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Annihilators of derivations with Engel conditions
on one-sided ideals

By WEN-KWEI SHIUE (Hualien)

Abstract. Let R be a noncommutative prime ring with extended centroid
C, two-sided Martindale quotient ring Q and λ a nonzero left ideal of R. Suppose
that D is a nonzero derivation of R and 0 6= a ∈ R such that a[D(uk), uk]n = 0
for all u ∈ λ, where k and n are fixed positive integers. Then D = ad (b) for some
b ∈ Q such that λb = 0 and ab = 0. We also prove an analogous result for right
ideals.

Throughout this paper, unless specially stated, R always denotes a
prime ring with extended centroid C and two-sided Martindale quotient
ring Q. For x, y ∈ R, we set [x, y]1 = [x, y] = xy − yx and [x, y]n =
[[x, y]n−1, y] for n > 1. For a subset S of R we denote by `R(S) the left
annihilator of S in R, that is, `R(S) = {r ∈ R | rs = 0 for all s ∈ S}. By a
derivation of R, we mean an additive map D from R into itself satisfies the
rule D(xy) = D(x)y + xD(y) for all x, y ∈ R. For b ∈ Q, we denote ad(b)
to be the inner derivation induced by b; that is, ad(b)(x) = bx − xb for
x ∈ R. In [2] Brešar proved the theorem: Let R be a semiprime (n− 1)!
torsion-free ring. If D is a nonzero derivation of R such that aD(x)n = 0
for all x ∈ R, where a ∈ R, then aD(R) = 0. In particular, if R is prime
then `R(S) = 0, where S = {D(x)n | x ∈ R}. In [8] Lee and Lin proved
Brešar’s result without the (n− 1)! torsion-free assumption on R, where n

is a fixed positive integer. In fact, they studied the Lie ideal case as given
by Lanski [5] and then obtained Brešar’s result as a corollary to their main
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result. On the other hand, in [3] Brešar and Vukman showed that if R is
a noncommutative prime ring of characteristic not 2, then U , the subring
of R generated by the subset {[D(x), x] | x ∈ R}, contains a nonzero left
ideal of R. In particular, `R(S) = 0 where S = {[D(x), x] | x ∈ R}. The
goal of this paper is to extend above results to the case of one-sided ideals.
More precisely, we shall prove the following two theorems

Theorem 1. Let R be a noncommutative prime ring with a nonzero

left ideal λ. Suppose that D is a nonzero derivation of R and 0 6= a ∈ R

such that a[D(uk), uk]n = 0 for all u ∈ λ, where k and n are fixed positive

integers. Then D = ad(b) for some b ∈ Q such that λb = 0 and ab = 0.

Theorem 2. Let R be a noncommutative prime ring with a nonzero

right ideal ρ. Suppose that D is a nonzero derivation of R and a ∈ R

such that a[D(uk), uk]n = 0 for all u ∈ ρ, where k and n are fixed positive

integers. Then aD(ρ) = 0 = aρ.

We first prove the special case when λ = R.

Proposition 3. Let R be a noncommutative prime ring and 0 6= a∈R.

Suppose that D is a derivation of R such that a[D(xk), xk]n = 0 for all

x ∈ R, where k and n are fixed positive integers. Then D = 0.

Proof. Suppose on the contrary that D 6= 0. Assume first that D is
Q-inner. Thus there exists b ∈ Q \ C such that D = ad(b). This implies
a[[b, xk], xk]n = a[b, xk]n+1 = 0 for all x ∈ R. Hence a[b,Xk]n+1 is a
nontrivial generalized polynomial identity (GPI) for R because aXk(n+1)b

occurs nontrivially in a[b,Xk]n+1. By [1, Theorem 6.4.1], a[b,Xk]n+1 is
also a GPI for Q. Replacing R by Q, we may assume that R is a centrally
closed prime ring having a nonzero socle H. If R is a domain, since a 6= 0,
then [b, xk]n+1 = 0 for all x ∈ R. By [6], this implies b ∈ C, a contradiction.
So we may assume that R is not a domain. Let e be a nontrivial idempotent
of R. By hypothesis, we have a[b, (xe)k]n+1 = 0 for all x ∈ R. Right-
multiplying by 1−e yields that a(xe)k(n+1)b(1−e) = 0. By [7], this implies
axeb(1 − e) = 0 for all x ∈ R. Since a 6= 0, so we have eb(1 − e) = 0.
Replacing e by 1− e, we get (1− e)be = 0. This implies [b, e] = 0 for every
nontrivial idempotent e of R. Hence [b, E] = 0, where E is the additive
subgroup generated by all idempotents of R. Since E is a noncentral Lie
ideal of R, this implies b ∈ C, a contradiction.



Annihilators of derivations with Engel conditions on one-sided ideals 239

Suppose next that D is not Q-inner. To continue the proof we set
g(Y,X) =

∑k−1
i=0 XiY Xk−1−i, a noncommuting polynomial in variables X

and Y . Note that D(xk) = g(D(x), x). Hence
a[D(xk), xk]n = a[g(D(x), x), xk]n = 0 for all x ∈ R. Applying Kharc-

henko’s theorem [4] yields that a[g(y, x), xk]n = 0 for all x, y ∈ R. For
u ∈ R, replacing y by [u, x] and applying the fact that [u, xk] = g([u, x], x)
we see that a[[u, xk], xk]n = a[u, xk]n+1 = 0 for all u, x ∈ R. The Q-
inner case implies that u ∈ C for all u ∈ R. Thus R is commutative, a
contradiction. This proves the proposition. ¤

To continue our proof we need a technical result.

Lemma 4. Let a, b, e ∈ R with e an idempotent. Suppose that

a[b, e]n = 0, where n is a fixed positive integer. Then a[b, e] = 0.

Proof. Since e2 = e, we have [b, e]3 = [b, e]. Thus 0 = a[b, e]n =
a[b, e] if n is odd and so we are done in this case. So we may assume
that n is even. Using the fact that [b, e]3 = [b, e], this implies that 0 =
a[b, e]n = a[b, e]2 = a(be − 2ebe + eb). Right-multiplying by 1 − e yields
that aeb(1−e) = 0 and so aeb = aebe. This implies 0 = a(be−2ebe+eb) =
a(be− 2eb + eb) = a[b, e], proving the lemma. ¤

We are now ready to prove the case of left ideals.

Proof of Theorem 1. Suppose first that D is Q-inner. Thus there
exists b ∈ Q \ C such that D = ad(b).This implies

a
[
[b, uk], uk

]
n

= a[b, uk]n+1 = 0 (1)

for all u ∈ λ. It is enough to show that λb = 0. Indeed, in this case, (1)
becomes abuk(n+1) = 0 for all u ∈ λ. By [7], this implies abλ = 0 and so
ab = 0, as asserted. Suppose on the contrary that λb 6= 0. We first claim
that R satisfies a nontrivial GPI. For r ∈ R and x ∈ λ, setting u = rx

in (1), we have a[b, (rx)k]n+1 = 0. If x and xb are linearly dependent over
C for all x ∈ λ, then [xb, x] = x[b, x] = 0 for all x ∈ λ. By [9, Lemma 3],
we have λ(b−µ) = 0 for some µ ∈ C. Since ad(b) = ad(b−µ), replacing b

by b−µ, this implies λb = 0, a contradiction. So we may assume that there
exists some v ∈ λ such that v and vb are C-independent. This implies that
a[b, (Xv)k]n+1 is a nontrivial GPI for R and hence for Q [1, Theorem 6.4.1].
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By Martindale’s Theorem [10], Q is a primitive ring having a nonzero
socle H and we have λb = 0 if and only if Hλb = 0. Replacing R, λ

by Q, Hλ respectively, we may assume that R is a primitive ring having a
nonzero socle H and λ ⊆ H. Let e be an idempotent in λ. We claim that
eb ∈ Ce. Suppose eb /∈ Ce. For any x ∈ R, we have xe ∈ λ. Setting u = xe

in (1), we get a[b, (xe)k]n+1 = 0. This implies a[b, (xe)k]n+1(1−e) = 0 and
so a(xe)k(n+1)b(1− e) = 0. By [7], we have axeb(1− e) = 0 for all x ∈ R.
Since R is prime and a 6= 0, this implies eb = ebe. Next setting u = e

in (1), we have a[b, e]n+1 = 0. By Lemma 4, we have a[b, e] = 0. Since
e+(1−e)xe is also an idempotent in λ, this implies a[b, e+(1−e)xe] = 0 and
so a[b, (1− e)xe] = 0. Hence ab(1− e)xe = a(1− e)xeb for all x ∈ R. Since
eb /∈ Ce, by [1, Theorem 2.3.4], this implies ab(1 − e) = a(1 − e) = 0. So
ab = abe and a = ae. Setting u = exe in (1), we have a[b, (exe)k]n+1 = 0.
This implies ea[b, (exe)k]n+1e = eae[ebe, (exe)k]n+1 = 0 because a = ae.
By Proposition 3, this implies either eae = 0 or ebe ∈ Ce. If ebe ∈ Ce,
then eb = ebe ∈ Ce, a contradiction. So we have eae = 0. But for every
r ∈ R, we have ra[b, (exe)k]n+1 = 0. By the same argument of above, we
have erae = 0 for all r ∈ R. This implies a = ae = 0, a contradiction.
We have proved that eb ∈ Ce for any idempotent e ∈ λ. For u ∈ λ, since
λ ⊆ H and H is completely reducible, there exist x ∈ R and an idempotent
e ∈ λ such that u = xe. This implies ub = xeb ∈ xCe = Cu for all u ∈ λ.
By a standard argument, there exists µ ∈ C such that ub = µu for all
u ∈ λ. This implies λ(b− µ) = 0. Since ad(b) = ad(b− µ), replacing b by
b− µ, this implies λb = 0, a contradiction.

Suppose next that D is not Q-inner. Let x ∈ R and u ∈ λ, then
xu ∈ λ. By assumption, a[D((xu)k), (xu)k]n = 0, implying that
a[g(D(x)u + xD(u), xu), (xu)k]n = 0 for all x ∈ R and u ∈ λ, where
g(Y,X) is the polynomial defined in the proof of Proposition 3. Applying
Kharchenko’s theorem [4] yields that

a
[
g(yu + xD(u), xu), (xu)k

]
n

= 0

for all x, y ∈ R, and u ∈ λ. By the linearity of g(Y, X) in Y , this implies
that a[g(yu, xu), (xu)k]n = 0 for all x, y ∈ R, u ∈ λ. Replacing y by
[u, x] yields that a[g([u, x]u, xu), (xu)k]n = a[g([u, xu], xu), (xu)k]n = 0. So
a[u, (xu)k]n+1 = 0 for all x ∈ R. Applying the inner case to the left ideal
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Ru yields that au = 0 for all u ∈ λ. This implies a = 0, a contradiction.
This proves the theorem. ¤

We next prove the result about right ideals.

Proof of Theorem 2. It is enough to show that aρ = 0. If aρ = 0,
then 0 = a[D(uk), uk]n = aD(uk)ukn for all u ∈ ρ. For r ∈ R, we have
ur ∈ ρ and so aD((ur)k)(ur)kn = 0. This implies aD(u)r(ur)s = 0 for
all r ∈ R, where s = kn + k − 1. Hence aD(u)(ru)s+1 = 0 for all r ∈ R.
By [7], we have aD(u)ru = 0 for all r ∈ R. This implies, for every u ∈ ρ,
either aD(u) = 0 or u = 0. In any case we have aD(ρ) = 0. Suppose on
the contrary that aρ 6= 0. We first assume that D is Q-inner, thus there
exists b ∈ Q \ C such that D = ad(b). This implies

a
[
[b, uk], uk

]
n

= a[b, uk]n+1 = 0 (2)

for all u ∈ ρ. Since aρ 6= 0, there exists some v ∈ ρ such that av 6= 0.
This implies a[b, (vX)k]n+1 is a nontrivial GPI for R and hence for Q [1,
Theorem 6.4.1]. By the same argument in the proof of Theorem 1, we may
assume that R is a primitive ring having a nonzero socle H and ρ ⊆ H.
Since aρ 6= 0 and ρ ⊆ H, there exists some idempotent e ∈ ρ such that
ae 6= 0. Setting u = e in (2) and by Lemma 4, we have a[b, e] = 0. Since
e + ex(1− e) is also an idempotent in ρ, this implies a[b, e + ex(1− e)] = 0
and so a[b, ex(1 − e)] = 0. Hence a[b, ex(1 − e)]e = −aex(1 − e)be = 0
for all x ∈ R. Since ae 6= 0, this implies (1 − e)be = 0 and so be = ebe.
Next setting u = exe in (2), we have a[b, (exe)k]n+1 = 0. This implies
a[b, (exe)k]n+1e = ae[be, (xe)k]n+1 = 0 for all x ∈ R because be = ebe.
Applying Theorem 1 to the left ideal Re yields that Re(be − µ) = 0 for
some µ ∈ C. By the same argument in the proof of Theorem 1, we may
assume that µ = 0. This implies Rebe = 0 and so be = ebe = 0. Setting
u = ex in (2), we have a[b, (ex)k]n+1 = (−1)n+1a(ex)k(n+1)b = 0 for all
x ∈ R. By [7], we have aexb = 0 for all x ∈ R. This implies either ae = 0
or b = 0, a contradiction.

Suppose next that D is not Q-inner. Let x ∈ R and u ∈ ρ, then
ux ∈ ρ. By assumption, a[D((ux)k), (ux)k]n = 0, implying that
a[g(D(u)x + uD(x), ux), (ux)k]n = 0 for all x ∈ R and u ∈ ρ, where
g(Y,X) is the polynomial defined in the proof of Proposition 3. Applying
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Kharchenko’s theorem [4] yields that a[g(D(u)x + uy, ux), (ux)k]n = 0
for all x, y ∈ R, u ∈ ρ. It follows the linearity of g(Y,X) in Y that
a[g(uy, ux), (ux)k]n = 0 for all x, y ∈ R, u ∈ ρ. Replacing y by [u, x] yields
that a[g(u[u, x], ux), (ux)k]n = a[g([u, ux], ux), (ux)k]n = 0. This implies
a[u, (ux)k]n+1 = 0 for all x ∈ R. Applying the inner case to the right
ideal uR yields that au = 0 for all u ∈ ρ. This means that aρ = 0, a
contradiction. This proves the theorem. ¤

Remark. For the case of Lie ideals, the author [11] proved the following
result:

Theorem 5. Let R be a prime ring, L a noncentral Lie ideal of R and

a∈R. Suppose that D is a nonzero derivation of R such that a[D(u), u]n=0
for all u ∈ L, where n is a fixed positive integer. Then a = 0 except when

charR = 2 and dimC RC = 4.

By the same argument of Theorem 5, we get the similar result for
noncentral Lie ideals.

Theorem 6. Let R be a prime ring, L a noncentral Lie ideal of R

and a ∈ R. Suppose that D is a nonzero derivation of R such that

a[D(uk), uk]n = 0 for all u ∈ L, where k and n are fixed positive inte-

gers. Then a = 0 except when dimC RC = 4.

References

[1] K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with General-
ized Identities, New York – Basel – Hong Kong, 1996.
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