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On the diophantine equation x2 + p2 = yn

By MAOHUA LE (Zhanjiang and Shanghai)

Abstract. Let p be an odd prime. In this paper we give some formulas for
all positive integer solutions (x, y, n) of the title equation with n > 2. Moreover,
we completely determine all solutions of the title equation for p < 100.

1. Introduction

Let Z, N be the sets of all integers and positive integers respectively.
Let p be a prime. The solutions (x, y, n) of the equation

x2 + p2 = yn, x, y, n ∈ N, gcd(x, y) = 1, n > 2 (1)

have been investigated in many papers. In this respect, Nagell [8] proved
that if p = 2, then (1) has only the solution (x, y, n) = (11, 5, 3). Ljung-

gren [4] proved that if p is an odd prime satisfying p2−1 = 22r+1s, where
r, s are positive integers with 2 - s, then (1) has only finitely many solutions
(x, y, n). Ljunggren’s result in [4] is incomplete as he himself points out
in [5]. For instance, the case p = 5 remained and remains unsolved.

In this paper we give some formulas for all solutions (x, y, z) of (1).
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We now introduce some notations. For any positive integers m and s, let

f(m) =
[m/2]∑

i=0

(
m

2i

)
2m−2i3i,

f̄(m) =
[(m−1)/2]∑

i=0

(
m

2i + 1

)
2m−2i−13i, (2)

g(m) =
[m/2]∑

i=0

(
m

2i

)
2i,

ḡ(m) =
[(m−1)/2]∑

i=0

(
m

2i + 1

)
2i, (3)

h(m, s) =
[m/2]∑

i=0

(−1)i

(
m

2i

)
(2s)m−2i,

h̄(m, s) =
[(m−1)/2]∑

i=0

(−1)i

(
m

2i + 1

)
(2s)m−2i−1. (4)

We prove a general result as follows.

Theorem. Let p be an odd prime. If (x, y, n) is a solution of (1),
then it satisfies one of the following conditions:

(I) p = f(2r), (x, y, n) = (8f̄(2r)3 + 3f̄(2r), f(2r)2 + f̄(2r)2, 3), where

r is a positive integer.

(II) p = g(q), (x, y, n) = ((g(q)2 − 1)/2, ḡ(q), 4), where q is an odd

prime.

(III) p = 239, (x, y, z) = (28560, 13, 8).

(IV) p = |h̄(q, s)|, (x, y, n) = (|h(q, s)|, 4s2 + 1, q), where q is an odd

prime, s is a positive integer.

Using the above theorem, we can completely determine all solutions
of (1) for some small p.

Corollary. If p is an odd prime with p < 100, then (1) has only the

following solutions:

(i) p = 7, (x, y, n) = (24, 5, 4), (524, 65, 3).
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(ii) p = 11, (x, y, n) = (2, 5, 3).

(iii) p = 29, (x, y, n) = (278, 5, 7).

(iv) p = 41, (x, y, n) = (38, 5, 5), (840, 29, 4).

(v) p = 47, (x, y, n) = (52, 17, 3).

(vi) p = 97, (x, y, n) = (1405096, 12545, 3).

As an interesting example, we see from the above corollary that if
p = 5, then (1) has no solutions (x, y, n).

2. Preliminaries

Lemma 1 ([7, pp. 120–122]). Let n be an odd integer with n > 1.

Every solution (X, Y, Z) of the equation

X2 + Y 2 = Zn, X, Y, Z ∈ N, gcd(X, Y ) = 1, (5)

can be expressed as

Z = X2
1 + Y 2

1 , X + Y
√−1 =

(
λ1X1 + λ2Y1

√−1
)n

, λ1, λ2 ∈ {−1, 1},
where X1, Y1 are coprime positive integers.

Lemma 2 ([3]). The equation

X2 − 2Y 4 = −1, X, Y ∈ N (6)

has only the solutions (X, Y ) = (1, 1) and (239, 13).

Lemma 3 ([2]). The equation

4X4 − 5Y 2 = −1, X, Y ∈ N (7)

has only the solution (X, Y ) = (1, 1).

Lemma 4 ([9]). The equation

1 + X2 = 2Y n, X, Y, n ∈ N, X > 1, Y > 1, n > 2, 2 - n (8)

has no solutions (X,Y, n).
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Lemma 5. Let m, s be positive integers, and let h̄(m, s) be defined

as in (4). If

2s ≥ ctg
π

m + 1
, (9)

then

h̄(m, s) ≥ (4s2 + 1)(m−1)/2. (10)

Proof. Let

α = 2s +
√−1, β = 2s−√−1. (11)

Then there exist a real number θ such that

α =
√

teθ
√−1, β =

√
te−θ

√−1, t = 4s2 + 1, (12)

tg θ =
1
2s

, 0 < θ <
π

2
. (13)

By (4), (11) and (12), we get

h̄(m, s) =
αm − βm

α− β
= t(m−1)/2 sin(mθ)

sin θ
. (14)

If (9) holds, then from (13) we obtain

tg θ =
1
2s
≤ tg

π

m + 1
. (15)

Since 0 < θ < π/2 and 0 < π/(m + 1) ≤ π/2, we see from (15) that
θ ≤ π/(m + 1), whence we get

mθ ≤ π − θ. (16)

Since 0 < θ < mθ and sin(π − θ) = sin θ, we get from (16) that sin(mθ) ≥
sin θ. Thus, by (14), we obtain (10). The lemma is proved. ¤

Let α, β be algebraic integers. If α + β and αβ are nonzero coprime
integers and α/β is not a root of unity, then (α, β) is called a Lucas pair.
Further, let a = α + β and c = αβ. Then we have

α =
1
2

(
a + λ

√
b
)

, β =
1
2

(
a− λ

√
b
)

, λ ∈ {−1, 1}, (17)

where b = a2 − 4c. Such pair (a, b) is called the parameters of Lucas pair
(α, β). Two Lucas pairs (α1, β1) and (α2, β2) are equivalent if α1/α2 =
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β1/β2 = ±1. Given a Lucas pair (α, β), one defines the corresponding
sequence of Lucas numbers by

um = um(α, β) =
αm − βm

α− β
, m = 0, 1, 2, · · · . (18)

For equivalent Lucas pairs (α1, β1) and (α2, β2), we have um(α1, β1)= ±
um(α2, β2) for any m ≥ 0.

Lemma 6. If m > 1, 2 - m, a = 2s and b = −4, where s is a positive

integer, then um(α, β) 6= ±1.

Proof. If um(α, β) = ±1, then from (17) and (18) we get

4s2

(m−3)/2∑

i=0

(−1)i

(
m

2i + 1

)
(4s2)(m−3)/2−i + (−1)(m−1)/2 = ±1. (19)

Clearly, the right side of (19) must be (−1)(m−1)/2. Since
(

m

k

)
=

(
m

m− k

)
, k = 0, 1, . . . , m,

we get from (19) that
(

m

2

)
= 4s2

(m−1)/2∑

j=2

(−1)j

(
m

2j

)
(4s2)j−2. (20)

It implies that m ≡ 1 (mod 8). Let 2u‖m− 1 and 2vj‖j for
j = 2, . . . , (m− 1)/2. Since

vj ≤ log j

log 2
≤ j − 1, j = 2, . . . ,

m− 1
2

, (21)

we obtain(
m

2j

)
(4s2)j−1 = m(m− 1)

(
m− 2
2j − 2

)
(4s2)j−1

2j(2j − 1)
(22)

≡ 0 (mod 2u+j−2), j = 2, . . . ,
m− 1

2
.

We see from (22) that the right side of (20) is a multiple of 2u. However,
since

2u−1
∥∥∥

(
m

2

)
,

(20) is impossible. Thus, the lemma is proved. ¤
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For any positive integer m with m > 1, a prime p is a primitive divisor
of um(α, β) if p | um and p - bu1 · · ·um−1. A Lucas pair (α, β) such that
um(α, β) has no primitive divisors will be called m-defective Lucas pair.

Lemma 7 ([10]). Let m satisfy 4 < m ≤ 30 and m 6= 6. Then, up to

equivalence, all parameters of m-defective Lucas pairs are given as follows:

(i) m = 5, (a, b) = (1, 5), (1,−7), (2,−40), (1,−11), (1,−15), (12,−76),
(12,−1364).

(ii) m = 7, (a, b) = (1,−7), (1,−19).

(iii) m = 8, (a, b) = (2,−24), (1,−7).

(iv) m = 10, (a, b) = (2,−8), (5,−3), (5,−47).

(v) m = 12, (a, b) = (1, 5), (1,−7), (1,−11), (2,−56), (1,−15), (1,−19).

(vi) m ∈ {13, 18, 30}, (a, b) = (1,−7).

Lemma 8 ([1, Theorem 1.4]). If m > 30, then no Lucas pair is m-

defective.

Lemma 9 ([6]). If p is an odd primitive divisor of um(α, β), then

p ≡ (b/p) (mod m), where (b/p) is the Legendre symbol.

3. Proof of Theorem

Let (x, y, n) be a solution of (1). Since p is an odd prime, we get 2 | x
and 2 - y. If 2 | n, then from (1) we get yn/2 + x = p2 and yn/2 − x = 1.
It implies that

x =
1
2
(p2 − 1) (23)

and

1 + p2 = 2yn/2. (24)

Since n > 2, by Lemma 4, (24) is false if n/2 has an odd prime divisor.
So we have n = 2t, where t is a positive integer with t > 1. Further, by
Lemma 2, we see from (24) that either t = 2 or t = 3. When t = 2, we
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find from (24) that (u, v) = (p, y) is a positive integer solution of the Pell
equation

u2 − 2v2 = −1, u, v ∈ Z. (25)

Notice that 1 +
√

2 is the fundamental solution of (25) and p is an odd
prime. We get

p + y
√

2 =
(
1 +

√
2

)q
, (26)

where q is an odd prime. Thus, by (3), (23), (24) and (26), the solution
(x, y, n) satisfies the condition (II). When t = 3, by Lemma 2, the solution
(x, y, n) satisfies the condition (III).

By Lemma 1, if 2 - n, then from (1) we get

x + p
√−1 =

(
λ1X1 + λ2Y1

√−1
)n

, λ1, λ2 ∈ {−1, 1}, (27)

where X1, Y1 are positive integers satisfying

X2
1 + Y 2

1 = y, gcd(X1, Y1) = 1. (28)

From (27), we obtain

x = X1

∣∣∣
(n−1)/2∑

i=0

(−1)i

(
n

2i

)
Xn−2i−1

1 Y 2i
1

∣∣∣ (29)

and

p = Y1

∣∣∣
(n−1)/2∑

i=0

(−1)i

(
n

2i + 1

)
Xn−2i−1

1 Y 2i
1

∣∣∣. (30)

We see from (30) that either Y1 = 1 or Y1 = p. Since 2 - y, we get from
(28) that 2 | X1. So we have

X1 = 2s, s ∈ N. (31)

If n = 3 and Y1 = p, then from (30) and (31) we get

p2 − 3(2s)2 = 1. (32)

It implies that (u′, v′) = (p, 2s) is a positive integer solution of the Pell
equation

u′2 − 3v′2 = 1, u′, v′ ∈ Z. (33)
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Notice that 2 +
√

3 is the fundamental solution of (33) and p is an odd
prime. We get

p + 2s
√

3 =
(
2 +

√
3

)2r

, r ∈ N. (34)

Thus, by (2), (28), (29) and (34), the solution (x, y, n) satisfies the condi-
tion (I).

If n = 5 and Y1 = p, then we have

5X4
1 − 10X2

1p2 + p4 = 5(X2
1 − p2)2 − 4p4 = 1. (35)

It implies that (X, Y ) = (p, |X2
1 − p2|) is a solution of (7). Therefore, by

Lemma 3, (35) is impossible.
If n > 5 and Y1 = p, let

α1 = 2s + p
√−1, β1 = 2s− p

√−1. (36)

Then (α1, β1) is a Lucas pair. Further, let

um(α1, β1) =
αm

1 − βm
1

α1 − β1
, m ≥ 0 (37)

be the corresponding sequence of Lucas numbers. By (30), (31), (36) and
(37), we get un(α1, β1) = ±1. It implies that un(α1, β1) has no primitive
divisors. But, by Lemmas 7 and 8, it is impossible.

If Y1 = 1 and n is an odd prime, by (4), (28), (29) and (30), then the
solution (x, y, n) satisfies the condition (IV).

If Y1 = 1 and n is not a prime, let q be the least prime divisor of n.
Then we have n = qt, where t is an odd integer with t ≥ q. Let

α2 = 2s +
√−1, β2 = 2s−√−1, (38)

α3 =
(
2s +

√−1
)q

, β3 =
(
2s−√−1

)q
. (39)

Then both (α2, β2) and (α3, β3) are Lucas pairs. Further, let

um(αj , βj) =
αm

j − βm
j

αj − βj
, m ≥ 0, j = 2, 3 (40)

be the corresponding sequences of Lucas numbers, respectively. By (38),
(39) and (40), we get

α3 = k + l
√−1, β3 = k − l

√−1, (41)
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where k, l are integers satisfying

k =
1
2
(α3 + β3) =

1
2
(αq

2 + βq
2) ≡ 0 (mod 2)s, (42)

l =
α3 − β3

2
√−1

=
αq

2 − βq
2

2
√−1

=
αq

2 − βq
2

α2 − β2
= uq(α2, β2). (43)

Since Y1 = 1, we see from (30), (38), (39) and (40) that

p =
∣∣∣∣
αn

2 − βn
2

α2 − β2

∣∣∣∣ =
∣∣∣∣
αq

2 − βq
2

α2 − β2
· αt

3 − βt
3

α3 − β3

∣∣∣∣ = |uq(α2, β2)| |ut(α3, β3)|. (44)

By (44), we get either

|uq(α2, β2)| = 1 (45)

or

|uq(α2, β2)| = p. (46)

By Lemma 6, we find from (38) that (45) is impossible. If (46) holds, then
from (44) we get

|ut(α3, β3)| = ±1. (47)

Further, by Lemmas 7 and 8, we see from (41), (42) and (43) that if (47)
holds, then t ≤ 5. By the same argument as in the proof of the case n = 5
and Y1 = p, we can prove that (47) is impossible for t = 5. So we have
t = 3. Since t ≥ q, we get q = 3 and n = 9. Then, by (38), (40), (43) and
(46), we obtain

p = l = |u3(α2, β2)| = |α2
2 + α2β2 + β2

2 | (48)

= |(α2 + β2)2 − α2β2| = |(4s)2 − (4s2 + 1)| = 12s2 − 1.

Similarly, by (39)–(41), (47) and (48), we get

|u3(α3, β3)| = |α2
3 + α3β3 + β2

3 | = |(α3 + β3)2 − α3β3|
= |(2k)2 − (k2 + p2)| = |3k2 − p2| = 1.

This implies that

p2 − 3k2 = 1. (49)
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Since 2s | k by (42), we get k = 2sk1, where k1 is an integer. Substitute
(48) into (49), we get 12s2 = k2

1 + 2, a contradiction. Thus, (1) has no
other solutions (x, y, n). The theorem is proved.

4. Proof of Corollary

Let p be an odd prime with p < 100. By Theorem, if (x, y, n) is a
solution of (1), then it satisfies one of conditions (I), (II) and (IV).

If (x, y, n) satisfies the condition (I), then from (34) we obtain n = 3
and

100 > p =
1
2

((
2 +

√
3

)2r

+
(
2−

√
3

)2r
)

>
1
2

(
2 +

√
3

)2r

, r ∈ N,

(50)
whence we get r ≤ 2 and

(p, x, y) =

{
(7, 528, 65), if r = 1,

(97, 1405096, 12545), if r = 2.
(51)

If (x, y, n) satisfies the condition (II), then from (26) we obtain n = 4
and

100 > p =
1
2

((
1 +

√
2

)q
+

(
1−

√
2

)q)
, (52)

where q is an odd prime. Therefore, by (52), we get q ≤ 5 and

(p, x, y) =

{
(7, 24, 5), if q = 3,

(41, 840, 29), if q = 5.
(53)

If (x, y, n) satisfies the condition (IV), then

p =
∣∣h̄(q, s)

∣∣ = |uq(α1, β1)| , (54)

where q is an odd prime, α1, β1 and uq(α1, β1) are defined as in (36) and
(37), respectively. Since q is a prime, we see from (54) that p is a primitive
prime divisor of uq(α1, β1). Therefore, by Lemma 9, we get from (36) that

p ≡ (−1)(p−1)/2 (mod 4q). (55)
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Since p < 100, we see from (55) that q ≤ 17. Further, by Lemma 5, if

s ≥





1, if q = 3, 5,

2, if q = 7, 11,

3, if q = 13, 17,

(56)

then

100 > p > (4s2 + 1)(q−1)/2. (57)

By (56) and (57), we get the following solutions

(p, x, y, n) =





(11, 2, 5, 3), if q = 3, s = 1,

(47, 52, 17, 3), if q = 3, s = 2,

(41, 38, 5, 5), if q = 5, s = 1.

(58)

Finally, we check the remaining cases (q, s) = (7, 1), (11, 1), (13, 1), (17, 1),
(13, 2), (17, 2) and get the following solution

(p, x, y, n) = (29, 278, 5, 7). (59)

Thus, by (51), (53), (58) and (59), the corollary is proved.
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