n}=0$ for all $u \in \lambda$, where k and n are fixed positive integers. Then $D=\operatorname{ad}(b)$ for some $b \in Q$ such that $\lambda b=0$ and $a b=0$. We also prove an analogous result for right ideals.

Throughout this paper, unless specially stated, R always denotes a prime ring with extended centroid C and two-sided Martindale quotient ring Q. For $x, y \in R$, we set $[x, y]_{1}=[x, y]=x y-y x$ and $[x, y]_{n}=$ $\left[[x, y]_{n-1}, y\right]$ for $n>1$. For a subset S of R we denote by $\ell_{R}(S)$ the left annihilator of S in R, that is, $\ell_{R}(S)=\{r \in R \mid r s=0$ for all $s \in S\}$. By a derivation of R, we mean an additive map D from R into itself satisfies the rule $D(x y)=D(x) y+x D(y)$ for all $x, y \in R$. For $b \in Q$, we denote $\operatorname{ad}(b)$ to be the inner derivation induced by b; that is, $\operatorname{ad}(b)(x)=b x-x b$ for $x \in R$. In [2] Brešar proved the theorem: Let R be a semiprime $(n-1)$! torsion-free ring. If D is a nonzero derivation of R such that $a D(x)^{n}=0$ for all $x \in R$, where $a \in R$, then $a D(R)=0$. In particular, if R is prime then $\ell_{R}(S)=0$, where $S=\left\{D(x)^{n} \mid x \in R\right\}$. In [8] Lee and Lin proved Brešar's result without the ($n-1$)! torsion-free assumption on R, where n is a fixed positive integer. In fact, they studied the Lie ideal case as given by Lanski [5] and then obtained Brešar's result as a corollary to their main

Mathematics Subject Classification: 16N60, 16R50, 16K60.
Key words and phrases: derivation, PI, GPI, prime ring, differential identity.
result. On the other hand, in [3] BREŠAR and Vukman showed that if R is a noncommutative prime ring of characteristic not 2 , then U, the subring of R generated by the subset $\{[D(x), x] \mid x \in R\}$, contains a nonzero left ideal of R. In particular, $\ell_{R}(S)=0$ where $S=\{[D(x), x] \mid x \in R\}$. The goal of this paper is to extend above results to the case of one-sided ideals. More precisely, we shall prove the following two theorems

Theorem 1. Let R be a noncommutative prime ring with a nonzero left ideal λ. Suppose that D is a nonzero derivation of R and $0 \neq a \in R$ such that $a\left[D\left(u^{k}\right), u^{k}\right]_{n}=0$ for all $u \in \lambda$, where k and n are fixed positive integers. Then $D=\operatorname{ad}(b)$ for some $b \in Q$ such that $\lambda b=0$ and $a b=0$.

Theorem 2. Let R be a noncommutative prime ring with a nonzero right ideal ρ. Suppose that D is a nonzero derivation of R and $a \in R$ such that $a\left[D\left(u^{k}\right), u^{k}\right]_{n}=0$ for all $u \in \rho$, where k and n are fixed positive integers. Then $a D(\rho)=0=a \rho$.

We first prove the special case when $\lambda=R$.
Proposition 3. Let R be a noncommutative prime ring and $0 \neq a \in R$. Suppose that D is a derivation of R such that $a\left[D\left(x^{k}\right), x^{k}\right]_{n}=0$ for all $x \in R$, where k and n are fixed positive integers. Then $D=0$.

Proof. Suppose on the contrary that $D \neq 0$. Assume first that D is Q-inner. Thus there exists $b \in Q \backslash C$ such that $D=\operatorname{ad}(b)$. This implies $a\left[\left[b, x^{k}\right], x^{k}\right]_{n}=a\left[b, x^{k}\right]_{n+1}=0$ for all $x \in R$. Hence $a\left[b, X^{k}\right]_{n+1}$ is a nontrivial generalized polynomial identity (GPI) for R because $a X^{k(n+1)} b$ occurs nontrivially in $a\left[b, X^{k}\right]_{n+1}$. By [1, Theorem 6.4.1], $a\left[b, X^{k}\right]_{n+1}$ is also a GPI for Q. Replacing R by Q, we may assume that R is a centrally closed prime ring having a nonzero socle H. If R is a domain, since $a \neq 0$, then $\left[b, x^{k}\right]_{n+1}=0$ for all $x \in R$. By [6], this implies $b \in C$, a contradiction. So we may assume that R is not a domain. Let e be a nontrivial idempotent of R. By hypothesis, we have $a\left[b,(x e)^{k}\right]_{n+1}=0$ for all $x \in R$. Rightmultiplying by $1-e$ yields that $a(x e)^{k(n+1)} b(1-e)=0$. By [7], this implies $\operatorname{axeb}(1-e)=0$ for all $x \in R$. Since $a \neq 0$, so we have $e b(1-e)=0$. Replacing e by $1-e$, we get $(1-e) b e=0$. This implies $[b, e]=0$ for every nontrivial idempotent e of R. Hence $[b, E]=0$, where E is the additive subgroup generated by all idempotents of R. Since E is a noncentral Lie ideal of R, this implies $b \in C$, a contradiction.

Suppose next that D is not Q-inner. To continue the proof we set $g(Y, X)=\sum_{i=0}^{k-1} X^{i} Y X^{k-1-i}$, a noncommuting polynomial in variables X and Y. Note that $D\left(x^{k}\right)=g(D(x), x)$. Hence
$a\left[D\left(x^{k}\right), x^{k}\right]_{n}=a\left[g(D(x), x), x^{k}\right]_{n}=0$ for all $x \in R$. Applying KHARCHENKO's theorem [4] yields that $a\left[g(y, x), x^{k}\right]_{n}=0$ for all $x, y \in R$. For $u \in R$, replacing y by $[u, x]$ and applying the fact that $\left[u, x^{k}\right]=g([u, x], x)$ we see that $a\left[\left[u, x^{k}\right], x^{k}\right]_{n}=a\left[u, x^{k}\right]_{n+1}=0$ for all $u, x \in R$. The Q inner case implies that $u \in C$ for all $u \in R$. Thus R is commutative, a contradiction. This proves the proposition.

To continue our proof we need a technical result.
Lemma 4. Let $a, b, e \in R$ with e an idempotent. Suppose that $a[b, e]_{n}=0$, where n is a fixed positive integer. Then $a[b, e]=0$.

Proof. Since $e^{2}=e$, we have $[b, e]_{3}=[b, e]$. Thus $0=a[b, e]_{n}=$ $a[b, e]$ if n is odd and so we are done in this case. So we may assume that n is even. Using the fact that $[b, e]_{3}=[b, e]$, this implies that $0=$ $a[b, e]_{n}=a[b, e]_{2}=a(b e-2 e b e+e b)$. Right-multiplying by $1-e$ yields that $a e b(1-e)=0$ and so $a e b=a e b e$. This implies $0=a(b e-2 e b e+e b)=$ $a(b e-2 e b+e b)=a[b, e]$, proving the lemma.

We are now ready to prove the case of left ideals.
Proof of Theorem 1. Suppose first that D is Q-inner. Thus there exists $b \in Q \backslash C$ such that $D=\operatorname{ad}(b)$. This implies

$$
\begin{equation*}
a\left[\left[b, u^{k}\right], u^{k}\right]_{n}=a\left[b, u^{k}\right]_{n+1}=0 \tag{1}
\end{equation*}
$$

for all $u \in \lambda$. It is enough to show that $\lambda b=0$. Indeed, in this case, (1) becomes $a b u^{k(n+1)}=0$ for all $u \in \lambda$. By [7], this implies $a b \lambda=0$ and so $a b=0$, as asserted. Suppose on the contrary that $\lambda b \neq 0$. We first claim that R satisfies a nontrivial GPI. For $r \in R$ and $x \in \lambda$, setting $u=r x$ in (1), we have $a\left[b,(r x)^{k}\right]_{n+1}=0$. If x and $x b$ are linearly dependent over C for all $x \in \lambda$, then $[x b, x]=x[b, x]=0$ for all $x \in \lambda$. By [9, Lemma 3], we have $\lambda(b-\mu)=0$ for some $\mu \in C$. Since $a d(b)=\operatorname{ad}(b-\mu)$, replacing b by $b-\mu$, this implies $\lambda b=0$, a contradiction. So we may assume that there exists some $v \in \lambda$ such that v and $v b$ are C-independent. This implies that $a\left[b,(X v)^{k}\right]_{n+1}$ is a nontrivial GPI for R and hence for $Q[1$, Theorem 6.4.1].

By Martindale's Theorem [10], Q is a primitive ring having a nonzero socle H and we have $\lambda b=0$ if and only if $H \lambda b=0$. Replacing R, λ by $Q, H \lambda$ respectively, we may assume that R is a primitive ring having a nonzero socle H and $\lambda \subseteq H$. Let e be an idempotent in λ. We claim that $e b \in C e$. Suppose $e b \notin C e$. For any $x \in R$, we have $x e \in \lambda$. Setting $u=x e$ in (1), we get $a\left[b,(x e)^{k}\right]_{n+1}=0$. This implies $a\left[b,(x e)^{k}\right]_{n+1}(1-e)=0$ and so $a(x e)^{k(n+1)} b(1-e)=0$. By [7], we have $\operatorname{axeb}(1-e)=0$ for all $x \in R$. Since R is prime and $a \neq 0$, this implies $e b=e b e$. Next setting $u=e$ in (1), we have $a[b, e]_{n+1}=0$. By Lemma 4, we have $a[b, e]=0$. Since $e+(1-e) x e$ is also an idempotent in λ, this implies $a[b, e+(1-e) x e]=0$ and so $a[b,(1-e) x e]=0$. Hence $a b(1-e) x e=a(1-e) x e b$ for all $x \in R$. Since $e b \notin C e$, by [1, Theorem 2.3.4], this implies $a b(1-e)=a(1-e)=0$. So $a b=a b e$ and $a=a e$. Setting $u=e x e$ in (1), we have $a\left[b,(e x e)^{k}\right]_{n+1}=0$. This implies ea[b,(exe)$\left.{ }^{k}\right]_{n+1} e=e a e\left[e b e,(e x e)^{k}\right]_{n+1}=0$ because $a=a e$. By Proposition 3, this implies either eae $=0$ or $e b e \in C e$. If ebe $\in C e$, then $e b=e b e \in C e$, a contradiction. So we have $e a e=0$. But for every $r \in R$, we have $r a\left[b,(e x e)^{k}\right]_{n+1}=0$. By the same argument of above, we have erae $=0$ for all $r \in R$. This implies $a=a e=0$, a contradiction. We have proved that $e b \in C e$ for any idempotent $e \in \lambda$. For $u \in \lambda$, since $\lambda \subseteq H$ and H is completely reducible, there exist $x \in R$ and an idempotent $e \in \lambda$ such that $u=x e$. This implies $u b=x e b \in x C e=C u$ for all $u \in \lambda$. By a standard argument, there exists $\mu \in C$ such that $u b=\mu u$ for all $u \in \lambda$. This implies $\lambda(b-\mu)=0$. Since $\operatorname{ad}(b)=\operatorname{ad}(b-\mu)$, replacing b by $b-\mu$, this implies $\lambda b=0$, a contradiction.

Suppose next that D is not Q-inner. Let $x \in R$ and $u \in \lambda$, then $x u \in \lambda$. By assumption, $a\left[D\left((x u)^{k}\right),(x u)^{k}\right]_{n}=0$, implying that $a\left[g(D(x) u+x D(u), x u),(x u)^{k}\right]_{n}=0$ for all $x \in R$ and $u \in \lambda$, where $g(Y, X)$ is the polynomial defined in the proof of Proposition 3. Applying Kharchenko's theorem [4] yields that

$$
a\left[g(y u+x D(u), x u),(x u)^{k}\right]_{n}=0
$$

for all $x, y \in R$, and $u \in \lambda$. By the linearity of $g(Y, X)$ in Y, this implies that $a\left[g(y u, x u),(x u)^{k}\right]_{n}=0$ for all $x, y \in R, u \in \lambda$. Replacing y by $[u, x]$ yields that $a\left[g([u, x] u, x u),(x u)^{k}\right]_{n}=a\left[g([u, x u], x u),(x u)^{k}\right]_{n}=0$. So $a\left[u,(x u)^{k}\right]_{n+1}=0$ for all $x \in R$. Applying the inner case to the left ideal
$R u$ yields that $a u=0$ for all $u \in \lambda$. This implies $a=0$, a contradiction. This proves the theorem.

We next prove the result about right ideals.
Proof of Theorem 2. It is enough to show that $a \rho=0$. If $a \rho=0$, then $0=a\left[D\left(u^{k}\right), u^{k}\right]_{n}=a D\left(u^{k}\right) u^{k n}$ for all $u \in \rho$. For $r \in R$, we have $u r \in \rho$ and so $a D\left((u r)^{k}\right)(u r)^{k n}=0$. This implies $a D(u) r(u r)^{s}=0$ for all $r \in R$, where $s=k n+k-1$. Hence $a D(u)(r u)^{s+1}=0$ for all $r \in R$. By [7], we have $a D(u) r u=0$ for all $r \in R$. This implies, for every $u \in \rho$, either $a D(u)=0$ or $u=0$. In any case we have $a D(\rho)=0$. Suppose on the contrary that $a \rho \neq 0$. We first assume that D is Q-inner, thus there exists $b \in Q \backslash C$ such that $D=\operatorname{ad}(b)$. This implies

$$
\begin{equation*}
a\left[\left[b, u^{k}\right], u^{k}\right]_{n}=a\left[b, u^{k}\right]_{n+1}=0 \tag{2}
\end{equation*}
$$

for all $u \in \rho$. Since $a \rho \neq 0$, there exists some $v \in \rho$ such that $a v \neq 0$. This implies $a\left[b,(v X)^{k}\right]_{n+1}$ is a nontrivial GPI for R and hence for $Q[1$, Theorem 6.4.1]. By the same argument in the proof of Theorem 1, we may assume that R is a primitive ring having a nonzero socle H and $\rho \subseteq H$. Since $a \rho \neq 0$ and $\rho \subseteq H$, there exists some idempotent $e \in \rho$ such that $a e \neq 0$. Setting $u=e$ in (2) and by Lemma 4 , we have $a[b, e]=0$. Since $e+e x(1-e)$ is also an idempotent in ρ, this implies $a[b, e+e x(1-e)]=0$ and so $a[b, e x(1-e)]=0$. Hence $a[b, e x(1-e)] e=-a e x(1-e) b e=0$ for all $x \in R$. Since $a e \neq 0$, this implies $(1-e) b e=0$ and so $b e=e b e$. Next setting $u=e x e$ in (2), we have $a\left[b,(e x e)^{k}\right]_{n+1}=0$. This implies $a\left[b,(e x e)^{k}\right]_{n+1} e=a e\left[b e,(x e)^{k}\right]_{n+1}=0$ for all $x \in R$ because $b e=e b e$. Applying Theorem 1 to the left ideal $R e$ yields that $R e(b e-\mu)=0$ for some $\mu \in C$. By the same argument in the proof of Theorem 1, we may assume that $\mu=0$. This implies Rebe $=0$ and so $b e=e b e=0$. Setting $u=e x$ in (2), we have $a\left[b,(e x)^{k}\right]_{n+1}=(-1)^{n+1} a(e x)^{k(n+1)} b=0$ for all $x \in R$. By [7], we have $a e x b=0$ for all $x \in R$. This implies either $a e=0$ or $b=0$, a contradiction.

Suppose next that D is not Q-inner. Let $x \in R$ and $u \in \rho$, then $u x \in \rho$. By assumption, $a\left[D\left((u x)^{k}\right),(u x)^{k}\right]_{n}=0$, implying that $a\left[g(D(u) x+u D(x), u x),(u x)^{k}\right]_{n}=0$ for all $x \in R$ and $u \in \rho$, where $g(Y, X)$ is the polynomial defined in the proof of Proposition 3. Applying

Kharchenko's theorem [4] yields that $a\left[g(D(u) x+u y, u x),(u x)^{k}\right]_{n}=0$ for all $x, y \in R, u \in \rho$. It follows the linearity of $g(Y, X)$ in Y that $a\left[g(u y, u x),(u x)^{k}\right]_{n}=0$ for all $x, y \in R, u \in \rho$. Replacing y by $[u, x]$ yields that $a\left[g(u[u, x], u x),(u x)^{k}\right]_{n}=a\left[g([u, u x], u x),(u x)^{k}\right]_{n}=0$. This implies $a\left[u,(u x)^{k}\right]_{n+1}=0$ for all $x \in R$. Applying the inner case to the right ideal $u R$ yields that $a u=0$ for all $u \in \rho$. This means that $a \rho=0$, a contradiction. This proves the theorem.

Remark. For the case of Lie ideals, the author [11] proved the following result:

Theorem 5. Let R be a prime ring, L a noncentral Lie ideal of R and $a \in R$. Suppose that D is a nonzero derivation of R such that $a[D(u), u]_{n}=0$ for all $u \in L$, where n is a fixed positive integer. Then $a=0$ except when char $R=2$ and $\operatorname{dim}_{C} R C=4$.

By the same argument of Theorem 5, we get the similar result for noncentral Lie ideals.

Theorem 6. Let R be a prime ring, L a noncentral Lie ideal of R and $a \in R$. Suppose that D is a nonzero derivation of R such that $a\left[D\left(u^{k}\right), u^{k}\right]_{n}=0$ for all $u \in L$, where k and n are fixed positive integers. Then $a=0$ except when $\operatorname{dim}_{C} R C=4$.

References

[1] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, New York - Basel - Hong Kong, 1996.
[2] M. Brešar, A note on derivations, Math. J. Okayama Univ. 32 (1990), 83-88.
[3] M. Brešar and J. Vukman, On certain subrings of prime rings with derivation, J. Austral Math. Soc. (SeriesA) 54 (1993), 133-141.
[4] V. K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic 18 (1979), 86-119.
[5] C. Lanski, Derivations with nilpotent values on Lie ideals, Proc. Amer. Math. Soc. 108 (1990), 31-37.
[6] T. K. Lee, Semiprime rings with hypercentral derivations, Canad. Math. Bull. 38 (1995), 445-449.
[7] T. K. Lee, Power reduction property for generalized identities of one-sided ideals, Algebra Colloq. 3 (1996), 19-24.
[8] T. K. Lee and J. S. Lin, A result on derivations, Proc. Amer. Math. Soc. 124 (1996), 1687-1691.
[9] T. K. Lee and W. K. Shiue, A result on derivations with Engel condition in prime rings, Southeast Asian Bull. Math. 23 (1999), 437-446.
[10] W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576-584.
[11] W. K. Shiue, Annihilators of derivations with Engel conditions on Lie ideals, Rend. Del Circ. Math. Di Palermo (to appear).

WEN-KWEI SHIUE
DEPARTMENT OF COMPUTER SCIENCE
DAHAN INSTITUTE OF TECHNOLOGY
HUALIEN 971
TAIWAN
E-mail: wkxue@yahoo.com.tw
(Received February 27, 2002; revised June 25, 2002)

