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Operators consistent in regularity

By DRAGAN S. DJORDJEVIĆ (Nǐs)

Abstract. If S(X) is an arbitrary subset of L(X) (where L(X) is the set
of all bounded operators on a Banach space X), then we say that B ∈ L(X) is
S-consistent, or consistent in S(X), provided that for all A ∈ L(X) the following
holds:

AB ∈ S(X) if and only if BA ∈ S(X).

It is convenient to take that S(X) is close to the set of all invertible operators on
X, or that S(X) contains regular operators. Here “regular” means that S(X) is
equal to the set of invertible, left (right) invertible, Fredholm, left (right) Fred-
holm, Weyl, or Browder operators on X. In this article we completely describe
operators consistent in the previous regularities.

1. Introduction

Let X denote an arbitrary infinite dimensional complex Banach space
and L(X) denote the set of all bounded operators on X. For T ∈ L(X)
we use N (T ) and R(T ), respectively, to denote the kernel and the range
of T .

Let S(X) denote an arbitrary subset of L(X). We say that B ∈ L(X)
is S-consistent, or consistent in S(X), provided that for all A ∈ L(X) the
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following holds [6]:

AB ∈ S(X) if and only if BA ∈ S(X).

In this article we consider the cases when S(X) is the invertible, left
or right invertible operators, giving in particular the main results of [6], as
well as several kinds of Fredholm operators.

Section 2 is devoted to operators consistent in invertibility. In this
section the main result for bounded operators on Banach spaces is proved.
Section 2 contains generalizations of corresponding results from [6]. Also,
some new aspects of operators consistent in left and right invertibility
are considered. We also introduce a concept of strictly left singular and
strictly right singular operators on Banach spaces. It seems to be a natural
generalization of the known classes of α-strictly singular and α-strictly
cosingular operators on Hilbert spaces.

Section 3 seems to be essentially new, where we consider Fredholm,
left and right Fredholm, Weyl and Browder consistent operators. Also, the
classes of essentially strictly left (right) singular operators are introduced.
As a corollary, we obtain the main result from [6]: our Theorem 3.5 is the
same as [6, Theorem 3.7].

2. Operators consistent in invertibility

Let G(X), Gl(X) and Gr(X), respectively, denote the set of all in-
vertible, left invertible and right invertible operators on X. Recall that
T ∈ Gl(X) if and only if N (T ) = {0} and R(T ) = R(T ) is a comple-
mented subspace of X. Analogously, T ∈ Gr(X) if and only if R(T ) = X

and N (T ) is a complemented subspace of X.
We say that T ∈ L(X) is relatively regular provided that there exists

some S ∈ L(X), such that TST = T . In this case S is called an inner
generalized inverse of T . It is well-known that T is relatively regular if and
only if N (T ) and R(T ) are closed and complemented subspaces of X [3],
[11]. If S is an inner generalized inverse of T , it is well-known that TS is
a projection of X onto R(T ), and I −ST is a projection of X onto N (T ).
We say that U ∈ L(X) is a reflexive generalized inverse of T , provided
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that TUT = T and UTU = U . If S is an inner generalized inverse of T ,
then STS is a reflexive generalized inverse of T .

Firstly we assume that S(X) = G(X) is the set of all invertible el-
ements of L(X). The following theorem gives a complete answer to the
question whether an operator is consistent or not consistent in invertibility.

Theorem 2.1. Let B ∈ L(X). Then B is G-consistent, if and only if

one of the following five mutually disjoint cases occurs:

(1) B is invertible;

(2) R(B) is not closed;

(3) N (B) 6= {0} and R(B) = R(B) 6= X;

(4) N (B) = {0}, R(B) = R(B) andR(B) is not complemented in X;

(5) N (B) 6= {0}, R(B) = X and N (B) is not complemented in X.

Also, B is not G-consistent if and only if one of the following two

mutually disjoint cases occurs:

(6) N (B) = {0}, R(B) = R(B) and R(B) is a proper complemented

subspace of X;

(7) N (B) 6= {0}, R(B) = X and N (B) is a complemented subspace

of X.

Proof. If B is invertible, then AB = B−1(BA)B, so (1) follows. To
prove (2), suppose that R(B) is not closed. Then R(BA) 6= X so BA is
not invertible for all A ∈ L(X). Suppose that there exists some A ∈ L(X)
such that AB is invertible. Then B is left invertible and B is relatively
regular. It follows that R(B) is closed, which contradicts our previous
assumptions. Now, AB is not invertible and (2) follows. To prove (3),
suppose that N (B) 6= {0} and R(B) 6= X. Obviously, N (B) ⊂ N (AB),
so AB is not invertible for all A ∈ L(X). Also, R(BA) ⊂ R(B) 6= X, so
BA is not invertible for all A ∈ L(X) and (3) follows.

To prove (4), suppose that N (B) = {0}, R(B) is closed and R(B)
is not complemented in X. It follows that BA is not invertible for all
A ∈ L(X). Suppose that there exists A ∈ L(X) such that AB is in-
vertible. Then B is left invertible, so B is relatively regular and R(B) is
complemented. The obtained contradiction finishes the proof of (4).

We prove (5). Let N (B) 6= {0}, R(B) = X and N (B) is not comple-
mented in X. Obviously, AB is not invertible for all A ∈ L(X). Suppose
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that there exists A ∈ L(X) such that BA is invertible. It follows that B

is right invertible, so B is relatively regular and N (B) is complemented
in X.

To prove (6), suppose that N (B) = {0}, R(B) is closed and a proper
complemented subspace of X. It follows that BA is not invertible for all
A ∈ L(X). However, B is left invertible, so there exists an operator S,
such that SB = I. It follows that B is not G-consistent.

The proof of (7) is similar to the proof of (6), since in that case B is
right invertible and AB is not invertible for all A ∈ L(X). ¤

Remark 2.2. If X is a Hilbert space, the cases (4) and (5) of The-
orem 2.1 are not possible. In the case when X is a Hilbert space, our
Theorem 2.1 reduces to [6, Theorem 1.1].

In [6] these kind of results are used in determining the closure of in-
vertible operators on Hilbert spaces. The following notations and results
are taken from [9], [10] and [11].

An operator T ∈ L(X) is called decomposably regular, if there exists
an invertible operator S ∈ L(X), such that TST = T . It is well-known
that T is decomposably regular if and only if T is relatively regular and
N (T ) is isomorphic to X/R(T ) [10]. We shall use the following result [9].

Lemma 2.3. If T is relatively regular, then T ∈ clG(X) if and only

if T is decomposably regular.

Notice that Lemma 2.3 holds more generally, in arbitrary unital Ba-
nach algebras. This result is enlarged to the closure of Fredholm operators
[12], and in more general settings [5]. The closure of Fredholm operators
will be considered in Section 3.

If Z is a finite dimensional space, dimZ denotes its dimension. If Z

is an infinite dimensional Banach space, we simply write dimZ = ∞. On
the other hand, if Z is an arbitrary Hilbert space, then dimH Z denotes
the orthogonal dimension of Z.

Let α(T ) = dimN (T ), β(T ) = dimX/R(T ). The following sets of
semi-Fredholm operators are well-known:

Φ+(X) = {T ∈ L(X) : R(T ) is closed and α(T ) < ∞},
and

Φ−(X) = {T ∈ L(X) : R(T ) is closed and β(T ) < ∞}.
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The set of Fredholm operators is Φ(X) = Φ+(X) ∩ Φ−(X). It is well-
known that the sets Φ(X), Φ+(X) and Φ−(X) form open multiplicative
semigroups of L(X). For a semi-Fredholm operator T the index is defined
by i(T ) = α(T )−β(T ). We also consider the set of Weyl operators, which
is defined as Φ0(X) = {T ∈ Φ(X) : i(T ) = 0}.

Recall that asc(T ) (respectively des(T )), the ascent (respectively de-
scent) of T , is the smallest non-negative integer n, such that N (Tn) =
N (Tn+1) (respectively R(Tn) = R(Tn+1)). If no such n exists, then
asc(T ) = ∞ (respectively des(T ) = ∞) [4]. An operator T ∈ L(X) is
called Browder (Riesz–Schauder), provided that T ∈ Φ(X) and asc(T ) =
des(T ) < ∞ [4]. The set of all Browder operators is denoted by B(X). It
is well-known that T ∈ B(X) is and only if T ∈ Φ(X) and 0 /∈ acc σ(T )
[8]. We use F(X) to denote the set of all finite rank operators on X.
Let K(X) denote the set (closed two-sided ideal) of all compact operators
in L(X), and let π : L(X) → L(X)/K(X) = C(X) denote the natural
homomorphism. C(X) is the Calkin algebra on X. It is well-known that
T ∈ Φ(X) if and only if π(T ) is invertible in C(X). The next classes of left
and right Fredholm operators can be defined using the homomorphism π:

Φl(X) = {T ∈ L(X) : π(T ) is left invertible in C(X)}
and

Φr(X) = {T ∈ L(X) : π(T ) is right invertible in C(X)}.

It is well-known that Φl(X) ⊂ Φ+(X) and Φr(X) ⊂ Φ−(X). Also, if
T ∈ Φl(X) ∪ Φr(X) then T is relatively regular. Recall that for a Hilbert
space H the following holds: Φ+(H) = Φl(H) and Φ−(H) = Φr(H).

Let K ⊂ L(X). Recall that the perturbation class of K is defined as

P(K) = {T ∈ L(X) : K + T ⊂ K}.
If

G(X) · K ⊂ K and K · G(X) ⊂ K (∗)

is satisfied, then P(K) is a two-sided ideal of L(X). Thus, if K satisfies
(∗), then the following implication holds:

T is K-consistent and U ∈ P(K), then T + U is K-consistent.
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Let P(Φ+(X)) (respectively P(Φ+(X))) denote the perturbation class
of the set Φ+(X) (Φ−(X))) (see [4] for similar considerations). It is well-
known that

K(X) ⊂ P(Φ+(X)) ∩ P(Φ−(X)).

The following result is a simple generalization of [6, Theorem 3.2].

Theorem 2.4. Let B ∈ L(X). The following statements are equiva-

lent:

(1) α(B) = β(B), or R(B) is not closed or not complemented in X,

or N (B) is not complemented in X;

(2) B + F is G-consistent for all F ∈ F(X);

(3) B + K is G-consistent for all K ∈ P(Φ+(X)) ∩ P(Φ−(X)).

Here α(B) = β(B) means that either N (B) and X/R(B) are finite di-

mensional spaces of the same dimension, or N (B) and X/R(B) are both

infinite dimensional.

Proof. (2) =⇒ (1). Let R(B) be closed and complemented. Suppose
that α(B) < β(B). Then N (B) is finite dimensional, n = dimN (B) < ∞
and let y1, . . . , yn be vectors in X which are linearly independent modulo
R(B). Denote by F1 : N (B) → span{y1, . . . , yn} = Y an arbitrary isomor-
phism. There exists a closed subspace M of X, such that X = N (B)⊕M .
Define F ∈ L(X) in the following way:

Fx =

{
F1x, x ∈ N (B),

0, x ∈ M.

It is easy to verify α(B + F ) = 0. Since R(B + F ) = R(B)⊕ Y , it follows
that R(B + F ) is a proper closed and complemented subspace of X. By
Theorem 2.1 (6) it follows that B + F is not G-consistent.

Let N (B) be complemented in X and β(B) < α(B). Then X/R(B) is
finite dimentional, dimX/R(B) = n < ∞ and there exists a subspace M

such that R(B)⊕M = X, dimM = n. Let x1, . . . , xn ∈ N (B) be linearly
independent and Z = span{x1, . . . , xn}. There exists a closed subspace Z1

such that Z ⊕ Z1 = N (B). Since N (B) is complemented, there exists a
subspace Z2 such that X = N (B)⊕Z2. Moreover, X = Z ⊕Z1 ⊕Z2. Let
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E1 : Z → M be an arbitrary isomorphism. Define E ∈ L(X) as follows:

Ex =

{
E1x, x ∈ Z

0, x ∈ Z1 ⊕ Z2.

It is easy to verify R(B + E) = X and N (B + E) = Z1. Since Z1 is
complemented in X, from Theorem 2.1 (7) it follows that B + F is not
G-consistent.

(1) =⇒ (3) Let K ∈ P(Φ+(X))∩P(Φ−(X)) be arbitrary. If R(B+K)
is not closed, then B + K is G-consistent (Theorem 2.1 (2)). Suppose
that R(B + K) is closed. If α(B + K) = ∞ and β(B + K) = ∞, then
B + K is G-consistent (Theorem 2.1 (3)). Suppose that α(B + K) < ∞.
Then B + K ∈ Φ+(X), so B ∈ Φ+(X) and i(B + K) = i(B) = 0. If
α(B + K) = 0, then B + K is invertible and G-consistent (Theorem 2.1
(1)). If α(B + K) > 0, by Theorem 2.1 (3) it follows that B + K is
G-consistent.

Let β(B +K) < ∞. Then B +K ∈ Φ−(X) and B ∈ Φ−(X), implying
i(B + K) = i(B) = 0. If β(B + K) = 0, then B + K is invertible and from
Theorem 2.1 (1) it follows that B + K is G-consistent. If β(B + K) > 0,
from Theorem 2.1 (3) it follows that B + K is G-consistent. ¤

Now, using Lemma 2.3 and Theorem 2.4 we get the following simple
corollary.

Corollary 2.5. Let B ∈ L(X) be relatively regular. If B ∈ clG(X),
then B + K is G-consistent for all K ∈ P(Φ+(X)) ∩ P(Φ−(X)).

We shall consider Gl-consistent operators, where Gl(X) denotes the set
of all left invertible operators on X. Recall that T is strictly singular if
and only if T is not bounded below on every closed infinite dimensional
subspace of X. In the case when H is a Hilbert space, it is convenient to
use the following generalized definition. Let dimH H = α, where α is an
infinite cardinal. An operator T ∈ L(H) is said to be α-strictly singular,
provided that the following holds: if M is a closed subspace of H and the
restriction T |M : M → T (M) is invertible, then dimH M < α. We need to
introduce the following property for Banach space oparators.

An operator T ∈ L(X) is called strictly left singular, if and only if for

all S ∈ Gl(X) it follows that TS /∈ Gl(X).
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Obviously, if T is strictly left singular, then T /∈ Gl(X).

Remark 2.6. (1) If T ∈ L(X) is strictly singular, then T is strictly left
singular.

(2) If X is a Hilbert space and dimH X = α, then T is strictly left
singular if and only if T is α-strictly singular (see also [7, Problem 42]).

(3) If X is a separable infinite dimensional Hilbert space, then T is
strictly left singular if and only if T is compact (since there exists the
unique closed ideal of L(X)).

The following theorem is our main result concerning the Gl-consistent
operators. Namely, it completely characterizes the set of Gl-consistent
operators.

Theorem 2.7. Let B ∈ L(X). Then B is Gl-consistent, if and only if

one of the following two mutually disjoint cases occurs:

(1) B ∈ G(X);

(2) B is strictly left singular.

Also, B is not Gl-consistent if and only if one of the following two

mutually disjoint cases occurs:

(3) B ∈ Gl(X) \ G(X);

(4) B /∈ Gl(X) and B is not strictly left singular.

In the case when X is an infinite dimensional Hilbert space and dimHX=α,

then “strictly left singular” should be replaced by “α-strictly singular”.

If X is a separable infinite dimensional Hilbert space then “strictly left

singular” should be replaced by “compact”.

Proof. To prove (1), suppose that B ∈ G(X). If BA ∈ Gl(X), then
A ∈ Gl(X) and AB ∈ Gl(X). From the other hand, if AB = S ∈ Gl(X),
then A = SB−1 ∈ Gl(X) and BA ∈ Gl(X), so B is Gl-consistent.

(2) Let B be strictly left singular (hence, B /∈ Gl(X)). Then AB /∈
Gl(X) for all A ∈ L(X). Suppose that there exists an operator A0 ∈ L(X),
such that BA0 ∈ Gl(X). It follows that A0 ∈ Gl(X) which contradicts the
assumption that B is strictly left singular. We get that B is Gl-consistent.

(3) Let B ∈ Gl(X) \ G(X) and let B1 be an arbitrary left inverse
of B. Obviously, B1B = I ∈ Gl(X). On the other hand, B1 is a reflexive
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generalized inverse of B, so BB1 is a projection of X onto R(B) with a
non-trivial kernel, so BB1 /∈ Gl(X). It follows that B is not Gl-consistent.

(4) Finally, let B /∈ Gl(X) and B is not strictly left singular. There
exists an operator A0 ∈ Gl(X) such that BA0 ∈ Gl(X). Also, AB /∈ Gl(X)
for all A ∈ L(X), so B is not Gl-consistent.

The rest of the proof follows from Remark 2.6. ¤

Recall that an operator T ∈ L(X) is strictly cosingular provided that
for every closed infinite codimensional subspace V of X, the operator QV T

is not surjective. Here QV : X → X/V denotes the natural homomor-
phism. More generally, let H be a Hilbert space and dimH H = α be an
infinite cardinal. T ∈ L(H) is called α-strictly cosingular, provided that
for an arbitrary closed subspace V of H the following holds: if QV T is
a surjection of H onto H/V , then codimV < α. We also introduce the
following notion for Banach space operators.

An operator T ∈ L(X) is called strictly right singular, if and only if

for all S ∈ Gr(X) it follows that ST /∈ Gr(X).

If T is strictly right singular, then T /∈ Gr(X).
We connect various aspects of singularity.

Theorem 2.8. (1) If T is strictly cosingular, then T is strictly right

singular.

(2) If X is a complex infinite dimensional Hilbert space and dimHX=α,

then T is α-strictly cosingular if and only if T is strictly right singular.

(3) If X is a separable infinite dimensional Hilbert space, then T is

strictly right singular if and only if T is compact.

Proof. (1) Suppose that T is strictly cosingular and S ∈ Gr(X). It
follows that there exists a closed subspace M of X, such that N (S) ⊕
M = X and the restriction S|M : M → X is invertible, so dimM =
codimN (S) = ∞. Consider the natural homomorphism QN (S) : X →
X/N (S). It follows that

X/N (S) 6= R(QN (S)T ) = {Tx +N (S) : x ∈ X}.
There exists y ∈ X, such that y + N (S) 6= Tx + N (S) for all x ∈ X. It
follows that y1 = Sy 6= STx for all x ∈ X. We get that R(ST ) 6= X and
ST /∈ Gr(X), so T is strictly right singular.
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(2) The implication =⇒ follows in the same way as in (1). We only
need to consider the orthogonal dimensions of closed subspaces.

To prove the opposite implication suppose that T ∈ L(X) is strictly
right singular. Let V be an arbitrary closed subspace of X such that
dimH V ⊥ = α. Let S ∈ L(X) be defined such that S|V = 0 and S|V ⊥ :
V ⊥ → X is the Hilbert space isomorphism. It follows that S ∈ Gr(X)
and ST /∈ Gr(X). Since N (ST ) is always complemented in X, we get that
R(ST ) 6= X. There exists y0 ∈ X such that y0 6= STx for all x ∈ X.
Suppose that for all y ∈ X there exists x ∈ X such that y + V = Tx + V .
We conclude y − Tx ∈ V = N (S) and Sy = STx. Now,

X = {Sy : y ∈ X} = {STx : x ∈ X} = R(ST ) 6= X.

It follows that R(QV T ) 6= X/V and T is α-strictly singular. ¤

In the following theorem we give a complete description of Gr-consis-
tent operators on Banach spaces.

Theorem 2.9. Let B ∈ L(X). Then B is Gr-consistent, if and only

if one of the following two mutually disjoint cases occurs:

(1) B ∈ G(X);

(2) B is strictly right singular.

Also, B is not Gr-consistent if and only if one of the following two

mutually disjoint cases occurs:

(3) B ∈ Gr(X) \ G(X);

(4) B /∈ Gr(X) and B is not strictly right singular.

In the case when X is an infinite dimensional Hilbert space and dimHX=α,

then “strictly right singular” should be replaced by “α-strictly cosingular”.

If X is a separable infinite dimensional Hilbert space then “strictly right

singular” should be replaced by “compact”.

The proof of Theorem 2.9 is similar to the proof of Theorem 2.7.



Operators consistent in regularity 185

3. Fredholm consistent operators

As we mentioned before, in this section we shall consider Φ-consistent
operators. We give a complete answer to the question whether or not an
operator is Φ-consistent.

Theorem 3.1. Let B ∈ L(X). Then B is Φ-consistent, if and only if

one of the following four mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) α(B) = ∞ and β(B) = ∞;

(3) α(B) < ∞, β(B) = ∞ and R(B) is not closed or not comple-

mented in X;

(4) α(B) = ∞, β(B) < ∞ and N (B) is not complemented in X;

Also, B is not Φ-consistent if and only if one of the following two

mutually disjoint cases occurs:

(5) α(B) < ∞, β(B) = ∞ and R(B) is closed and complemented

in X;

(6) α(B) = ∞, β(B) < ∞ and N (B) is complemented in X.

Proof. (1) Suppose that B ∈ Φ(X). Then π(B) is invertible in C(X)
and the proof follows in the same way as in Theorem 2.1 (1).

(2) Let α(B) = ∞ and β(B) = ∞. Then for all A ∈ L(X), β(BA) ≥
β(B), so BA /∈ Φ(X). Also, α(AB) ≥ α(B) and AB /∈ Φ(X). It follows
that B is Φ-consistent.

(3) Let α(B) < ∞, β(B) = ∞ and R(B) is not closed or not comple-
mented in X. Obviously, for all A ∈ L(X), BA /∈ Φ(X). Suppose that
there exists some A ∈ L(X), such that AB ∈ Φ(X). Then π(B) is left
invertible in C(X) and B ∈ Φl(X). It follows that B is relatively regular
and R(B) must be closed and complemented in X.

(4) Let α(B) = ∞, β(B) < ∞ and N (B) is not complemented in X.
For all A ∈ L(X) we get AB /∈ Φ(X). Suppose that there exists some
A ∈ L(X), such that BA ∈ Φ(X). It follows that π(B) is right invert-
ible in C(X), B ∈ Φr(X) and B is relatively regular, so N (B) must be
complemented in X.
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(5) Let α(B) < ∞, β(B) = ∞ and R(B) is closed and complemented
in X. It follows that BA /∈ Φ(X) for all A ∈ L(X). Since B is relatively
regular, there exists a reflexive generalized inverse S of B. Now, SB

is the projection onto R(S) parallel to N (B), so β(S) < ∞. Since X =
N (S)⊕R(B), it follows thatR(SB) = R(S) is closed, α(SB) = α(B) < ∞
and β(SB) = β(S) < ∞, so SB ∈ Φ(X). We get that B is not Φ-
consistent.

(6) Let α(B) = ∞, β(B) < ∞ and N (B) is complemented in X.
Obviously, AB /∈ Φ(X) for all A ∈ L(X). Since B is relatively regular,
there exists a reflexive generalized inverse S of B. Again, we get that
R(BS) = R(B), β(BS) = β(B) < ∞, α(BS) = α(S) = β(B) < ∞. It
follows that B is not Φ-consistent. ¤

Now, as corollaries, we consider Φ0- and B-consistent operators, i.e.
S(X) = Φ0(X) (the set of Weyl operators), or S(X) = B(X) (the set of
Browder operators) on X.

Corollary 3.2. An operator B ∈ L(X) is Φ0-consistent if and only if

it is Φ-consistent.

Proof. Let B be Φ-consistent and let B ∈ Φ(X). Suppose that there
exists A ∈ L(X) such that AB ∈ Φ0(X). It follows that BA ∈ Φ(X) and
A ∈ Φ(X). Now, i(BA) = i(B) + i(A) = i(AB) = 0, so BA ∈ Φ0(X) and
B is Φ0-consistent. Cases (2), (3) and (4) of Theorem 3.1 are analogous.
If S is described in Theorem 3.1 (5) (or (6)), it follows that i(SB) = 0 (or
i(BS) = 0), so B is not Φ0-consistent. ¤

Corollary 3.3. An operator B ∈ L(X) is B-consistent if and only if

it is Φ-consistent.

Proof. Suppose that B is Φ-consistent and let AB ∈ B(X) for some
A ∈ L(X). It follows that AB ∈ Φ(X) and 0 /∈ accσ(AB). Since σ(AB) \
{0} = σ(BA) \ {0} and B is Φ-consistent, we get 0 /∈ accσ(BA) and
BA ∈ Φ(X). It follows that BA ∈ B(X), so B is B-consistent.

Suppose that B is not Φ-consistent. It follows that (5) or (6) from
Theorem 3.1 holds. Let (5) hold, i.e. α(B) < ∞, β(B) = ∞ and R(B) is
closed and complemented in X. Since BA /∈ Φ(X) for all A ∈ L(X), it
follows also that BA /∈ B(X) for all A ∈ L(X). On the other hand, if S
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is an arbitrary reflexive generalized inverse of B, then we know that BS

is Fredholm. Also, BS is a projection, so asc(BS) = des(BS) = 1 and
BS ∈ B(X). It follows that B is not B-consistent. The proof is similar if
we suppose that (6) holds from Theorem 3.1. ¤

It is nice to formulate the corresponding result for Hilbert space oper-
ators. Let H be an arbitrary complex infinite dimensional Hilbert space.
According to Theorem 3.1 we have the following

Corollary 3.4. If B ∈ L(H), then B is Φ-consistent if and only if one

of the following three mutually disjoint cases occurs:

(1) B ∈ Φ(H);

(2) α(B) = ∞ and β(B) = ∞;

(3) α(B) < ∞, β(B) = ∞ and R(B) 6= R(B);

Also, B is not Φ-consistent if and only if one of the following two

mutually disjoint cases occurs:

(4) α(B) < ∞, β(B) = ∞ and R(B) = R(B);

(5) α(B) = ∞ and β(B) < ∞.

If H is a separable Hilbert space, using [1, Theorem 4 and Remark 5],
[6, Theorem 3.1], or [11, Theorem 5], [2, Proposition 4], we know that the
following holds:

clΦ(H) = Φ(H) ∪ clG(H) = Φ(H) ∪ {B ∈ L(H) : α(B)

= α(B∗), or R(B) 6= R(B)}. (3.1)

Here, B∗ denotes the Hilbert adjoint operator of B. Using Corollary 3.4
and (3.1), we can easily prove the last main result from [6, Theorem 3.7].

Theorem 3.5. If H is a separable complex infinite dimensional Hilbert

space and B ∈ L(H), then:

B ∈ clΦ(H) if and only if B is Φ-consistent.

Proof. Suppose that B ∈ clΦ(H). Using (3.1) we conclude that the
following may occur:

(i) B ∈ Φ(H) implies B is Φ-consistent (Corollary 3.4 (1)).
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(ii) α(B) = α(B∗) = ∞ implies β(B) = ∞, so B is Φ-consistent
(Corollary 3.4 (2)).

(iii) α(B) = α(B∗) < ∞ and R(B) = R(B) imply B ∈ Φ(H) and B

is Φ-consistent as in (i).

(iv) α(B) = α(B∗) < ∞ and R(B) 6= R(B) imply β(B) = ∞, so B is
Φ-consistent (Corollary 3.4 (3)).

(v) R(B) 6= R(B) implies that the cases (4) and (5) of Corollary 3.4
can not hold, so B is Φ-consistent.

Now, suppose that B is Φ-consistent. Then the following may occur:

(i) R(B) 6= R(B) implies B ∈ clΦ(H);

(ii) IfR(B) = R(B), since B is Φ-consistent, by Corollary 3.4 it follows
that either B ∈ Φ(H), or α(B) = β(B) = ∞. Anyway, by (3.1) it follows
that B ∈ clΦ(H). ¤

Remark 3.6. Theorem 3.5 is proved in [6] using the Gelfand–Naimark–
Segal Theorem for C∗-algebras.

Now, we shall consider Φl-consistent operators. As in Section 2, we
introduce the following notions for Banach space operators.

An operator T ∈ L(X) is said to be essentially strictly left singular,

provided that TS /∈ Φl(X) for all S ∈ Φl(X).
T ∈ L(X) is called essentially strictly right singular, provided that

ST /∈ Φr(X) for all S ∈ Φr(X).

The relationships between the introduced notions and known strictly
singular and cosingular operators are given in the following theorem.

Theorem 3.7. (1) If T is strictly singular, then T is essentially

strictly left singular. If T is strictly cosingular, then T is essentially strictly

right singular.

(2) If X is a Hilbert space and dimH X = α, then T is essentially

strictly left singular if and only if T is α-strictly singular. Also, T is

essentially strictly right singular if and only if T is α-strictly cosingular.

(3) If X is a separable infinite dimensional Hilbert space, then T is

essentially strictly left (or right) singular if and only if T is compact.
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Proof. (1) Let T be strictly singular and S ∈ Φl(X). Suppose that
TS ∈ Φl(X). Now, R(S) is an infinite dimensional closed subspace of X

anddimN (T |R(S)) ≤ N (TS) < ∞. Hence, there exists a closed infinite
dimensional subspace M of R(S) such that R(S) = N (T |R(S)) ⊕M . We
conclude that T |M : M → T (M) = R(TS) is an isomorphism, so T can
not be strictly singular.

Now, suppose that T strictly cosingular and there exists S ∈ Φr(X)
such that ST ∈ Φr(X). There exists a finite dimensional subspace M such
that R(S) = R(ST ) ⊕ M . Also, there exists a closed subspace N such
that X = N (S) ⊕N . Notice that the truncation S|N : N → R(ST ) ⊕N

is invertible. Let K = (S|N )−1(M) and L = (S|N )−1(R(ST )). Then
N = K ⊕ L and L is infinite dimensional. Let V = N (S) ⊕ K. From
X = V ⊕ L we see that codimV = ∞. Let QV : X → X/V be the
natural homomorphism. We shall prove that QV T is epimorphism. Let
z+V ∈ X/V be arbitrary. There exists some x ∈ L such that z+V = x+V .
Since Sx ∈ R(ST ) it follows that there exists some y such that Sx = STy.
Consequently, x− Ty ∈ N (S) ⊂ V and

z + V = x + V = Ty + v,

implying QV Ty = z + V .
(2) Let X be a Hilbert space and dimH X = α be an infinite cardinal.

If T is α-strictly singular, in the same way as in the proof of (1) we verify
that T is essentially strictly left singular. On the other hand, if T is
essentially strictly left singular, from Gl(X) ⊂ Φl(X) it follows that T

must be strictly left singular. By Remark 2.5 it follows that T is α-strictly
singular.

If T is α-strictly cosingular, in the same way as in (1) we can prove
that T must be essentially strictly right singular. We only have to consider
the Hilbert dimensions of closed subspaces.

On the other hand, if T is essentially strictly right singular then T

is strictly right singular. By Theorem 2.8 it follows that T is α-strictly
cosingular. ¤

In the following theorem we describe the set of all Φl-consistent oper-
ators.
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Theorem 3.8. Let B ∈ L(X). Then B is Φl-consistent if and only if

one of the following two mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) B is essentially strictly left singular.

Also, B is not Φl-consistent if and only if one of the following two

mutually disjoint cases occurs:

(3) B ∈ Φl(X) \ Φ(X);

(4) B /∈ Φl(X) and B is not essentially strictly left singular.

In the case when X is an infinite dimensional Hilbert space and dimH X =
α, then “essentially strictly left singular” should be replaced by α-strictly

singular. If X is a separable infinite dimensional Hilbert space, then “es-

sentially strictly left singular” should be replaced by “compact”.

Proof. (1) Let B ∈ Φ(X) and BA ∈ Φl(X). Since π(B)π(A) is left
invertible in C(X), it follows that A ∈ Φl(X) and AB ∈ Φl(X). On the
other hand, if S = AB ∈ Φl(X), then π(A) = π(S)π(B)−1 is left invertible
in C(X), so BA ∈ Φl(X). We conclude that B is Φl-consistent.

(3) Let B ∈ Φl(X) \ Φ(X) and let B1 denote an arbitrary reflexive
generalized inverse of B. Denote N (BB1) = M and R(B1B) = N . Then
dimM = ∞ and codimN < ∞. Since BB1 is the projection from X onto
R(B) parallel to M , it follows that BB1 /∈ Φl(X). On the other hand,
B1B is the projection from X onto N parallel to N (B), implying that
B1B ∈ Φl(X). Hence, B is not Φl-consistent.

The cases (2) and (4) are analogous to Theorem 2.7 (2) and (4). ¤

Dually, we can prove the following result concerning the Φr-consistent
operators.

Theorem 3.9. Let B ∈ L(X). Then B is Φr-consistent if and only if

one of the following two mutually disjoint cases occurs:

(1) B ∈ Φ(X);

(2) B is essentially strictly right singular.

Also, B is not Φr-consistent if and only if one of the following two mutually

disjoint cases occurs:

(3) B ∈ Φr(X) \ Φ(X);
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(4) B /∈ Φr(X) and B is not essentially strictly right singular.

In the case when X is an infinite dimensional Hilbert space and

dimH X = α, then “essentially strictly right singular” should be replaced by

α-strictly cosingular. If X is a separable infinite dimensional Hilbert space,

then “essentially strictly right singular” should be replaced by “compact”.
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