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Perturbations of nonlinear evolution equations

By W. M. BIAN (Southampton)

Abstract. Existence results are given for the evolution inclusions x′(t) +
A(t, x(t))+ G(t, x(t)) 3 f(t) with A(t, ·) a monotone mapping and G a set-valued
bounded or Lipschitz mapping.

1. Introduction

Consider the existence of solutions to the evolution inclusion

x′(t) + A(t, x(t)) + G(t, x(t)) 3 f(t) a.e. on [0, T ], x(0) = x0

in a evolution triple (V,H, V ∗) with A(t, ·) a monotone mapping and G a
set-valued mapping.

As a perturbation to the classical equation x′(t) + A(x(t)) = f(t),
this problem is very important not only in evolution equation theory but
also in other subjects such as distributed parameter control systems (see
[1], [2], [11]). So, it has been recently studied in many publications under
different conditions (see [3], [6], [8], [9], [12] and the references therein). In
[3], the coerciveness assumptions made to A involves the norm of H and
G is assumed to satisfy a convergence condition; In [8] and [9], v 7→ G(t, v)
is supposed to be an upper semicontinuous mapping with closed convex
values and satisfy a growth condition. In [6], G can be an nonconvex-
valued mapping but it is supposed to be integrablly bounded. We notice
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although a wrong imbedding result is used in [6], the main conclusion is
not effected due to the reason stated in [8].

In this paper, we will give two new existence results for the above
problem. In one of our result, we just suppose that the mapping v 7→
G(t, v) is upper semicontinuous and bounded (maps bounded sets into
bounded sets), do not impose growth condition, and consider the local
existence. In another result, v 7→ G(t, v) is supposed to be Lipschitz with
the constant depending on t and the values of G can be nonconvex. A
continuity theorem is also presented, which is a modification to a similar
one in [8].

2. Preliminaries

In this paper, we always suppose (V, H, V ∗) is an evolution triple, that
is, H is Hilbert space, V is a separable reflexive Banach space with dual
V ∗ and V ↪→ H ↪→ V ∗ densely and continuously. The inner product of H

as well as the duality pairing between V and V ∗ are denoted by (·, ·). We
also suppose that ∞ > p ≥ 2 is a real number and q = p/(p − 1). ((·, ·))
stands for the duality pairing between Lp(0, T ;V ) and Lq(0, T ; V ∗). The
norm in any Banach space X involved is denoted by ‖ · ‖X . The space
X endowed with weak topology is denoted by Xw, the weak convergence
(in X) is denoted by “xn ⇀ x”, and the functional space Lr(0, T ; X) with
r > 0 will be abbreviated to Lr(X). For a sequence of subsets Dn ⊂ X,
we denote by

w- lim sup
n→∞

Dn = {x ∈ X : there exist nk and xnk
∈ Dnk

with xnk
⇀ x}.

For a set-valued mapping G : [0, T ] → X, we denote by

S1
G = {x ∈ L1(X) : x(t) ∈ G(t) a.e.}.

A known result is that S1
G 6= ∅ if inf{‖u‖X : u ∈ G(t) a.e.} ∈ L1(X).

Let W (0, T ) = {x ∈ Lp(V ) : x′ ∈ Lq(V ∗)}. It is known that W (0, T )
is a reflexive Banach space endowed with the norm ‖x‖W := ‖x‖Lp(V ) +
‖x′‖Lq(V ∗), W (0, T ) ↪→ C(0, T ; H) continuously and, if the imbedding of
V into H is compact, then W (0, T ) ↪→ Lp(H) compactly.
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We also recall that a set-valued mapping F between Hausdorff spaces
X and Y is said to be upper semicontinuous (u.s.c.) if F−1(D) := {x ∈
X : F (x) ∩D 6= ∅} is closed for each closed subset D ⊂ Y ; F is said to be
hemicontinuous if t 7→ F (x + ty) is u.s.c. If X is a reflexive Banach space,
Y = X∗ and (y1 − y2, x1 − x2) ≥ 0 for all xi ∈ X, yi ∈ F (xi), i = 1, 2, then
F is called monotone on X.

Now, we consider evolution equation

x′(t) + A(t, x(t)) = f(t) a.e. on [0, T ], x(0) = x0 ∈ H (2.1)

under the following assumptions.

(H1) A : [0, T ]× V → V ∗ is an operator with t 7→ A(t, v) measurable,
v 7→ A(t, v) hemicontinuous and monotone.

(H2) There exist a1 ≥ 0, a2 ∈ Lq(0, T ) such that

‖A(t, v)‖V ∗ ≤ a1‖v‖p−1
V + a2(t), for all v ∈ V, t ∈ [0, T ].

(H3) There exist a3 > 0, a4 ∈ L1(0, T ) such that

(A(t, v), v) ≥ a3‖v‖p
V − a4(t), for all v ∈ V, t ∈ [0, T ].

(H4) V ↪→ H compactly.

It is well known (see [7] or [12]) that if (H1)–(H3) are satisfied, then, for
each x0 ∈ H and each f ∈ Lq(V ∗), equation (2.1) has a unique solution in
W (0, T ), which will be always denoted in the following by xf , and, if D is a
bounded subset of Lq(V ∗), then the solution set {xf : f ∈ D} is bounded in
W (0, T ). In fact, there exists c > 0 such that ‖xf‖W (0,T ) ≤ c+c‖f‖Lq(V ∗).
(This is also true for some implicit problems, see [4].) Moreover, the
solution mapping f 7→ xf has a property as stated below.

Proposition 2.1. Suppose (H1)–(H4) are satisfied. Then the solu-

tion mapping f 7→ xf of equation (2.1) is continuous from Lq(H)w to

C(0, T ;H), monotone on Lq(V ∗) and

‖xf (t)− xg(t)‖H ≤
∫ t

0
‖f(s)− g(s)‖Hds for all f, g ∈ Lq(H). (2.2)

Proof. Let fn ⇀ f in Lq(H). Then {fn} is bounded in Lq(V ∗). From
the remarks we made above, we know that {xfn} is bounded in W (0, T ).
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So, by passing to a subsequence, we may assume that xfn ⇀ y in W (0, T ).
Since W (0, T ) ↪→ C(0, T ; H) continuously, {xfn} is bounded in C(0, T ; H).
Since xfn(0) = xf (0) = x0 and

x′fn
(t) + A(t, xfn(t)) = fn(t), x′f (t) + A(t, xf (t)) = f(t) a.e.,

(
x′fn

(t)− x′f (t), xfn(t)− xf (t)
)

=
1
2

d

dt
‖xfn(t)− xf (t)‖2

H ,

by the monotonicity of A(t, ·), we have

1
2

d

dt
‖xfn(t)− xf (t)‖2

H ≤ (
fn(s)− f(s), xfn(s)− xf (s)

)
.

Therefore

1
2
‖xfn(t)− xf (t)‖2

H ≤
∫ t

0

(
fn(s)− f(s), xfn(s)− xf (s)

)
ds (2.3)

=
∫ t

0

(
fn(s)− f(s), xfn(s)− y(s)

)
ds (2.4)

+
∫ t

0

(
fn(s)− f(s), y(s)− xf (s)

)
ds.

Since W (0, T ) ↪→ Lp(H) compactly, we may suppose that xfn → y strongly
in Lp(H). So from the boundedness of {fn}, it follows that
∫ t

0

(
fn(s)− f(s), xfn(s)− y(s)

)
ds ≤ ‖fn − f‖Lq(H)‖xfn − y‖Lp(H) → 0.

By letting χ(s) = 1 for s ≤ t and χ(s) = 0 for s > t, we see
∫ t

0

(
fn(s)− f(s), y(s)− xf (s)

)
ds

=
∫ T

0

(
fn(s)− f(s), χ(s)(y(s)− xf (s))

)
ds → 0.

So, from (2.3) and (2.4), it follows that ‖xfn(t)− xf (t)‖H → 0 for each t.
Together with the boundedness of {xfn} in C(0, T ; H), we see that xfn →
xf in Lp(H) and therefore, by (2.3) and Hölder’s Inequality, we see

‖xfn(t)− xf (t)‖2
H ≤ 2‖fn − f‖Lq(H)‖xfn − xf‖Lp(H) → 0.
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That is, xfn(t) → xf (t) in H uniformly. This proves the continuity of
f 7→ xf from Lq(H)w to C(0, T ; H).

Using the same method as used to obtain (2.3), we can prove, for all
f, g ∈ Lq(V ∗), that

1
2
‖xf (t)− xg(t)‖2

H ≤
∫ t

0

(
f(s)− g(s), xf (s)− xg(s)

)
ds, t ∈ [0, T ]. (2.5)

Let t = T , we see that ((f−g, xf−xg)) ≥ 0 which implies the monotonicity
of f 7→ xf . If, in (2.5), let f, g ∈ Lq(H), then we obtain

1
2
‖xf (t)− xg(t)‖2

H ≤
∫ t

0
‖f(s)− g(s)‖H‖xf (s)− xg(s)‖Hds.

Applying the extended Gronwall’s inequality (see [5] or [13]), we have

‖xf (t)− xg(t)‖H ≤
∫ t

0
‖f(s)− g(s)‖Hds.

This proves (2.2) and completes the proof. ¤
Remark 2.2. The continuity of f 7→ xf from Lq(H)w to C(0, T ; H)

was also claimed in Proposition 1 of [8] where a2 is a constant and a4 ≡ 0.
Moreover, our method is different.

3. Existence results

In this section, under (H1)–(H4), we suppose G(t, ·) is either a bounded
or a Lipschitz mapping on H, and consider the existence of solutions of
the inclusion

x′(t) + A(t, x(t)) + G(t, x(t)) 3 f(t) a.e. on [0, T ], x(0) = x0 ∈ H. (3.1)

Theorem 3.1. Under assumptions (H1)–(H4), suppose b ∈ Lq(0, T )
is a given function. Let G : [0, T ]×H → 2H be a set-valued mapping with

closed convex values, t 7→ G(t, v) be measurable and v 7→ G(t, v) be u.s.c.

from H to Hw. If for any bounded subset D ⊂ H, there exists M > 0 such

that

sup
{‖G(t, v)‖H : v ∈ D

} ≤ M + b(t) a.e.,

then problem (3.1) admits solutions on [0, T0] for some T0 ∈ (0, T ].
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Proof. Let

d =
(
‖x0‖2

H + 2‖a4‖L1(0,T ) +
2

q(pa3)q/p
‖f‖q

Lq(V ∗)

)1/2

+
∫ T

0
b(t)dt,

D = {u ∈ H : ‖u‖H ≤ d + k} with k > 0 a given number.

By our assumptions on G, there exists M > 0 such that

sup
{‖u‖H : u ∈ G(t, v), v ∈ D

} ≤ M + b(t) a.e. on [0, T ]. (3.2)

We choose T0 ∈ (0, T ] such that T0M ≤ k (that is, T0 = min{T, k/M})
and denote by

D1 =
{
g ∈ Lq(H) : ‖g(t)‖H ≤ M + b(t) a.e. on [0, T0]

}
,

F (g) = S1
G(·,xf−g(·)) for g ∈ D1.

Then D1 is a bounded, closed and convex subset of Lq(0, T0;H), F (g) is a
nonempty, closed, bounded and convex subset for each g ∈ D1.

Take g ∈ D1 and write x = xf−g for convenience. Then

(x′(t), x(t)) + (A(t, x(t)), x(t)) = (f(t)− g(t), x(t)) a.e.

From (H3), the fact that (x′(t), x(t)) = 1
2

d
dt‖x(t)‖2

H and Young’s inequality,
it follows that

‖x(t)‖2
H + 2a3

∫ t

0
‖x(s)‖p

V ds ≤ ‖x0‖2
H + 2

∫ t

0
a4(s)ds

+ 2
∫ t

0
‖f(s)‖V ∗‖x(s)‖V + 2

∫ t

0
‖g(s)‖H‖x(s)‖Hds ≤ ‖x0‖2

H

+ 2‖a4‖L1(0,T ) + 2a3

∫ t

0
‖x(s)‖p

V ds +
2

q(pa3)q/p

∫ t

0
‖f(s)‖q

V ∗ds

+ 2
∫ t

0
‖g(s)‖H‖x(s)‖Hds.

By the extended Gronwall’s Inequality ([5] or [13]), we have

‖x(t)‖H ≤
(
‖x0‖2

H + 2‖a4‖L1(0,T ) +
2

q(pa3)q/p
‖f‖q

Lq(V ∗)

)1/2
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+
∫ t

0
‖g(s)‖Hds ≤ d + T0M ≤ d + k a.e. on [0, T0].

So x(t) = xf−g(t) ∈ D for each t ∈ [0, T0] and, therefore, ‖z(t)‖H ≤
M + b(t) for each z ∈ F (g) and each t ∈ [0, T0] because of (3.2). This
means that F maps D1 into itself as a set-valued mapping.

Let (gn, zn) ∈ Graph(F ) and gn ⇀ g, zn ⇀ z in Lq(0, T0;H). By
Proposition 2.1, xf−gn → xf−g in C(0, T0; H) and, therefore, xf−gn(t) →
xf−g(t) in H for each t ∈ [0, T0]. Since G(t, ·) is u.s.c., we see

w- lim sup
n→∞

G(t, xf−gn(t)) ⊂ G(t, xf−g(t)) a.e. .

Invoking Theorem 4.2 of [10], we have

z ∈ w- lim sup
n→∞

F (gn) ⊂ S1
w- lim supn→∞G(·,xf−gn(·)) ⊂ S1

G(·,xf−g(·)) = F (g).

So (g, z) ∈ GraphF , that is, F is closed under the weak topology. Since D1

is weakly compact, we see that F is weakly u.s.c. under the weak topology.
From Kakutani’s fixed point theorem, it follows that F has fixed point,
say g. By the meaning of the notion xf we see that xf−g is a solution of
(3.1) on [0, T0]. ¤

Remark 3.2. Suppose x1 is a solution of (3.1) on [0, T0]. Then, by the
same method as used above, we can prove that there exist T1 ∈ (T0, T ]
and x2 ∈ W (T0, T1) such that

x2(T0) = x1(T0), x′2(t)+A(t, x2(t))+G(t, x2(t)) 3 f(t) a.e. on [T0, T1].

This implies that the interval on which (3.1) has solutions can be extended.
But, without further assumptions, we are not sure whether this interval
can be extended to [0, T ].

Now, we consider the case when G is Lipschitz with nonconvex values.

Theorem 3.3. Under assumptions (H1)–(H4), let G : [0, T ]×H → 2H

be a set-valued mapping with closed and bounded values, sup{‖u‖H : u ∈
G(t, 0)} ∈ Lq(0, T ) and t 7→ G(t, v) be measurable. Suppose there exists

k ∈ Lq(0, T ) such that

H(G(t, v1), G(t, v2)) ≤ k(t)‖v1 − v2‖H , for all t ∈ [0, T ], v1, v2 ∈ H.
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Here, H(·, ·) means the Hausdorff distance on H. Then problem (3.1) has

solutions. If, in addition, G is single-valued, then the solution is unique.

Proof. Let f 7→ xf be the same operator as in Proposition 2.1 and
let

F (g) = S1
G(·,xf−g(·)) for g ∈ Lq(H).

Then F (g) 6= ∅ for every g ∈ Lq(H) and F (g) ⊂ Lq(H) because of our
assumptions on G. It is easy to see that F (g) is closed and bounded.

Take g1, g2 ∈ Lq(H) and let ε > 0, z1 ∈ F (g1) be given. Since G is
Lipschitz, there exists z2 ∈ F (g2) such that

‖z1(t)− z2(t)‖H ≤ k(t)‖xf−g1(t)− xf−g2(t)‖H + ε, a.e. .

Let l > 0 be a real number such that 2T 1/p(2lq)−q < 1. For each
z ∈ Lq(H), let

‖z‖l =
(∫ T

0
exp(−2lqr(t))‖z(t)‖q

Hdt

)1/q

with r(t) =
∫ t

0
kq(s)ds.

Clearly, ‖ · ‖l is a norm on Lq(H) and equivalent to the usual one. By
Proposition 2.1, Hölder’s Inequality and using the integration by parts, we
obtain

‖z1 − z2‖q
l =

∫ T

0
exp(−2lqr(t))‖z1(t)− z2(t)‖q

Hdt

≤ 2q

∫ T

0
exp(−2lqr(t))

(
k(t)

∫ t

0
‖g1(s)− g2(s)‖Hds

)q

dt

+ ε2q

∫ T

0
exp(−2lqr(t)dt

≤ 2qT q/p

∫ T

0
exp(−2lqr(t))kq(t)

∫ t

0
‖g1(s)− g2(s)‖q

Hdsdt + 2qεT

= −2q T q/p

2lq
exp(−2lqr(t))

∫ t

0
‖g1(s)− g2(s)‖q

Hds

∣∣∣∣
T

0

+ 2q T q/p

2lq

∫ T

0
exp(−2lqr(s))‖g1(s)− g2(s)‖q

Hds + 2qεT

≤ 2q T q/p

2lq
‖g1 − g2‖q

l + 2qεT.
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We denote by Hl(·, ·) the Hausdorff distance in Lq(H) endowed with the
new norm ‖ · ‖l. Since g1, g2 are arbitrary, we see

(Hl

(
F (g1), F (g2)

))q ≤ 2q T q/p

2lq
‖g1 − g2‖q

l + 2qεT.

By letting ε → 0, we obtain

Hl

(
F (g1), F (g2)

) ≤ 2T 1/p(2lq)−q‖g1 − g2‖l.

So F is a contraction on Lq(H), and therefore F has a fixed point g.
Obviously, x = r(g) is a solution of (3.1). If, in addition, G is single-
valued, then the solution is unique due to the uniquness of fixed point
of F as a single-valued mapping. ¤
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