Publ. Math. Debrecen
63/1-2 (2003), 105-113

Another characterization of the gamma function

By DETLEF GRONAU (Graz) and JANUSZ MATKOWSKI (Zielona Góra)

Abstract. The function $\frac{\log \Gamma(x)}{\log x}$ is characterized to be the only convex solu-
tion of the functional equation

$$
f(x+1)=\frac{\log x}{\log (x+1)}(f(x)+1), \quad x \in(0, \infty)
$$

Some relations to the function $\log \Gamma(x+1) / x^{a}, 0<a \leq 1$ are shown.

0. Introduction

In this paper we examine the behavior of the Euler gamma function Γ in the logarithmically scaled coordinate system. More exactly, we show that the function $g:(0, \infty) \rightarrow \mathbb{R}$ defined by

$$
g(x):= \begin{cases}\frac{\log \Gamma(x)}{\log x} & \text { for } x \neq 1 \\ -\gamma & \text { for } x=1\end{cases}
$$

(where γ is the Euler gamma constant) is increasing, convex, $g(0+)=-1$ and $g(2)=0$. The main result of our paper states that the function g is the only convex solution of the functional equation

$$
\begin{equation*}
f(x+1)=\frac{\log x}{\log (x+1)}(f(x)+1), \quad x \in(0, \infty) . \tag{1}
\end{equation*}
$$

Mathematics Subject Classification: 33B15, 39A13.
Key words and phrases: gamma function, Bohr-Mollerup theorem.

One can weaken the supposition of convexity of the solution in this way that only convexity is supposed in a neighborhood of infinity.

Note that no initial condition is required.
We would like to remark that this characterization of the gamma function is not a consequence of the famous Bohr-Mollerup characterization of the gamma function (see e.g. [2] or [3], p. 288) as the only log-convex solution of the functional equation

$$
\begin{equation*}
f(x+1)=x \cdot f(x), x \in(0, \infty) ; \quad f(1)=1 \tag{2}
\end{equation*}
$$

And, the more, it cannot be derived from the recent generalization of the Bohr-Mollerup theorem [5] that says that the gamma function is the only solution of (2), which is geometrically convex on a neighborhood of infinity. In these characterizations the initial condition is indispensable.

As an interesting consequence we infer that the function $G(x)=$ $\frac{\log \Gamma(\exp x)}{\log x}$ is strictly increasing and strictly convex on \mathbb{R}.

We further consider the functions $\frac{\log \Gamma(x+1)}{\log x^{\alpha}}$ and $\frac{\log \Gamma(x)}{\log x^{\alpha}}$ for a fixed real $\alpha, 0<\alpha \leq 1$, relating it with a recent paper of GRABNER et al. [4].

1. Some properties of $\log \Gamma(x) / \log x$

The function $g(x):=\frac{\log \Gamma(x)}{\log x}$ is analytic on $(0, \infty)$ with a removable singularity at $x=1, g(1)=-0.577215 \cdots=-\gamma$
(where $\gamma=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \frac{1}{k}-\log n\right)$, the Euler gamma constant). We further have $g(0+)=\lim _{x \rightarrow 0+} g(x)=-1$, and $g_{+}^{\prime}(0)=0$.

To show this the following representations are useful (see [3], p. 287f.):

$$
\begin{gathered}
\log \Gamma(x)=-\log x-\gamma x-\sum_{n=1}^{\infty}\left(\log \left(1+\frac{x}{n}\right)-\frac{x}{n}\right), \quad x>0 ; \\
\Psi(x)=\frac{d}{d x} \log \Gamma(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}=-\frac{1}{x}-\gamma+\sum_{n=1}^{\infty} \frac{x}{(x+n) n}, \quad x>0 .
\end{gathered}
$$

Proposition. The function $g(x)=\frac{\log \Gamma(x)}{\log x}$ is strictly monotone increasing and strictly convex on $(0, \infty)$.

Proof. We show that g^{\prime} and $g^{\prime \prime}$ are positive on $(0, \infty)$. To do this we use asymptotic expansions for $\log \circ \Gamma, \Psi$ and Ψ^{\prime} which will show us, that $g^{\prime}(x)$ and $g^{\prime \prime}(x)$ are positive for large x. For smaller x one can see this from the graph of these functions:

The following asymptotic formulas are valid for positive x :

$$
\begin{equation*}
\log \Gamma(x)=\left(x-\frac{1}{2}\right) \log x-x+\frac{1}{2} \log (2 \pi)+\frac{1}{12 x}-\frac{1}{360 x^{3}}+\ldots \tag{3}
\end{equation*}
$$

$$
\begin{align*}
\Psi(x) & =\log x-\frac{1}{2 x}-\frac{1}{12 x^{2}}+\frac{1}{120 x^{4}}-\frac{1}{252 x^{6}}+\ldots \tag{4}\\
\Psi^{\prime}(x) & =\frac{1}{x}+\frac{1}{2 x^{2}}+\frac{1}{6 x^{3}}-\frac{1}{30 x^{5}}+\frac{1}{42 x^{7}}-\ldots \tag{5}
\end{align*}
$$

If we only take a partial sum of one of these series then the error will be less than the first term neglected and has the same sign ([1], p. 257f.).

1. Note that

$$
g^{\prime}(x)=\frac{\Psi(x)}{\log x}-\frac{\log \Gamma(x)}{x(\log x)^{2}}, \quad x>0
$$

with a removable singularity at $x=1$. By (3) and (4) we have

$$
\log \Gamma(x)<(x-1 / 2 x) \log x \quad \text { and } \quad \Psi(x)>\log x-\frac{1}{2 x}-\frac{1}{12 x^{2}}
$$

Hence

$$
\begin{aligned}
g^{\prime}(x) x(\log x)^{2} & =x(\log x) \Psi(x)-\log \Gamma(x) \\
& >x(\log x)\left(\log x-\frac{1}{2 x}-\frac{1}{12 x^{2}}\right)-\left(x-\frac{1}{2}\right) \log x>0
\end{aligned}
$$

if $x>2.7484 \ldots$
2. $g^{\prime \prime}(x)=\frac{\Psi^{\prime}(x)}{\log x}-\frac{2 \Psi(x)}{x(\log x)^{2}}+\left(\frac{1}{x^{2}(\log x)^{2}}+\frac{2}{x^{2}(\log x)^{3}}\right) \log \Gamma(x)$ for $x>0$, again with a removable singularity at $x=1$. We get

$$
\begin{align*}
x^{2}(\log x)^{3} g^{\prime \prime}(x)= & x^{2}(\log x)^{2} \Psi^{\prime}(x)+(\log x+2) \log \Gamma(x) \\
& -2 x \log x \dot{\Psi}(x) \tag{6}
\end{align*}
$$

Here we use the inequalities following from (5), (3) (where $\frac{1}{2} \log (2 \pi)=$ $0.9189 \ldots$) and (4):
$\Psi^{\prime}(x)>\frac{1}{x}+\frac{1}{2 x^{2}}, \log \Gamma(x)>\left(x-\frac{1}{2}\right) \log x-x+0.9 \quad$ and $\quad \Psi(x)<\log x$.
Herewith we get a lower bound for (6) by

$$
\left(x-\frac{1}{10}\right) \log x-\frac{10 x-9}{5}
$$

which is positive for say $x \geq 6$ (more exactly $x>5.491776524 \ldots$). Thus also $g^{\prime \prime}(x)>0$ for at least $x>5.491776524 \ldots$

Remark 1. In the previous proof we found it more appropriate to use computer aided calculations to show the convexity of $g(x)$ for small x than to tackle complicate inequalities. For those who are not convinced by these methods we have a second version of our main result (see Theorem 2 below).

Remark 2. The function $G: \mathbb{R} \rightarrow \mathbb{R}$ defined by $G=g \circ \exp$, i.e.

$$
G(x)=\frac{\log \Gamma(\exp x)}{x}
$$

as a composition of two strictly increasing and strictly convex functions is again strictly increasing and strictly convex on \mathbb{R}.

2. The functional equation

The function g satisfies the functional equation

$$
\begin{equation*}
f(x+1)=\frac{\log x}{\log (x+1)}(f(x)+1), \quad x \in(0, \infty) \tag{7}
\end{equation*}
$$

If $f:(0, \infty) \rightarrow \mathbb{R}$ is an arbitrary solution of (7), then (7) with $x=1$ yields

$$
\begin{equation*}
f(2)=0 \tag{8}
\end{equation*}
$$

Thus, the initial condition (8) is forced by the functional equation (7) itself. Furthermore we have

$$
f(n)=\frac{\log \Gamma(n)}{\log n}, \quad n \in \mathbb{N}, n \geq 2
$$

and also
$f(x+n)=\frac{\log x}{\log (x+n)} f(x)+\frac{\log [(x+n-1) \ldots x]}{\log (x+n)}, \quad x \in(0, \infty), n \in \mathbb{N}$.
Hence also for $x \in(0, \infty), n \in \mathbb{N}$,

$$
\begin{equation*}
f(x+n+1)=\frac{\log x}{\log (x+n+1)} f(x)+\frac{\log [(x+n) \ldots(x)]}{\log (x+n+1)} \tag{9}
\end{equation*}
$$

Theorem 1. The only solution of (7), convex on $(0, \infty)$ is

$$
g(x)=\frac{\log \Gamma(x)}{\log x}
$$

Proof. Let $f:(0, \infty) \rightarrow \mathbb{R}$ a solution of (7), convex on $(0, \infty)$. Then we have automatically (8) and

$$
\begin{equation*}
f(n)=g(n)=\frac{\log (n-1)!}{\log n}, \quad n \in \mathbb{N}, n \geq 2 \tag{10}
\end{equation*}
$$

For $x \in(0,1], n \in \mathbb{N}, n \geq 2$ the convexity condition yields:

$$
\begin{equation*}
f(n+1)-f(n) \leq \frac{f(x+n+1)-f(n+1)}{x} \leq f(n+2)-f(n+1) \tag{11}
\end{equation*}
$$

whence

$$
\begin{aligned}
0 & \leq \frac{1}{x}[f(x+n+1)-f(n+1)-x(f(n+1)-f(n))] \\
& \leq f(n+2)+f(n)-2 f(n+1)
\end{aligned}
$$

Hence, applying in turn: relation (9) and (10), multiplication by $\log (x+$ $n+1)>0$, the monotonicity of \log and $\frac{\log \Gamma}{\log }$, and, finally the Stirling formula which implies that $\log n!<\left(n+\frac{1}{2}\right) \log n-n+1$ (see [1], p. 257), we obtain

$$
\begin{aligned}
0 \leq & \frac{1}{x}[\log x \cdot f(x)+\log [(x+n) \ldots x] \\
& \left.\quad-x \log (x+n+1)\left(\frac{\log n!}{\log (n+1)}-\frac{\log (n-1)!}{\log n}\right)\right] \\
\leq & \log (x+n+1)\left[\frac{\log (n+1)!}{\log (n+2)}+\frac{\log (n-1)!}{\log n}-2 \frac{\log n!}{\log (n+1)}\right] \\
\leq & \log (n+2)\left[\frac{\log (n+1)!}{\log (n+2)}+\frac{\log (n-1)!}{\log n}-2 \frac{\log n!}{\log (n+1)}\right] \\
= & \log (n+2)\left[\frac{\log (n+1)!}{\log (n+2)}-\frac{\log n!}{\log (n+1)}\right] \\
& +\log (n+2)\left[\frac{\log (n-1)!}{\log n}-\frac{\log n!}{\log (n+1)}\right]
\end{aligned}
$$

$$
\begin{aligned}
< & \log (n+2)\left[\frac{\log (n+1)!}{\log (n+2)}-\frac{\log n!}{\log (n+1)}\right] \\
& +\log (n+1)\left[\frac{\log (n-1)!}{\log n}-\frac{\log n!}{\log (n+1)}\right] \\
= & \log (n+1)!-\log n!-\frac{\log (n+2)}{\log (n+1)} \log n!+\frac{\log (n+1)}{\log n} \log (n-1)! \\
= & \log (n+1)-\frac{\log (n+1)}{\log n}(\log n!-\log (n-1)!) \\
& +\left(\frac{\log (n+1)}{\log n}-\frac{\log (n+2)}{\log (n+1)}\right) \log n! \\
= & {\left[\frac{\log (n+1)}{\log n}-\frac{\log (n+2)}{\log (n+1)}\right] \log n!} \\
< & {\left[\frac{\log (n+1)}{\log n}-\frac{\log (n+2)}{\log (n+1)}\right]\left[\left(n+\frac{1}{2}\right) \log n-n+1\right]=: \theta(n) . }
\end{aligned}
$$

With the aid of the expansions

$$
\begin{aligned}
\log (n+1) & =\log n-\log \left(1-\frac{1}{n+1}\right)=\log n+\sum_{i=1}^{\infty} \frac{1}{i \cdot(n+1)^{i}}, \\
\log (n+2) & =\log (n+1)+\log \left(1+\frac{1}{n+1}\right) \\
& =\log (n+1)+\sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i \cdot(n+1)^{i}}
\end{aligned}
$$

we get

$$
\begin{aligned}
\frac{\log (n+1)}{\log n}- & \frac{\log (n+2)}{\log (n+1)} \\
= & \frac{1}{\log n} \cdot \sum_{i=1}^{\infty} \frac{1}{i \cdot(n+1)^{i}}-\frac{1}{\log (n+1)} \cdot \sum_{i=1}^{\infty} \frac{(-1)^{i+1}}{i \cdot(n+1)^{i}} \\
= & \left(\frac{1}{\log n}-\frac{1}{\log (n+1)}\right) \frac{1}{n+1} \\
& +\left(\frac{1}{\log n}+\frac{1}{\log (n+1)}\right) \frac{1}{2(n+1)^{2}}+\cdots=\mathrm{o}\left(\frac{1}{n \log n}\right) .
\end{aligned}
$$

From this it is easy to see that $\theta(n)$ tends to 0 for $n \rightarrow \infty$. Therefore for $x \in(0,1]$ we have

$$
\begin{gathered}
f(x)=\lim _{n \rightarrow \infty}\left[x \log (x+n+1)\left(\frac{\log n!}{\log (n+1)}-\frac{\log (n-1)!}{\log n}\right)\right. \\
-\log [(x+n) \ldots x]] \frac{1}{\log x}
\end{gathered}
$$

that is, f is uniquely determined on $(0,1]$. According to well known uniqueness theorems on difference equations, we have that f, as a convex solution of (7), is uniquely determined on all of $(0, \infty)$. Since g is also a convex solution of (7), we have $f=g$.

Theorem 2. The only solution of (7), convex on a neighborhood of infinity is $g(x)=\frac{\log \Gamma(x)}{\log x}$.

Proof. Let $f:(0, \infty) \rightarrow \mathbb{R}$ a solution of (7), convex say for $x>a$ for some positive real a. We can proceed as in the proof of Theorem 1, except that we have suppose in (11) that $n>a$ holds.

3. Final remarks

In a recent paper [4] P. Grabner et al. showed that the function $x \mapsto \frac{\log \Gamma(x+1)}{x}$ is concave on $(-1, \infty)$ and it is characterized as the only concave solution of its functional equation. In contrary to this the function $\frac{\log \Gamma(x+1)}{\log x}=\frac{\log \Gamma(x)}{\log x}+1$ is convex on $(0, \infty)$.

In this connection the following question arises. What is the behavior of the function $x \mapsto \frac{\log \Gamma(x+1)}{x^{\alpha}}$ or $x \mapsto \frac{\log \Gamma(x)}{x^{\alpha}}$ for a fixed real α ? Here the case $0<\alpha<1$ is of interest.

For $\alpha \in(0,1)$ the plotted graph of these functions looks like convex, at least for small x. Nevertheless it is easy to show that there is a constant c, depending on α, such that these functions are concave for $x>c$.

The function $x \mapsto \frac{\log \Gamma(x)}{x^{\alpha}}$ e.g. fulfills the functional equation

$$
\begin{equation*}
f(x+1)=f(x) \cdot \frac{x^{\alpha}}{(x+1)^{\alpha}}+\frac{\log (x)}{(x+1)^{\alpha}}, \quad x \in(0, \infty) . \tag{12}
\end{equation*}
$$

It is routine to show that $x \mapsto \frac{\log \Gamma(x)}{x^{\alpha}}$ is the only solution of (12), concave in a neighborhood of infinity, together with the side condition $f(1)=0$. A similar statement can be given for the function $x \mapsto \frac{\log \Gamma(x+1)}{x^{\alpha}}$. By this we receive different forms of characterizations of the gamma function.

References

[1] M. Abramowitz and I. Stegun (eds.), Handbook of Mathematical functions, Dover Publ., New York, 1970.
[2] E. Artin, Einführung in die Theorie der Gammafunktion, Hamburger Math. Einzelschr., Heft 1, B. G. Teubner, Leipzig/Berlin, 1931.
[3] C. Caratheodory, Theory of functions of a complex variable, Vol. I, Chelsea Publ., New York, 1964.
[4] P. J. Grabner, R. F. Tichy and U. T. Zimmermann, Inequalities for the gamma function with application to permanents, Discrete Math. 154 (1996), 53-62.
[5] D. Gronau and J. Matkowski, Geometrical convexity and generalizations of the Bohr-Mollerup Theorem on the Gamma function, Mathematica Pannonica 4/2 (1993), 1-8.

DETLEF GRONAU
INSTITUT FÜR MATHEMATIK
KARL-FRANZENS-UNIVERSITÄT GRAZ
HEINRICHSTR. 36
A-8010 GRAZ
AUSTRIA
E-mail: gronau@uni-graz.at
JANUSZ MATKOWSKI
INSTITUTE OF MATHEMATICS
UNIVERSITY OF ZIELONA GÓRA
PODGÓRNA 50
PL-65-246 ZIELONA GÓRA
POLAND
E-mail: jmatk@wsp.zgora.pls
(Received October 24, 2001; revised May 27, 2002)

