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0. Introduction

Let (M,J, g) be a Hermitian manifold and ∇ a complex connection on
M(∇J = 0). The problem what can be said about the topology of M has
been considered in many papers. The attention was paid mainly to metric
connections which curvature tensor has some additional symmetries. For
example, in [CO] Kähler–Einstein manifolds are considered. Naturally,
the corresponding question for complex vector bundles is also studied; in
[Ko] for holomorphic vector bundles and in [GBNV] and [Bz] for formally
holomorphic vector bundles. The case of non-metric connections is studied
in [IKO].

Here, we consider some properties of the Chern characteristic classes
c1(M) and c2(M) when the curvature operator of ∇ is a symmetric oper-
ator. We do not assume ∇ to be a metric connection. (If ∇ is a metric
connection the curvature operator is anti-symmetric). A symmetric cur-
vature operator has the skew-symmetric Ricci tensor. Connections with
the skew-symmetric Ricci tensor appear naturally in the study of mani-
folds which admit absolute parallelizability of directions (see, for example,
[No]). These connections are also studied in [AT, Section §7]. Examples of
such connections are already constructed in [BB] and [BB1]. We express
the Chern forms γ2

1(M) and γ2(M) in terms of the quadratic invariants of
∇ and, for example, we show that c1(M) = 0. We give also some examples
of these connections.
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1. Chern forms of Hermitian surface

Let M be a complex manifold, of complex dimension n, and let
J (J2 = −I) be the corresponding almost complex structure on TM . We
denote by XC(M) and Mm the Lie algebra of C∞ complex vector fields on
M and the real tangent space to M at m. Let ∇ be an arbitrary complex,
symmetric connection, i.e. a connection such that ∇J = 0 and

∇XY −∇Y X = [X,Y ] ,

for X,Y ∈ XC(M). The curvature operator R of ∇ is defined by

R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ] for X, Y ∈ XC(M) ,

and it satisfies
(1) R(X, Y ) = −R(Y, X) ,

the first Bianchi identity

(2) R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 0 ,

and the Kähler identity,

(3) R(X, Y ) ◦ J = J ◦R(X, Y ) ,

for X,Y ∈ XC(M). Especially, ∇ is an affine Kähler connection if

R(X, Y ) = R(JX, JY )

(see [NP]).
Let E1, JE1, . . . , En, JEn, be a real orthonormal basis for the tan-

gent space Mm and ω1, ω̄1, . . . , ωn, ω̄n the corresponding dual base for
M∗

m. Then we will write En+p = JEp = Ep̄ and similarly ωn+q = ω̄q,
1 ≤ p, q ≤ n. In the next formulas, a pair of repeated indices will al-
ways indicate summation. Also, we use the following ranges for indices:
i, j, p, q = 1, 2 . . . , n, and I,K, P,Q = 1, 2, . . . , 2n. We denote JEP = EP̄
and

R(X, Y )EP = RXY P
QEQ .

For X = EI , Y = EK we simplify our notation and write REIEKP
Q =

RIKP
Q and RXY P

Q = RXY PQ. The fundamental 2–form is Φ =
∑

ωi∧ ω̄i.
It will be useful for our study of the Chern classes to introduce the

following traces:

%̃(X, Y ) =
1
2

tr {V → R(X, Y )V } = RXYi

i ,
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%̄(X, Y ) =
1
2

tr {V → J ◦R(X, JY )V } = RXKYi

i ,(4)

and
%(X, Y ) = tr {V → R(V, X)Y } = RIXY

I ,

for X,Y ∈ Mm ⊗ C and V ∈ Mm. We also consider the following tensor
of the Ricci type, %̂, defined by

%̂K
I =

1
2
RPP̄I

K = Rpp̄I
K .

Notice that %̃, %̄ and % do not depend on the choice of the metric g.
Because of the first Bianchi identity we have the following relations

2%̄(X,Y ) = %(X, Y ) + %(JY, JX) ,(5)

2%̃(X,Y ) = %(Y, X)− %(X, Y ) .(6)

From now on, we will assume for our complex symmetric connection∇
to have a symmetric curvature operator, i.e., R(X,Y ) satisfies the relation

g(R(X, Y )Z, V ) = g(R(X, Y )V, Z) .

(We do not assume that ∇ is a metric connection.) For example, we have
the relations

R(JX, JY ) = R(X,Y ) ,(7)

%(X,Y ) = −%(Y,X), %(JX, JY ) = %(X, Y ) ,(8)

(for proofs see [Ni]). It means that a complex, symmetric connection with
the symmetric curvature operator is an affine Kähler connection. Hence,
%̄ = 0, %̃ = −% and

%̂K
I =

1
2
RPP̄I

K = −1
2
(RIP P̄

K + RP̄ IP
K) = %IK .

For the scalar curvatures

τ =
∑

%PP = 0, τ∗ =
∑

%PP̄ .

We use the following quadratic invariants for the curvature tensor R

‖R‖2 =
∑

RPQIKRPQIK , ‖%‖2 =
∑

%PQ%PQ .

Quadratic invariants of the curvature tensor for a complex connection are
considered in [MN].

We put

ΩK
I (X,Y ) = RXY I

K , i.e. ΩK
I = RPQI

KωP ∧ ωQ ,



360 Novica Blažić and Neda Bokan

and
Θj

i (X, Y ) = −(Ωj
i (X,Y )−√−1Ωj

ī
(X,Y )) ,

for X,Y ∈ Mm ⊗ C. Then (Θq
p) is a matrix of complex 2-forms and

det
(

δq
p −

1
2π
√−1

Θq
p

)
= 1 + γ1 + · · ·+ γn

is a globally defined closed form which represents the total Chern class of
M via de Rham’s theorem (see [KN, p.307]). Chern classes determined
by γ1, γ2 are denoted by c1, c2 respectively. The corresponding Chern
numbers for a compact manifold M are defined by c2

1[M ] =
∫

M
γ2
1 and

c2[M ] =
∫

M
γ2.

In particular, the first two Chern forms are given by

γ1 =
√−1
2π

∑
Θi

i =
√−1
2π

(
Ωi

i −
√−1Ωi

ī

)
,(9)

γ2 = − 1
4π2

∑

1≤i<j≤2

{
Θi

i ∧Θj
j −Θj

i ∧Θi
j

}
.(10)

Since the metric tensor g is not parallel with respect to ∇, in gen-
eral, it is interesting to compute γ2 and γ2

1 for a complex connection on a
Hermitian surface. More precisely, we prove the following theorem.

Theorem 1.1. Let (M, J, g) be a Hermitian surface and ∇ a complex
symmetric connection on M , with the symmetric curvature operator. Then
c2
1 and c2 are given by the following 4-forms:

(11) γ2
1 =

−1
8π2

(τ∗2 − 2‖%‖2)Φ2 ,

and

(12) γ2 =
1

16π2
{4‖%‖2 − ‖R‖2 − τ∗2}Φ2 .

Proof. For the formula (11) we have

4π2γ2
1 = −

∑
Θi

i ∧Θj
j

= −
∑ [

Ωi
i ∧ Ωj

j − Ωī
i ∧ Ωj̄

j − 2
√−1Ωi

i ∧ Ωj̄
j
]

.

Then by (4),
Ωi

i = %̃PQωP ∧ ωQ, Ωi
ī = 0

which implies (11).
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In a similar way, it follows from (10)

γ2 = − 1
4π2

∑

1≤i<j≤2

{(
Ωi

i ∧ Ωj
j − Ωi

ī ∧ Ωj
j̄
− Ωj

i ∧ Ωi
j + Ωj

ī
∧ Ωi

j̄

)

−√−1
(
Ωi

i ∧ Ωj
j̄
+ Ωi

ī ∧ Ωj
j − Ωj

i ∧ Ωi
j̄ − Ωj

ī
∧ Ωi

j

)}
.

By the straightforward and long computation, using the symmetries of the
curvature tensor R, formulas (4) and (7), we obtain (12).

Remark. The special classes of metric connections whose curvature
tensor satisfies some additional symmetries have been already studied. For
example, the formulas (11) and (12) generalize the corresponding relations
obtained in [CO] for Kähler manifolds, in [Ko] for holomorphic vector bun-
dles and in [Bz] for complex vector bundles with a formally holomorphic
connection.

2. Some inequalities for quadratic invariants
of symmetric curvature operators

We recall now some basic facts concerning the decomposition of the
curvature tensor of a complex, symmetric connection with the symmetric
curvature operator. For more details see [Ni].

Let R(TpM) be the vector space of all curvature tensors which satisfy
(1), (2) and (3) with the symmetric curvature operator defined on the
tangent space TpM in an arbitrary point p of a Hermitian surface M .
R(TpM) splits into the direct sum

R(Tp,M) = R1(TpM)⊕R2(TpM)⊕R3(TpM) ,

where

R2(TpM)⊕R3(TpM) = {R ∈ R(TpM) | τ∗(R) = 0} ,

R3(TpM) = {R ∈ R(TpM) | %(R) = 0} ,

R2(TpM) = orthogonal complement of R3(TpM)

in R2(TpM)⊕R3(TpM) ,

R1(TpM) = orthogonal complement of R2(TpM)⊕R3(TpM)

in R(TpM) .

Moreover, for an arbitrary R ∈ R(TpM) we have

R = R1 + R2 + R3 ,
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where

(13) R1(X, Y )Z =
−τ∗

24

[
g(JX, Z)Y − g(JY, Z)X

+ 2g(JX, Y )Z − g(X,Z)JY + g(Y,Z)JX
]
,

R2(X, Y, Z, V ) = − 1
8

[
S(X, Z)g(Y, V )− S(Y, X)g(X, V )

+ S(X, V )g(Y, Z)− S(Y, V )g(X, Z)

+ 2S(X, Y )g(Z, V )− S(X,JZ)g(JY, V )

+ S(Y, JZ)g(JX, V )− S(X, JV )g(JY, Z)

+ S(Y, JV )g(JX, Z) + 2S(Z, JV )g(JX, Y )
]
,

(14)

and

(15) S(X, Y ) = %(X, Y )− τ∗

4
g(JX, Y ) .

In the following lemma we state some inequalities which will be used later.

Lemma 2.1. Let M be a complex Hermitian surface with R∈R(TpM).
Then

‖R‖2 − 1
3
τ∗2 ≥ 0 ,(16)

‖%‖2 ≥ τ∗2

4
.(17)

The equality holds in (16) if R ∈ R1(TpM). The equality holds in (17) if
R ∈ R1(TpM)⊕R3(TpM).

Proof. The inequalities
∑ [

RPQIK +
τ∗

24
(
gP̄ IgQK − gQ̄IgPK+

+2gP̄QgIK − gPIgQ̄K + gQIgP̄K

) ]2

≥ 0

and ∑[
%IK − τ∗

4
gĪK

]2

≥ 0

imply by direct computations (16) and (17).
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3. Chern numbers of Hermitian surface
with symmetric curvature operator

Now we shall study some properties of the Chern numbers for a Her-
mitian surface admiting a complex connection with the symmetric curva-
ture operator. We do not assume that this is a metric connection.

Proposition 3.1. Assume that a Hermitian surface M admits a com-
plex symmetric connection ∇ with the symmetric curvature operator.
Then c1(M) = 0.

Proof. For γ1 we have

γ1(X, Y ) =
√−1
2π

(
%̃(X, Y ) +

√−1 %̄(X, JY )
)

.

Then
%̄(X, Y ) = RXY ī

i = RXY i
ī = −RXY i

ī = 0

implies

γ1 =
√−1
2π

%̃ =
−√−1

2π
% .

Since c1(M) is a real cohomology class, %̃ is an exact 2-form and c1(M) =
[γ1] = 0, where [γ] denotes for a closed form γ the corresponding de Rham
cohomology class. That is γ1 = dη for some global 1-form η on M . Hence,
c2
1(M) = 0.

Moreover, from (11),

(19) γ2
1 = − 1

8π2

(
τ∗2 − 2‖%‖2

)
Φ2 = d(η ∧ dη) ,

and γ2
1 is an exact form.

Proposition 3.2. Assume that a Hermitian surface M admits a com-
plex symmetric connection ∇ with the symmetric curvature operator.
Then

c2(M) = [γ̃2] = [γ̂2]

where

(20) γ̃2 =
1

16π2

(
2‖%‖2 − ‖R‖2)Φ2 ,

and

(21) γ̂2 =
1

16π2

(
τ∗2 − ‖R‖2

)
Φ2 .
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Proof. By (12), we have

γ2 =
1

16π2

∑{
4‖%‖2 − ‖R‖2 − τ∗2 + 2%ĪJ%IJ

}
Φ2 ,

and then (19) implies [γ2] = [γ̃2], [γ2] = [γ̂2]. This completes the proof.

Corollary 3.3. Let ∇ be a symmetric complex connection on a com-
pact Hermitian surface with R ∈ R1(TpM). Then ∇ is a flat connection.

Proof. By Proposition 3.1, c1(M) = 0, so (19) implies
∫

M

(
τ∗2 − 2‖%‖2

)
Φ2 = 0 .

Hence, because of Lemma 2.1,
∫

M
τ∗2Φ2 = 0 and τ∗ ≡ 0 on M . Moreover

R = 0, i.e., ∇ is flat.

Corollary 3.4. Suppose that a symmetric complex connection ∇ ex-
ists on a compact Hermitian surface M with R ∈ R2(TpM) ⊕ R3(TpM).
Then c2[M ] ≤ 0. The equality holds if and only if ∇ is a flat connection.

Proof. For R ∈ R2(TpM) ⊕R3(TpM) on M , τ∗ = 0. Hence, from
(21) it follows

c2[M ] =
∫

M

γ2 =
−1

16π2

∫

M

‖R‖2Φ2 ≤ 0 .

Clearly, the equality holds if and only if R = 0.

Corollary 3.5. Let (M, J) be a compact Hermitian surface which ad-
mits a Kähler–Einstein metric. Then every complex symmetric connection
with R ∈ R2(TpM)⊕R3(TpM) on M is flat.

Proof. Kähler–Einstein surfaces satisfy the Miyaoka inequality

c2
1[M ] = 3c2[M ] ≤ 0 ,

where the equality holds if and only if M is a complex space form (see
[CO]). If M admits a complex symmetric connection∇ with R ∈ R2(TpM)
⊕R3(TpM), then Proposition 3.1 implies c2

1(M) = 0 and Corrolary 3.4
gives c2[M ] ≤ 0. The proof now follows by the Miyaoka inequality.
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Corollary 3.6. Let (M, J) be a compact Hermitian surface which ad-
mits a Kähler–Einstein metric. Then every complex symmetric connection
with R ∈ R1(TpM)⊕R3(TpM) on M is flat.

Proof. Let ∇ be a symmetric complex connection defined on (M, J)
with R ∈ R1(TpM) ⊕ R3(TpM). We use Lemma 2.1 to see 4‖%‖2 = τ∗2

for this curvature tensor. Moreover, by (19) τ∗ = % = 0. Now (20) gives

c2[M ] =
∫

M

γ2 =
−1

16π2

∫

M

‖R‖2Φ2 ≤ 0 .

By Miyaoka inequality and Corollary 3.3 we get c2(M) = 0 and ∇ is flat.

Remark. We have similar results for a compact surface of a general
type since Miyaoka inequality holds in that case.

4. Examples

The main purpose of this section is to construct some symmetric
complex connections on reducible Hermitian surfaces M with the generic
R ∈ R(TpM) or with R belonging to some vector subspaces of R(TpM).
Example 2 shows that the compactness of M is an essential assumption in
the Corollaries 3.4, 3.5 and 3.6. These examples can be seen as modifica-
tions of the examples constructed on complex curves in [BB] and [BB1].

Let M be a reducible Hermitian surface. It means M = M ′ × M ′′,
where M ′, M ′′ are complex curves, endowed with symmetric connections
∇′,∇′′, respectively, such that the corresponding curvature operators R′
and R′′ are symmetric.

Example 1. Firstly, we construct a symmetric connection∇ = ∇′×∇′′
on a torus T 4 = T ′2 × T ′′2. For this purpose we recall some results from
[BB]. We consider the standard embeding of the torus into the Euclidean
space R4 defined by

x1 = cos α, x2 = sin α, x3 = cos β, x4 = sin β ,

0 ≤ α ≤ 2π, 0 ≤ β ≤ 2π. The metric tensor g is given by g11=g22=1,
g12 = 0. Then the components of the Levi–Civita connection vanish, i.e.

LCΓk
ij = 0, i, j, k = 1, 2 .

If E1, E2 is a basis for the tangent space at an arbitrary point p ∈ T 2 we
define an almost complex structure J by

JE1 = E2, JE2 = −E1 .
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Let Γk
ij (i, j, k = 1, 2) be the components of a complex symmetric connec-

tion ∇. They have to satisfy the following conditions

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22, Γ1
12 = Γ1

21 = Γ2
22 = −Γ2

11 .

It follows that the components Γ1
11 and Γ1

12 can be arbitrary smooth
functions which are periodical with respect to α and β and all other com-
ponents depend on these two. To satisfy

%11 = %22 = 0, %12 = −%21

we find
Γ1

11 = − cosα sin β, Γ1
12 = sin α cosβ .

Therefore
(22) %12 = 2 cos α cos β

and
(23) τ∗ = 4 cos α cos β .

The components of our symmetric complex connection are defined
globally on the torus (T 2, g).

Now we easily obtain the components of the tensor S on the torus T 4.
We use (15) to see

(24) S12 = %12 − τ∗

4
g22 ,

where
(25) τ∗ = τ ′∗ + τ ′′∗

and

%12 = %′12 =
τ
′∗

2
g′22, g′22 = g22 .

Using (22) and (23) we get

(26) S12 = cos α cos β − cos γ cos δ = −S21 .

Similarly

S34 = %34 − τ∗

4
g44, %34 = %′′12 =

τ ′′∗

2
g′′22, g′′22 = g44 ,

i.e.
(27) S34 = cos γ cos δ − cosα cosβ = −S43 ;

(γ and δ are the parameters for the standard embeding of the torus T ′′2

into R4). All other Sij vanish.
Now by substitution (23), (25), (26), (27) into (13) and (14) we obtain

that the curvature tensor R belongs to R(TpM) with all components Ri

different from zero.
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Example 2. A nonflat complex symmetric connection ∇ with R ∈
R1(TpM)⊕R3(TpM) or R ∈ R2(TpM)⊕R3(TpM) can be obtained using
[BB1]. There we have constructed, on a complex line C, a nonflat complex
symmetric connection ∇ with the components

Γ1
11 = Γ2

12 = Γ2
21 = −Γ1

22 = −Bx + (A− α)y + E ,

Γ1
12 = Γ1

21 = Γ2
22 = −Γ2

11 = Ax + By + C ,

where A,B, C, E are constants and z = x+
√−1 y. ∇ has also the constant

scalar curvature τ∗ = 2α. The Ricci tensor % for ∇ has the components

%11 = %22 = 0, %12 = %21 = α .

Of course, the Christoffel symbols Γk
ij are zero for the Levi–Civita connec-

tion on C.
Now, if we have two complex lines with complex symmetric connec-

tions ∇′ and ∇′′ and constant scalar curvatures τ ′∗ = 2α and τ ′′∗ = 2β,
then for the curvature tensor R of the complex plane (C2,∇′×∇′′) we get
(i) R ∈ R1(TpM) ⊕ R3(TpM) if α = β (as S = 0, τ∗ = 2(α + β) and

therefore R2 = 0, see (14));
(ii) R ∈ R2(TpM) ⊕ R3(TpM) if α = −β (as τ∗ = 0, S 6= 0, S12 =

(α− β)/2, S34 = (β − α)/2 and therefore R1 = 0, see (13)).
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368Novica Blažić and Neda Bokan : Some topological obstructions to symmetric . . .

[Ni] S. Nik�cevi�c, Induced representation of unitary group in tensor spaces of Hermite
manifolds, (preprint).

[NP] K. Nomizu and F. Podest�a, On affine Kähler structures, Bull. Soc. Math. Belg.
41 (1989), 275–282.

[No] A. P. Norden, Prostranstva afinoy svyaznosti, Nauka, Moskva, 1976.
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