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Classification of symmetric-like contact metric (k, µ)-spaces
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Dedicated to Professor L. Tamássy on the occasion
of his eightieth birthday

Abstract. We determine the non-Sasakian contact metric (k, µ)-spaces
which have volume-preserving geodesic symmetries up to sign (i.e., are D’Atri
spaces) or which satisfy the condition that their Jacobi operators have constant
eigenvalues or parallel eigenspaces along the corresponding geodesics, respectively
(i.e., are C- or P-spaces, respectively).

1. Introduction

Locally symmetric spaces have a lot of interesting geometric prop-
erties. In particular, they are D’Atri spaces (i.e., their local geodesic
symmetries are volume-preserving up to sign) and they are also C- and
P-spaces (i.e., their Jacobi operators have, respectively, constant eigenval-
ues and parallel eigenspaces along the corresponding geodesics). D’Atri
spaces have been introduced in [11] while the study of C- and P-spaces
goes back to [3]. Since then, these classes of symmetric-like spaces [1] have
been studied extensively. A number of geometric properties have been
derived and many non-trivial (i.e., non-symmetric) examples are found.
On the other hand, several problems still remain unsolved. It is intriguing
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that only locally homogeneous D’Atri and C-spaces are known and it is yet
unknown whether local homogeneity holds in general for these two classes.
We refer to the survey papers [2], [4] and [12] for more details and further
information.

The main purpose of this paper is to study these spaces in the frame-
work of contact geometry and in particular for a special class of contact
metric spaces where we have good knowledge of the curvature tensor which
is, as is well-known, needed for the analytic treatment of the three types of
spaces. These contact metric spaces are the so-called (k, µ)-spaces which
are introduced in [7] and which are characterized as contact metric spaces
satisfying the curvature condition

R(X, Y )ξ = (kI + µh)(η(Y )X − η(X)Y )

where k, µ are constants and 2h is the Lie derivative of the structure tensor
φ in the direction of the unit characteristic vector ξ. For a contact metric
structure (φ, ξ, η, g), the contact form η is the metric dual one-form of ξ.
Sasakian spaces (k = 1, h = 0) are trivial examples. In [7], non-Sasakian
examples are provided by the unit tangent sphere bundles of spaces of
constant curvature c 6= 1 (for c = 1, we get a Sasakian unit sphere bundle
[16]) and from there, new examples are derived by means of D-homothetic
transformations [15] since the above curvature condition is invariant under
such transformations of the contact metric structure. Furthermore, in
the same paper, a classification of non-Sasakian three-dimensional (k, µ)-
spaces is given. They are locally isometric to some Lie groups. In [8],
it was proved that this is not a surprising fact because all non-Sasakian
(k, µ)-spaces are locally homogeneous. Moreover, a classification of these
spaces has been derived in [9] where also new examples, not belonging to
the former classes, are discovered.

In [13], [14], it was proved that locally symmetric Sasakian spaces
have constant curvature 1. Furthermore, in [10], the first author showed
that locally symmetric non-Sasakian (k, µ)-spaces of dimension 2n + 1 are
locally isometric to the product of a flat (n + 1)-dimensional space and an
n-dimensional manifold of constant curvature 4. Thus local symmetry is
a rather strong condition and hence, it is natural to consider the weaker
conditions imposed by the defining ones for the D’Atri, C- and P-spaces,
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respectively. In this paper, we treat this problem and in particular, we
shall prove the following results:

Theorem A. Let M be a non-Sasakian contact (k, µ)-space. Then

M is a D’Atri- or a C-space if and only if it is locally the product of a flat

(n + 1)-dimensional manifold and an n-dimensional manifold of constant

curvature 4, or it is 3-dimensional and locally isometric to a unimodular

Lie group SU(2)(µ < 0), SL(2,R)(µ > 0) or the group E(2)(µ = 0) of

rigid motions of the Euclidean 2-space, each with a special left-invariant

metric.

Theorem B. Let M be a non-Sasakian contact (k, µ)-space. Then

M is a P-space if and only if it is locally the product of a flat (n + 1)-
dimensional manifold and an n-dimensional manifold of constant curvature

4 or is locally flat if dimM = 3.

2. Preliminaries

We start by collecting some basic material about contact metric ge-
ometry and refer to [5], [6] for further details. All manifolds in the present
paper are assumed to be connected and of class C∞.

A (2n+1)-dimensional manifold M2n+1 is said to be a contact manifold
if it admits a global one-form η such that η∧(dη)n 6= 0 everywhere. Given a
contact form η, there exists a unique vector field ξ, called the characteristic
vector field, satisfying η(ξ) = 1 and dη(ξ,X) = 0 for any vector field X.
It is well-known that there also exists an associated Riemannian metric g

and a (1, 1)-type tensor field φ such that

η(X) = g(X, ξ), dη(X, Y ) = g(X,φY ), φ2X = −X + η(X)ξ, (2.1)

where X and Y are vector fields on M . From (2.1), it follows that

φξ = 0, η ◦ φ = 0, g(φX, φY ) = g(X, Y )− η(X)η(Y ). (2.2)

A Riemannian manifold M equipped with structure tensors (η, g) satisfy-
ing (2.1) is said to be a contact Riemannian or contact metric manifold
and it is denoted by M = (M ; η, g). Given a contact metric manifold M ,
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we consider the (1, 1)-type tensor field h given by h = 1
2Lξφ, where L

denotes the Lie differentiation. The tensor h is symmetric and satisfies

hξ = 0, hφ = −φh, (2.3)

∇Xξ = −φX − φhX, (2.4)

where ∇ is the Levi Civita connection. From (2.3) and (2.4), we see that
each trajectory of ξ is a geodesic.

A contact Riemannian manifold for which ξ is a Killing vector field, is
called a K-contact manifold. It is easy to see that a contact Riemannian
manifold is K-contact if and only if h = 0. For a contact Riemannian
manifold M , one may define naturally an almost complex structure J on
M × R by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X is a vector field tangent to M , t the coordinate of R and f

a function on M × R. If the almost complex structure J is integrable,
(M ; η, g) is said to be normal or Sasakian. It is known that M is normal
if and only if M satisfies

[φ, φ] + 2dη ⊗ ξ = 0,

where [φ, φ] is the Nijenhuis torsion of φ. A Sasakian manifold is also
characterized by the condition

(∇Xφ)Y = g(X,Y )ξ − η(Y )X (2.5)

for all vector fields X and Y on the manifold. Moreover, if we denote by R

the Riemannian curvature tensor of M defined by

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

for all vector fields X, Y , Z on M , then it follows that M is Sasakian if
and only if

R(X, Y )ξ = η(Y )X − η(X)Y (2.6)

for all vector fields X and Y .
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Note that for a contact Riemannian manifold M , the tangent space
TpM of M at each point p ∈ M is decomposed as the direct sum TpM =
Dp ⊕ {ξ}, where Dp = {v ∈ TpM | η(v) = 0}. Then D : p → Dp defines a
distribution which is orthogonal to ξ. This 2n-dimensional distribution D

is called the contact distribution.
The following useful result is proved in [5], [6].

Theorem 2.1. Let M = (M ; η, g) be a (2n + 1)-dimensional contact

Riemannian manifold and suppose that R(X,Y )ξ = 0 for all vector fields

X, Y on M . Then M is locally the product of an (n + 1)-dimensional flat

manifold and an n-dimensional manifold of constant curvature 4 for n > 1
and it is flat for n = 1.

Next, we consider the (k, µ)-spaces. A contact metric space (M ; η, g)
is said to be a (k, µ)-space [7] if the curvature tensor satisfies

R(X, Y )ξ = (kI + µh)(η(Y )X − η(X)Y ) (2.7)

where k, µ are constant. Furthermore, on a (k, µ)-space we have

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX) (2.8)

and
(∇Zh)X =

{
(1− k)g(Z, φX) + g(Z, hφX)

}
ξ

+ η(X)(hφ + hφh)Z − µη(Z)φhX
(2.9)

for all vector fields X, Z on M . In [7], it is also proved that k ≤ 1 and that
(M ; η, g) is Sasakian if and only if k = 1 (since then h = 0). Moreover, if
k < 1, then M admits three mutually orthogonal and integrable distribu-
tions D(0), D(λ) and D(−λ), defined by the eigenspaces of h, where for
the eigenvalue λ we have λ =

√
1− k. As concerns the Ricci operator Q

of a (k, µ)-space, we find the following result in [7]:

Theorem 2.2. The Ricci operator Q of a non-Sasakian contact (k, µ)-
space is given by

Q = {2(n− 1)− nµ}I + {2(n− 1) + µ}h
+ {2(1− n) + n(2k + µ)}η ⊗ ξ.

(2.10)
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Based on the results in [7], the following explicit expression for the
curvature tensor R is derived in [8].

Theorem 2.3. Let M = (M2n+1; η, g) be a non-Sasakian contact

(k, µ)-space. Then its Riemannian curvature tensor R is given explicitly by

R(X, Y )Z =
(
1− µ

2

)
(g(Y,Z)X − g(X,Z)Y )

+ g(Y, Z)hX − g(X, Z)hY − g(hX,Z)Y + g(hY, Z)X

+
1− (µ/2)

1− k
(g(hY,Z)hX − g(hX, Z)hY )

− µ

2
(g(φY, Z)φX − g(φX, Z)φY )

+
k − (µ/2)

1− k
(g(φhY, Z)φhX − g(φhX,Z)φhY )

+ µg(φX, Y )φZ

+ η(X)((k − 1 + (µ/2))g(Y, Z) + (µ− 1)g(hY, Z))ξ

− η(Y )((k − 1 + (µ/2))g(X,Z) + (µ− 1)g(hX,Z))ξ

− η(X)η(Z)((k − 1 + (µ/2))Y + (µ− 1)hY )

+ η(Y )η(Z)((k − 1 + (µ/2))X + (µ− 1)hX). (2.11)

Finally, we recall some facts about the curvature for the three special
classes of Riemannian manifolds we have mentioned in the Introduction.
First, we note that when (M, g) is a P-space, then Rx and R′

x are si-
multaneously diagonalizable, where Rx = R(·, x)x is the Jacobi operator
corresponding to the vector x and R′

x = (∇xR)(·, x)x [3]. When (M, g)
is a D’Atri space or a C-space, then the Ricci tensor ρ of type (0, 2) and
the curvature tensor R satisfy the so-called Ledger conditions L3 and L5

of order three and five (see [3] and [12], for example):

L3 : (∇Xρ)(X,X) = 0,

L5 :
∑

a,b

g(R(ea, X, X), eb)g((∇XR)(ea, X)X, eb) = 0

where {ea, a = 1, . . . ,dimM} is a local orthonormal frame field on (M, g).
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3. Proof of Theorem A

We now turn to the proof of Theorem A and put
RXY ZW = g(R(X, Y )Z, W ), ∇V RXY ZW = g((∇V R)(X,Y )Z,W ), ρXY =
ρ(X,Y ) and ∇V ρXY = (∇V ρ)(X,Y ).

Let M be a non-Sasakian (k, µ)-space. Then, from (2.4), (2.9) and
(2.10), we obtain

∇V ρXY = [2(n− 1) + µ][(1− k)g(V, φX)η(Y )− g(V, φhX)η(Y )

− η(X)g(φhV + φh2V, Y )− µη(V )g(φhX, Y )] (3.1)

− [2(1− n) +n(2k + µ)][g(φV +φhV, X)η(Y ) + g(φV + φhV, Y )η(X)].

From (3.1), we easily see that M satisfies the Ledger condition of order
three, i.e., ∇XρXX = 0 for any vector field X on M , if and only if (k, µ)
satisfies

1
n

µ2 − 4λ2 + 4µ + 4 = 0. (3.2)

Also, we have from (2.11)

(∇V R)(X, Y )Z = g(Y, Z)(∇V h)X − g(X, Z)(∇V h)Y

− g((∇V h)X, Z)Y + g((∇V h)Y, Z)X

+
1− (µ/2)

1− k
(g((∇V h)Y, Z)hX + g(hY, Z)(∇V h)X

− g((∇V h)X, Z)hY − g(hX, Z)(∇V h)Y )

− µ

2
(g((∇V φ)Y,Z)φX + g(φY, Z)(∇V φ)X

− g((∇V φ)X,Z)φY − g(φX, Z)(∇V φ)Y )

+
k−(µ/2)

1− k
(g((∇V φh)Y, Z)φhX + g(φhY, Z)(∇V φh)X

− g((∇V φh)X, Z)φhY − g(φhX, Z)(∇V φh)Y )

+ µ(g((∇V φ)X, Y )φZ + g(φX, Y )(∇V φ)Z)

+ (∇V η)(X)((k − 1 + (µ/2))g(Y, Z) + (µ− 1)g(hY, Z))ξ

+ η(X)(µ− 1)g((∇V h)Y,Z)ξ
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+ η(X)((k − 1 + (µ/2))g(Y, Z) + (µ− 1)g(hY, Z))∇V ξ

− (∇V η)(Y )((k− 1+ (µ/2))g(X,Z)+ (µ− 1)g(hX, Z))ξ

− η(Y )(µ− 1)g((∇V h)X, Z)ξ

− η(Y )((k − 1 + (µ/2))g(X, Z) + (µ− 1)g(hX, Z))∇V ξ

− (∇V η)(X)η(Z)((k−1+(µ/2))Y +(µ− 1)hY )

− η(X)(∇V η)(Z)((k − 1 + (µ/2))Y + (µ− 1)hY )

− η(X)η(Z)(µ− 1)(∇V h)Y

+ (∇V η)(Y )η(Z)((k − 1 + (µ/2))X + (µ− 1)hX)

+ η(Y )(∇V η)(Z)((k − 1 + (µ/2))X + (µ− 1)hX)

+ η(Y )η(Z)(µ− 1)(∇V h)X. (3.3)

Next, we shall take into account the Ledger condition L5. Then we
see, by means of a linearization procedure, that M satisfies

2n+1∑

a,b=1

{
(RaXY b + RaY Xb)[SZ,W,V∇ZRaWV b + SZ,V,W∇ZRaV Wb]

+ (RaXZb + RaZXb)[SY,W,V∇Y RaWV b + SY,V,W∇Y RaV Wb]

+ (RaXWb + RaWXb)[SY,Z,V∇Y RaZV b + SY,V,Z∇Y RaV Zb]

+ (RaXV b + RaV Xb)[SY,Z,W∇Y RaZWb + SY,W,Z∇Y RaWZb]

+ (RaY Zb + RaZY b)[SX,V,W∇XRaV Wb + SX,W,V∇XRaWV b]

+ (RaY Wb + RaWY b)[SX,V,Z∇XRaV Zb + SX,Z,V∇XRaZV b]

+ (RaY V b + RaV Y b)[SX,Z,W∇XRaZWb + SX,W,Z∇XRaWZb]

+ (RaZWb + RaWZb)[SX,Y,V∇XRaY V b + SX,V,Y∇XRaV Y b]

+ (RaZV b + RaV Zb)[SX,Y,W∇XRaY Wb + SX,W,Y∇XRaWY b]

+ (RaWV b + RaV Wb)[SX,Y,Z∇XRaY Zb + SX,Z,Y∇XRaZY b]
}

= 0

(3.4)

for all vector fields V , W , X, Y and Z on M , where SX,Y,Z denotes the
cyclic sum with respect to X, Y , Z.
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In (3.4) we now put X = Y = Z = ξ, W = φV , and assume that
hV = λV , ‖V ‖ = 1. Then we have the following :

2n+1∑

a,b=1

{
Raξξb(∇ξRa(φV )V b +∇φV RaV ξb +∇V Raξ(φV )b

+∇ξRaV (φV )b +∇φV RaξV b +∇V Ra(φV )ξb)

+ (Raξ(φV )b + Ra(φV )ξb)(∇ξRaξV b +∇ξRaV ξb +∇V Raξξb) (3.5)

+ (RaξV b + RaV ξb)(∇ξRaξ(φV )b +∇ξRa(φV )ξb +∇φV Raξξb)

+ (Ra(φV )V b + RaV (φV )b)∇ξRaξξb

}
= 0.

Using (2.3), (2.4), (2.7), (2.11), (3.2), (3.3) and the fundamental prop-
erties of the curvature tensor R, lengthy but routine computations yield

2n+1∑

a,b=1

Raξξb(∇ξRa(φV )V b +∇φV RaV ξb +∇V Raξ(φV )b +∇ξRaV (φV )b

+∇φV RaξV b +∇V Ra(φV )ξb) = −2k∇ξRξ(φV )V ξ

+ 2µ

2n+1∑

a=1

(∇ξRa(φV )V (hea) +∇φV RaV ξ(hea) +∇V Raξ(φV )(hea))

= 2kλµ2 + 2µ
(
− 2(n− 1)λ3µ + 4λ3 + 2λ3(2n(1− µ) + (µ− 2))

− 2λ(µ(2− n) + 2n)
)
. (3.6)

Similarly, we have

2n+1∑

a,b=1

(Raξ(φV )b + Ra(φV )ξb)(∇ξRaξV b +∇ξRaV ξb +∇V Raξξb)

= −2(k − λµ)(λµ2), (3.7)

2n+1∑

a,b=1

(RaξV b + RaV ξb)(∇ξRaξ(φV )b +∇ξRa(φV )ξb +∇φV Raξξb)

= −2(k + λµ)(λµ2), (3.8)
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and
2n+1∑

a,b=1

(Ra(φV )V b + RaV (φV )b)∇ξRaξξb

= −µ2
(
3λµ + (2n− 1)λ(2k − µ)

)
.

(3.9)

Summing up (3.6)–(3.8) and (3.9), we obtain the condition

−2(1− λ2)λµ2 + 2µ
(− 2(n− 1)λ3µ + 4λ3 + 2λ3(2n(1− µ) + (µ− 2))

−2λ(µ(2− n) + 2n)
)− µ2

(
3λµ + (2n− 1)λ(2k − µ)

)
= 0, (3.10)

where we have used k = 1− λ2.
Now, we note that the conic, given by (3.2), is decomposed into two

factors µ+2+2λ and µ+2−2λ only in dimension three. For that reason,
we divide our further arguments into two cases: (i) n = 1, (ii) n > 1.
Solving the non-linear system given by (3.2) and (3.10), this leads to

(i) n = 1, λ = ±1
2(µ + 2). Due to the classification table of three-

dimensional (k, µ)-spaces (see [7]), we conclude that M is locally isometric
to a unimodular Lie group SU(2)(µ < 0), SL(2,R)(µ > 0) or the (flat)
group E(2)(µ = 0) of rigid motions of Euclidean 2-space, each with a spe-
cial left-invariant metric. Conversely, it is known that the above unimod-
ular Lie groups appear in the classification of three-dimensional C-spaces
(or equivalently, D’Atri spaces) given in [3]

(ii) n > 1, λ = ±1, µ = 0. Then k = µ = 0, i.e., R(X, Y )ξ = 0.
Hence, by Theorem 2.1, M is locally the product of an (n+1)-dimensional
flat manifold and an n-dimensional manifold of constant curvature 4. The
converse is trivial since the product is symmetric.

This concludes the proof of Theorem A.

4. Proof of Theorem B

In this section, we prove Theorem B. Let M be a contact (k, µ)-space
and suppose that M is of P-type. Then the Jacobi operator Rx = R(·, x)x
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and its covariant differential operator R′
x = (∇xR)(·, x)x are simultane-

ously diagonalizable for all x. First, from (2.7) it follows immediately that

R(·, ξ)ξ = k(I − η ⊗ ξ) + µh

and since from (2.9) we get ∇ξh = µhφ, we obtain

(∇ξR)(·, ξ)ξ = µ2hφ.

From these relations we then derive

Rξ ·R′
ξ = kµ2hφ + µ3h2φ,

R′
ξ ·Rξ = kµ2hφ + µ3hφh.

(4.1)

Since M is a non-Sasakian P-space, from (4.1), we obtain µ = 0. Further-
more, for V ∈ D(λ) (‖V ‖ = 1) and for any vector field X tangent to M ,
we have from (2.11)

RV X = R(X,V )V = (1 + λ)X − (1 + 2λ)g(X, V )V + hX

+
1

1− k
(λhX − λ2g(X, V )V )

+
k

1− k
λ2g(ϕX, V )φV + (k − 1− λ)η(X)ξ. (4.2)

From this, it then follows that

RV ξ = R(ξ, V )V = kξ. (4.3)

We easily get from (2.9) that (∇V h)ξ = (k− 1− λ)φV where λ =
√

1− k,
and making use of this, we have from (3.3):

R′
V ξ = (∇V R)(ξ, V )V = −2k(λ + 1)φV. (4.4)

Therefore, from (4.3) and (4.4), we obtain

R′
V (RV ξ) = −2k2(λ + 1)φV. (4.5)

On the other hand, from (4.2) and (4.4), we have

RV (R′
V ξ) = 2k2(λ + 1)ϕV. (4.6)
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Since M is a P-space, from (4.5) and (4.6), we deduce k = 0. Thus, we
have proved Theorem B.
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[12] O. Kowalski, F. Prüfer and L. Vanhecke, D’Atri spaces, in: Topics in Ge-
ometry: In Memory of Joseph D’Atri, (S. Gindikin, ed.), Progress in Nonlinear
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