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A Lévy-characterization for Gaussian processes
on matrix groups

By MICHAEL VOIT (Dortmund)

Abstract. In this paper we extend the classical Lévy characterization of
Brownian motions on Rn to real matrix groups by using group representations.
More precisely, we show: Let (µt)t≥0 be a Gaussian convolution semigroup on a
locally compact group G which admits a faithful finite-dimensional real represen-
tation ρ, and let (Xt)t≥0 be an a.s. continuous process on G. If for π ∈ {ρ, ρ⊗ρ},
the matrix-valued processes (π̃(µt)−1π(Xt))t≥0 are martingales with the invertible
matrices π̃(µt) :=

∫
G

π(g) dµt(g), then (Xt)t≥0 is a Gaussian process associated
with (µt)t≥0.

1. Introduction

A classical result of P. Lévy states that an a.s. continuous process
(Bt)t≥0 on R is a Brownian motion if and only if (Bt)t≥0 and (B2

t − t)t≥0

are martingales. This characterization is usually extended to Markov pro-
cesses in terms of the martingale problem; see, for instance, [4], [12]. A
variant of the martingale problem for certain diffusions on R more closely
related with the Lévy characterization of Brownian motion was given in
[14]. Moreover, a modified version of the martingale problem was pre-
sented in [15] for Lévy processes on locally compact groups G in terms
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of unitary representations. In particular, for Brownian motions on com-
pact Lie groups, this martingale characterization was extended in [15] to
a Lévy-type characterization in terms of finitely many finite-dimensional
unitary representations of G. In this paper we present a variant of this
characterization for Brownian motions on non-compact matrix groups or,
which is almost equivalent, on locally compact second countable groups
having a not necessarily unitary, but finite-dimensional faithful real repre-
sentation. We shall show that for G = R, this characterization in fact leads
to the classical Lévy characterization. Before we state the main result of
this paper in Theorem 2.9, we recapitulate some notions and basic facts
in the followig section. The proof of the main result as well as of some
further technical statements will be given in Section 3. The final Section 4
contains an example based on the Heisenberg group as well as some further
comments and conclusions.

2. Statement of the main results

Throughout this paper let G be a locally compact, second countable
group. Let Mb(G) and M1(G) be the spaces of all signed regular Borel
measures and probability measures on G respectively. The space Mb(G)
together with the convolution ∗ as multiplication and the total variation
norm is a Banach algebra. Moreover, let C0(G) be the space of all contin-
uous functions on G vanishing at infinity.

2.1. Convolution semigroups

(1) A family (µt)t≥0 ⊂ M1(G) is a convolution semigroup if µs ∗µt = µs+t

for s, t ≥ 0, if µ0 = δe, and if [0,∞[ → M1(G), t 7→ µt, is weakly
continuous. Moreover, a G-valued process (Xt)t≥0 is called a Lévy
process related with a convolution semigroup (µt)t≥0 on G, if for n ∈ N
and 0 ≤ t0 ≤ t1 ≤ · · · ≤ tn, the increments

Xt1X
−1
t0

, Xt2X
−1
t1

, . . . , XtnX−1
tn−1

are independent, and if Xt1X
−1
t0

is µt1−t0-distributed. Recall that a
Lévy process always admits a version with càdlàg paths.
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(2) A convolution semigroup (µt)t≥0 on G is called Gaussian if

lim
t→0

1
t
µt(G \ Ue) = 0 for all neighborhoods Ue of e.

A Lévy process on G associated with a Gaussian convolution semi-
group (µt)t≥0 is called a Gaussian process. Recapitulate that (µt)t≥0

is Gaussian if and only if each associated Lévy process admits a con-
tinuous version (see Section I.9 of [2]). These continuous versions are
called Brownian motions on G.

(3) We define the generator of a convolution semigroup (µt)t≥0 on G by

Lf(x) := lim
t→0

1
t

(
µ−t ∗ f(x)− f(x)

)

= lim
t→0

1
t

(∫

G
f(yx) dµt(y)− f(x)

) (2.1)

for x ∈ G and f in the domain D(L) of L which is ‖ . ‖∞-dense in
C0(G). This definition differs for non-commutative groups from that
in Section 4.1 of [7], where the product is taken from the other side.
As both definitions are essentially equivalent (note also our definition
of a Lévy process), and as the definition above is more convenient later
on from an operator theory point of view, we use the above notion.
We here finally notice that for a Lie group G, the space C2

0 (G) of all
2-times (from the left or from the right) differentiable C0(G)-functions
is contained in D(L) for any convolution semigroup (µt)t≥0 on G; see
Theorems 4.1.14 and 4.1.16 of [7].

It is well-known that Lévy processes on Lie groups admit the following
martingale characterization; see [5] and Theorems 4.1.7 and 4.4.1 in [4]:

2.2. Proposition. Let (µt)t≥0 be a convolution semigroup on a Lie

group G with generator L. Then a càdlàg process (Xt)t≥0 on G is a Lévy

process associated with (µt)t≥0 if and only if for each f ∈ C2
0 (G) the

process (f(Xt)−
∫ t
0 Lf(Xs) ds)t≥0 is a martingale.

We here note that for all Lévy processes (Xt)t≥0 on Lie groups and
f ∈ C2

0 (G), the martingales (f(Xt) −
∫ t
0 Lf(Xs) ds)t≥0 can be described

explicitly as stochastic integrals in terms of classical Brownian motions
and independent Poisson random measures; see Section 3 of [1].
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In this paper we are interested in a variant of the martingale char-
acterization 2.2 that involves representations of G. We first recapitulate
some notations and facts on representations.

2.3. Representations of locally compact groups

(1) Let H be a real or complex separable Hilbert space H, and let the
space B(H) of all bounded linear operators on H be equipped with
the weak operator topology. A representation π of G on H then is
a continuous homomorphism π : G → B(H) with π(e) as identity
operator. Notice, that in particular for a representation π and all
a, b ∈ H, the mappings g 7→ 〈π(g)a, b〉 on G are continuous.

(2) A representation π of G on H is called faithful, if π : G → B(H)
is injective. Moreover, π will be called real, if H is a real Hilbert
space or if there is a orthonormal basis of H such that for all x ∈ G

the operators π(x) can be written as real (possibly infinite) matrices
with respect to this basis (which means that π may be regarded as a
representation on a real Hilbert space).

(3) A representation π is called unitary if π(g) is unitary for each g ∈ G.
It is well-known that a unitary representation π can always be ex-
tended uniquely to a strongly continuous Banach algebra homomor-
phism π̃ : Mb(G) → B(H), where the operator π̃(µ) =

∫
G π(g) dµ(g)

is characterized by

〈π̃(µ)a, b〉 =
∫

G
〈π(g)a, b〉 dµ(g) (a, b ∈ H); (2.2)

for the proof and further details see [6].

(4) Now let π be a not necessarily unitary representation of H. In order
to ensure in this case that the operators π̃(µt) ∈ B(H) exist we need
additional “moment conditions” for the convolution semigroup (µt)t≥0.
The following result shows that we are always on the safe way for
Gaussian semigroups. The proof of this result will be postponed to
Section 3.

2.4. Proposition. Let π be a representation of a locally compact

second countable group G on some separable Hilbert space H, and let

(µt)t≥0 be a Gaussian semigroup on G. Then there exist unique operators
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π̃(µt) ∈ B(H) for which equation (2.2) holds. These operators form a

weakly continuous one-parameter semigroup (π̃(µt))t≥0 ⊂ B(H).

2.5. Remark. Let π be a representation of G on H and (µt)t≥0 a con-
volution semigroup on G. Assume that (π̃(µt))t≥0 ⊂ B(H) exists which
is the case for unitary representations and all (µt)t≥0 by Section 2.3(3) as
well as for Gaussian semigroups (µt)t≥0 and arbitrary representations by
Proposition 2.4. In order to state our martingale characterizations of Lévy
processes associated with (µt)t≥0, we need in addition that the operators
π̃(µt)−1 ∈ B(H) exist. If H is finite-dimensional, then the weak topol-
ogy on B(H) is equivalent to the norm topology, and, as all operators in
a neighborhood of the identity admit inverse operators, it follows readily
that π̃(µt)−1 ∈ B(H) exists for all t ≥ 0. We conclude that in particu-
lar for Gaussian semigroups (µt)t≥0 and finite-dimensional representations
π̃(µt)−1 ∈ B(H) exists for each t ≥ 0.

As a final preparation we introduce the following simple notion of
operator-valued martingales (for general Banach space-valued martingales
see [9]):

2.6. Operator-valued martingales. Let H be a separable Hilbert space.
Let (Zt)t≥0 be a B(H)-valued stochastic process with filtration (Ft)t≥0.
Then (Zt)t≥0 is called a B(H)-valued martingale (w.r.t. (Ft)t≥0), if for
all a, b ∈ H, the C-valued processes (〈Zta, b〉)t≥0 are martingales (w.r.t.
(Ft)t≥0). Clearly, a similar notion is available for local L2-martingales and
so on.

We next recapitulate Lemma 2.5(1) of [15]; it is stated there for uni-
tary representations only, but its proof obviously extends to the following
setting.

2.7. Lemma. Let π be a representation of G on some Hilbert space

H. Let (µt)t≥0 be a convolution semigroup on G such that the opera-

tors π̃(µt) ∈ B(H) exist and are invertible for all t ≥ 0. If (Xt)t≥0 is

a Lévy process associated with (µt)t≥0 and with filtration (Ft)t≥0, then

(π̃(µt)−1π(Xt))t≥0 is a B(H)-valued martingale w.r.t. (Ft)t≥0.

In [15] several versions of converse statements of Lemma 2.7 of the
following kind were derived: If (µt)t≥0 is a convolution semigroup and
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(Xt)t≥0 an arbitrary stochastic process on G such that (π̃(µt)−1π(Xt))t≥0

is an operator-valued martingale for “sufficiently” many unitary represen-
tations, then (Xt)t≥0 must be a Lévy process associated with (µt)t≥0. In
the case of Gaussian semigroups on compact Lie groups, we derived the
following Lévy-type characterization in [15]:

2.8. Theorem. Let (µt)t≥0 be a Gaussian semigroup on a compact

Lie group G, and let ρ be a faithful finite-dimensional unitary representa-

tion of G. Then the following statements are equivalent for a stochastic

process (Xt)t≥0 on G with filtration (Ft)t≥0:

(1) (Xt)t≥0 is a Gaussian process associated with (µt)t≥0.

(2) The process (Xt)t≥0 admits a continuous version, and for π ∈ {ρ, ρ⊗
ρ}, the process (π̃(µt)−1π(Xt))t≥0 is a matrix-valued martingale w.r.t.

(Ft)t≥0.

(3) For π ∈ {ρ, ρ⊗ρ, ρ⊗ρ}, the process (π̃(µt)−1π(Xt))t≥0 is a martingale.

The following variant of the equivalence (1) ⇐⇒ (2) in Theorem 2.8
is the main result of this paper; it will be proved in Section 3.

2.9. Theorem. Let (µt)t≥0 be a Gaussian semigroup on a locally

compact second countable group G, and let ρ be a faithful finite-dimen-

sional real representation of G. Then the following statements are equiv-

alent for a continuous process (Xt)t≥0 on G with filtration (Ft)t≥0:

(1) (Xt)t≥0 is a Gaussian process associated with (µt)t≥0;

(2) For π ∈ {ρ, ρ ⊗ ρ}, the process (π̃(µt)−1π(Xt))t≥0 is a matrix-valued

(Ft)t≥0-martingale.

Notice that Part (2) of the theorem makes sense by Proposition 2.4
and Remark 2.5. Here is the most important example:

2.10. Example. The usual Lévy-characterization of the n-dimensional
Brownian motion on Rn can be obtained from Theorem 1.8 as follows:
Embed (Rn,+) into GL(2n,R) via the representation

ρ : (x1, . . . , xn) 7−→




B(x1) 0
. . .

0 B(xn)


 with B(xi) :=

(
1 xi

0 1

)
.
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Condition (2) of Theorem 2.9 for the standard Gaussian semigroup on
Rn then just means that the processes (Xi

t)t≥0 and (Xi
tX

j
t − δi,jt)t≥0 are

martingales for i, j = 1, . . . , n as claimed. In other words, Theorem 2.9
yields the usual Lévy-characterization.

2.11. Remark. The condition of π being a real representation of G is
essential in Theorem 2.9. Here is an example:

Let T = {z ∈ C : |z| = 1} and R be equipped with the usual group
structures. Then the Lie group G := T × R admits the one-dimensional
faithful complex representation π : G → C \ {0} with π(z, x) := z · ex.
Let B := (B1

t , B2
t )t≥0 be a two-dimensional Brownian motion on R2 (with

independent component and B1
0 = B2

0 = 0). Then, the process X :=
(eiB1

t , B2
t )t≥0 is a non-degenerated Gaussian process on G. On the other

hand, as for each c ≥ 0, the processes (eicB1
t +c2t/2)t≥0 and (ecB2

t−c2t/2)t≥0

are independent C-valued martingales, it follows that
(
π(Xt) = eiB1

t +B2
t = eiB1

t +t/2 · eB2
t−t/2

)
t≥0

and (
(π ⊗C π)(Xt) = e2(iB1

t +B2
t ) = e2iB1

t +2t · e2B2
t−2t

)
t≥0

are C-valued martingales with respect to the Brownian filtration of B (see,
for instance, the proof of Theorem 7.3.16 in [16]). If Theorem 2.9 would
be available in this case, we could conclude for the degenerate convolution
Gaussian semigroup (µt := δ(1,0))t≥0 that Xt = (1, 0) for all t ≥ 0 almost
surely which is not the case.

On the other hand, we always may regard any n-dimensional complex
representation ρ : G → GL(n,C) of G as a 2n-dimensional real represen-
tation ρ : G → GL(2n,R) to which Theorem 2.9 can be applied. But in
this case we have to use the real tensor product ρ⊗R ρ in Condition (2) of
Theorem 2.9 instead of the complex one which is not sufficient.

3. Proof of the main results

3.1. Proof of Proposition 2.4. Denoting the operator norm of A ∈
B(H) by ‖A‖, we first observe that the function f : G → ] 0,∞[ with
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f(x) := ‖π(x)‖ is submultiplicative, i.e., f(xy) ≤ f(x)f(y) for x, y ∈ G.
Moreover, as, by the Riesz–Fréchet theorem,

‖π(x)‖ = sup{|π(x)a| : a ∈ E} = sup{|〈π(x)a, b〉| : a, b ∈ E}
for all x ∈ G and any countable dense subset E of the unit sphere in H,
f is also measurable on G. We therefore may apply Theorem 1 of Siebert

[10] to the Gaussian semigroup (µt)t≥0 whose Lévy measure is equal to 0,
and we conclude that for all t ≥ 0,

sup
0≤s≤t

∫

G
‖π(x)‖dµs(x) =: Mt,π < ∞.

As for a, b ∈ H and x ∈ G, |〈π(x)a, b〉 | ≤ ‖π(x)‖ ‖a‖ ‖b‖, the equation
Tb(a) :=

∫
G〈π(g)a, b〉 dµt(g) defines bounded linear functionals. Hence, by

the Riesz–Fréchet theorem, there are unique linear operators π̃(µt) on H

for t ≥ 0 with

〈π̃(µt)a, b〉 =
∫

G
〈π(g)a, b〉 dµt(g) (a, b ∈ H).

Moreover, as for a, b ∈ H,

|〈π̃(µt)a, b〉| ≤
∫

G
|〈π(x)a, b〉| dµt(x) ≤ ‖a‖ ‖b‖Mt,π,

these operators are bounded with

‖π̃(µt)‖ = sup
{|〈π̃(µt)a, b〉|/(‖a‖ ‖b‖) : a, b ∈ H \ {0}} ≤ Mt,π.

Moreover, for s, t ≥ 0 and a, b ∈ H we have

〈π̃(µs+t)a, b〉 =
∫

G
〈π(z)a, b〉 dµs+t(z) =

∫

G

∫

G
〈π(x)π(y)a, b〉 dµs(x)dµt(y)

=
∫

G
〈π̃(µs)π(y)a, b〉 dµt(y) =

∫

G
〈π(y)a, π̃(µs)∗b〉 dµt(y)

= 〈π̃(µt)a, π̃(µs)∗b〉 = 〈π̃(µs)π̃(µt)a, b〉,
where .∗ denotes the adjoint operator. This shows that (π̃(µt))t≥0 ∈ B(H)
is a one-parameter semigroup in B(H) where π̃(µ0) = π(e) is the identity.

We next check that this semigroup is weakly continuous. For this take
a, b ∈ H, t ∈ [0,∞[, and a sequence (tn)n≥0 ⊂ [0,∞[ which converges to
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t. In order to prove limn〈π̃(µtn)a, b〉 = 〈π̃(µt)a, b〉, we use the continuous
function f : G → C with f(x) := 〈π(x)a, b〉, and observe that for all s ≥ 0,

〈π̃(µs)a, b〉 =
∫

G
f dµs =

∫

C
x df(µs)(x),

where the images f(µtn) ⊂ M1(C) tend weakly to f(µt) ⊂ M1(C). We
shall prove that

lim
n

∫

C
x df(µtn)(x) =

∫

C
x df(µt)(x),

which then yields the claim.
For this, we fix some orthonormal basis (ei)i∈I of H with index set

I ⊂ N. Each vector c ∈ H may be uniquely written as c =
∑

i∈I ciei with
ci ∈ C; therefore, the complex conjugate c :=

∑
i∈I ciei of c w.r.t. (ei)i∈I

is well defined. In a similar way, we may define a kind of contragredient
representation π of G on H w.r.t. (ei)i∈I by taking complex conjugate
entries in the representation of π(x) for x ∈ G in the matrix representation
of π(x) w.r.t. (ei)i∈I . Obviously, π is again a representation of G on H.
Now consider the tensor product representation π⊗ π of G on the Hilbert
space H ⊗H. Then for s ≥ 0,

∫

G
〈(π(x)⊗ π(x))(a⊗ a), (b⊗ b)〉 dµs(x)

=
∫

G

(
〈π(x)a, b〉 · 〈π(x)a, b〉

)
dµs(x)

=
∫

G
|〈π(x)a, b〉|2 dµs(x) =

∫

G
|f |2 dµs =

∫

C
|x|2 df(µs)(x),

and for all 0 ≤ s ≤ T

∣∣∣
∫

G
〈(π(x)⊗ π(x))(a⊗ a), (b⊗ b)〉 dµs(x)

∣∣∣

≤ ‖a‖2‖b‖2

∫

G
‖ π(x)⊗ π(x)‖ dµs(x)

≤ ‖a‖2‖b‖2MT,π⊗π < ∞.

Therefore, sup0≤s≤T

∫
C |x|2 df(µs)(x) < ∞ for all T ≥ 0. This fact and

the weak convergence of the measures f(µtn) ∈ M1(C) to f(µt) now imply
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that
lim
n

∫

C
x df(µtn)(x) =

∫

C
x df(µt)(x);

see, for instance, Corollary 7 in Section 8.1 of [3]. This completes the proof
of the proposition. ¤

3.2. Remarks. (1) Instead of the result of Siebert on submultiplicative
functions, one may also use moment estimates of Ibero [8] for Gaussian
processes on Lie groups in the proof above. Ibero’s results, however, can
be applied to finite-dimensional representations only.

(2) Let π be a representation of a locally compact second countable
group G on some separable Hilbert space H, and let (µt)t≥0 be an arbitrary
convolution semigroup on G. Along the lines of the preceding proof, the
results in [10], [11] lead to jump conditions on the Lévy measure of (µt)t≥0

and the representation π which ensure that (π̃(µt))t≥0 ⊂ B(H) exists as a
weakly continuous one-parameter semigroup.

We next turn to the proof of Theorem 2.9. We here need some prepa-
rations. We begin with a result which gives a connection between the
classical form of the martingale problem and a martingale characteriza-
tion in the spirit of Part (2) of Theorems 2.8 and 2.9. We omit the proof
which is completely analogous to that of Proposition 2.8 of [15].

3.3. Proposition. Let (µt)t≥0 be a convolution semigroup and π be

a finite-dimensional representation of G on some Hilbert space H such that

(π̃(µt))t≥0 exists as a one-parameter semigroup. Let

F := lim
t→0

1
t

(
π̃(µt)− Id

) ∈ B(H)

be its generator. Then for each càdlàg-process (Xt)t≥0 on G,

(π̃(µt)−1π(Xt))t≥0 is a B(H)-valued local L2-martingale if and only if so

is
(
π(Xt)− F · ∫ t

0 π(Xs) ds
)
t≥0

.

We also need the following technical result (which is likely to be
known).

3.4. Lemma. Let G,H be second countable locally compact spaces

and f : G → H continuous and injective. Then, for all probability mea-

sures µ, ν ∈ M1(G), f(µ) = f(ν) implies µ = ν.



A Lévy-characterization for Gaussian processes on matrix groups 125

Proof. If K⊂G is compact, then f(K) is compact with f−1(f(K))=
K. Hence, µ(K) = f(µ)(f(K)) = f(ν)(f(K)) = ν(K). As µ and ν are
regular, µ = ν follows. ¤

3.5. Proposition. Let G, H be second countable locally compact

groups and π : G → H a continuous injective group homomorphism. Let

(µt)t≥0 be a convolution semigroup on G and (Xt)t≥0 a G-valued stochastic

process. If (π(Xt))t≥0 is a Lévy process on H associated with the convo-

lution semigroup (π(µt))t≥0 on H, then (Xt)t≥0 is a Lévy process on G

associated with (µt)t≥0.

Proof. We have to show that for any n ∈ N and 0 ≤ t0 ≤ t1 ≤ · · · ≤
tn the probability measure µ := µtn−tn−1 ⊗ · · · ⊗ µt1−t0 ∈ M1(Gn) is equal
to the distribution ν ∈ M1(Gn) of the random variable
(XtnX−1

tn−1
, . . . , Xt1X

−1
t0

). As by our assumption, πn(µ) = πn(ν) ∈ M1(H)
holds for the continuous injective homomorphism πn : Gn → Hn with
πn((x1, . . . , xn)) := (π(x1), . . . , π(xn)), the result follows from the preced-
ing lemma. ¤

3.6. Proof of Theorem 2.9. The conclusion (1) =⇒ (2) follows from
Lemma 2.7, as this lemma can be applied to the representations ρ and
ρ⊗ ρ by Proposition 2.4.

To prove (2) =⇒ (1), we regard ρ as a continuous faithful group
homomorphism ρ : G → GL(n,R) for some n ∈ N. By taking images of
measures, this homomorphism induces a Banach algebra homomorphism
ρ : Mb(G) → Mb(GL(n,R)) of measures such that, obviously, (ρ(µt))t≥0

is now a Gaussian semigroup on GL(n,R). If the theorem is proved for
the group GL(n,R) with the identity as representation, we conclude that
the process (ρ(Xt))t≥0 is a Gaussian process on GL(n,R) associated with
(ρ(µt))t≥0, and the claim follows from Proposition 3.5.

It therefore suffices to check the theorem for G = GL(n,R) and ρ

as identity. In this case, take a continuous process (Xt)t≥0 on G which
satisfies Condition (2) of the theorem. Realize the tensor product repre-
sentation ρ ⊗ ρ on Rn2

as matrices with (ρ ⊗ ρ(x))(ik)(jl) = xijxkl. More-
over, denote the generators of the semigroups (ρ̃(µt))t≥0 ⊂ GL(n,R) and
(ρ̃⊗ ρ(µt))t≥0 ⊂ GL(n2,R) by F1 and F2 respectively. Let i, j, k, l ∈
{1, . . . , n}. It follows from Condition (2) that the coordinates (Xij

t )t≥0
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are semimartingales. Itô’s formula hence yields

d(Xij
t Xkl

t ) = Xij
t dXkl

t + Xkl
t dXij

t + d[Xij , Xkl]t

where [ . , . ] as usual denotes the quadratic variation. Therefore,

d(Xij
t Xkl

t )− (F2 · (Xt ⊗Xt))(i,k)(j,l)dt−Xij
t

(
dXkl

t − (F1 ·Xt)kldt
)

−Xkl
t

(
dXij

t − (F1 ·Xt)ijdt
)

= Hijkl(Xt)dt + d[Xij , Xkl]t
(3.1)

with

Hijkl(x) := xij(F1 · x)kl + xkl(F1 · x)ij − (F2 · (x⊗ x))(i,k)(j,l) (x ∈ G).

The left hand side of (3.1) is the differential of a local martingale by
Condition (2) and Proposition 3.3. Moreover, as a stochastic integral with
respect to a process with paths with a.s. locally finite variation is again a
process of this kind see, for example, Proposition 5.3.5 in [16]), the right
hand side of (3.1) has a.s. locally finite variation. Hence, both sides of (3.1)
are a.s. equal to zero (see, for instance, Theorem 5.3.2 in [16]). We thus
conclude that

d[Xij , Xkl]t = −Hijkl(Xt)dt. (3.2)

Now take h ∈ C2
0 (Rn2

), and denote the partial derivative w.r.t. the variable
xij by ∂i,j . Then by Itô’s formula and equation (3.2),

dh(Xt) =
n∑

i,j=1

(∂i,jh)(Xt)
(
dXij

t − (F1 ·Xt)ijdt
)

+
n∑

i,j=1

(∂i,jh)(Xt)(F1 ·Xt)ijdt

− 1
2

n∑

i,j,k,l=1

(∂k,l∂i,jh)(Xt) ·Hijkl(Xt)dt.

(3.3)

By our discussion in Section 2.1(3), h|G ∈ C2
0 (G) is in the domain of the

generator L associated with (µt)t≥0. As

n∑

i,j=1

(∂i,jh)(Xt)
(
dXij

t − (F1 ·Xt)ijdt
)
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is the differential of a local martingale by Condition (2) and Proposi-
tion 3.3, equation (3.3) implies that

dh(Xt)− Lh(Xt) dt (3.4)

is the differential of a local martingale if and only if

{ n∑

i,j=1

(∂i,jh)(Xt)(F1 ·Xt)ij − Lh(Xt)

− 1
2

n∑

i,j,k,l=1

(∂k,l∂i,jh)(Xt) ·Hijkl(Xt)
}

dt

(3.5)

is the differential of a local martingale. The latter is possible if and only if
(3.5) is equal to zero a.s., which means that the integrand there disappears.

In order to prove that (3.5) is equal to zero a.s., we replace the process
(Xt)t≥0 above by some Gaussian process (Yt)t≥0 related with (µt)t≥0 such
that the support of the initial distribution of Y0 is equal to G. By Propo-
sition 2.2, the associated differential (3.4) belongs to a local martingale.
Hence, by the conclusions above,

n∑

i,j=1

(∂i,jh)(Yt)(F1 · Yt)ij − Lh(Yt)

− 1
2

n∑

i,j,k,l=1

(∂k,l∂i,jh)(Yt) ·Hijkl(Yt) = 0

(3.6)

for all t ≥ 0 a.s. It follows that for all x ∈ G,

n∑

i,j=1

(∂i,jh)(x)(F1 · x)ij − Lh(x)

− 1
2

n∑

i,j,k,l=1

(∂k,l∂i,jh)(x) ·Hijkl(x) = 0.
(3.7)

Therefore, the differential (3.5) is equal to zero for (Xt)t≥0, and the differ-
ential (3.4) belongs to a local martingale for each h ∈ C2

0 (Rn2
). Proposi-

tion 2.2 now completes the proof.
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3.7. Remark. Equation (3.7) above yields the well-known fact due
to Hunt that the generator L of a Gaussian semigroup on GL(n,R) is a
second-order differential operator; see Ch. 4 of [7].

Notice also that equation (3.7) allows an easy computation of L from
the matrices F1, F2 above. Conversely, if L is known, then F1, F2 can be
computed via

F1 = (Lρi,j(I))i,j=1,...,n, F2 = (L(ρ⊗ ρ)(i,k)(j,l)(I))i,j,k,l=1,...,n (3.8)

with I the identity matrix. We give an example in the following section.

4. Examples and further conclusions

4.1. Example. The Heisenberg group H:= {(x1, x2, x3) : x1, x2, x3 ∈R}
with multiplication

(x1, x2, x3) · (y1, y2, y3) := (x1 + y1, x2 + y2, x3 + y3 + (x1y2 − x2y1)/2)

is isomorphic with the matrix group

H̃ :=



M(x, y, z) :=




1 x z

0 1 y

0 0 1


 : x, y, z ∈ R





via the faithful representation

ρ : (x1, x2, x3) 7−→ M(x1, x2, x3 + x1x2/2). (4.1)

It is well known that the sub-Laplacian

L :=
1
2

(
∂1 +

x2

2
∂3

)2
+

1
2

(
∂2 − x1

2
∂3

)2
(4.2)

is the generator of a Gaussian convolution semigroup on H. If we transfer
this object to H̃ by using ρ, we get the generator

L̃ =
1
2
(∂2

x + ∂2
y + y2∂2

z + 2y∂x∂z). (4.3)

It is now straightforward to compute the generator matrices F1, F2 from
(3.8) and (4.3), and thus the matrices ρ̃(µt) and ρ̃⊗ ρ(µt). In this way,
Theorem 2.9 leads to the following Lévy-characterization:
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4.2. Corollary. Let (Xt)t≥0, (Yt)t≥0, (Zt)t≥0 be continuous R-valued

processes. Then the H̃-valued process (M(Xt, Yt, Zt))t≥0 is a Gaussian

process associated with L̃ if and only if the processes

(Xt)t≥0, (Yt)t≥0, (Zt)t≥0, (X2
t − t)t≥0, (Y 2

t − t)t≥0, (XtYt)t≥0,

(ZtYt)t≥0, (XtZt − tYt)t≥0, and (Z2
t − tY 2

t + t2/2)t≥0

are (local) martingales.

Let (W1,t, W2,t)t≥0 be a Brownian motion on R2. Itô’s calculus imme-
diately implies that the martingale condition of the corollary holds for the
process (

M

(
W1,t, W2,t,

∫ t

0
W2,s dW1,s

))

t≥0

. (4.4)

Corollary 4.2 therefore implies the well-known fact that the process (4.4)
is a left-invariant Gaussian process on H̃ associated with the Gaussian
convolution semigroup with generator L̃. Note that by Itô’s formula, this
is equivalent to the fact that

(
W1,t,W2,t,

1
2

∫ t

0
W2,s dW1,s −W1,s dW2,s

)

t≥0

(4.5)

is a left-invariant Gaussian process on H associated with L. Clearly, this
example can be extended to further Gaussian semigroups on H or on
arbitrary simply connected nilpotent Lie groups (as these groups always
admit a faithful representation as upper triangular matrices).

4.3. Remark. Let (Bt)t≥0 be a standard Brownian motion on R with
standard Gaussian semigroup (νt)t≥0. Consider the representation

ρ : x 7−→
(

1 x

0 1

)

of R as in Section 2.10. Then for each n ∈ N, ρ⊗,n(x) is a (2n×2n)-matrix
with rows and columns labelled, say, by (a1, . . . , an) with ai ∈ {1, 2} in the
obvious way. In particular,

ρ⊗,n(x)(a1,...,an),(b1,...,bn) =

{
0 if ai > bi for some i,

x|{i:ai<bi}| otherwise.
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Using the moments of normal distributions, we thus obtain

ρ̃⊗,n(νt)(a1,...,an),(b1,...,bn) =





0 if ai > bi for some i or

if |{i : ai < bi}| is odd,
tr(2r)!
2rr!

if r := 1
2 |{i : ai < bi}| ∈ Z.

As this matrix is an upper triangular which remains invariant under per-
mutations in (a1, . . . , an) and (b1, . . . , bn), a straightforward, but tedious
induction on n yields that

(ρ̃⊗,n(νt))−1
(1,...,1),(b1,...,bn) =





(−1)r tr(2r)!
2rr!

if r := 1
2 |{i : 1 < bi}| ∈ Z,

0 otherwise.

We now use the usual normalization of the Hermite polynomials Hn (see,
for instance, [13]) such that these polynomials are orthogonal w.r.t. the
weight function e−x2

. We then obtain from the well-known power series
for the Hn (see equation (5.5.4) in [13]) that

((
ρ̃⊗,n(νt)

)−1
ρ⊗,n(x)

)
(1,...,1),(2,...,2)

=
1

2n/2
tn/2Hn

(
x/

√
t/2

)
. (4.6)

Consequently, the trivial part of Theorem 1.8 implies that (Rn(t, Bt))t≥0

is a martingale for each heat polynomial Rn(t, x) := tn/2Hn(x/
√

t/2) with
n ≥ 0. We expect that equation (4.6) admits some physical meaning.

On the other hand it was observed by Wesolowski [17] that if (Xt)t≥0

is an arbitrary process on R such that (Rn(t,Xt))t≥0 is a martingale for
n ∈ {1, 2, 3, 4}, then (Xt)t≥0 is already a Brownian motion in distribution
(in fact, the existence of a continuous version of (Xt)t≥0 follows from Kol-
mogorov’s criterion, and then Levy’s classical martingale characterization
applies). In view of (4.6) this observation may be restated as follows:

4.4. Theorem. Let (Xt)t≥0 be an arbitrary process on R such for

n ∈ {1, 2, 3, 4} and ρ as above, the processes ((ρ̃⊗,n(νt))−1ρ⊗,n(Xt))t≥0 are

martingales. Then (Xt)t≥0 is a Brownian motion in distribution.

This result can be extended to Rn in the obvious way. We expect that
such a characterization holds more generally. More precisey, we have the
following conjecture:
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4.5. Conjecture. Let (µt)t≥0 be a Gaussian semigroup on a locally

compact second countable group G, and let ρ be a faithful finite-dimen-

sional real representation of G. Let (Xt)t≥0 be a G-valued process such

that for each π ∈ {ρ⊗,n : n = 1, 2, 3, 4}, the process (π̃(µt)−1π(Xt))t≥0 is a

martingale. Then (Xt)t≥0 is a Gaussian process associated with (µt)t≥0.

By Proposition 3.5, the conjecture can be easily reduced to the case
G = GL(n,R).
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