Publ. Math. Debrecen 63/1-2 (2003), 235–248

Steinhaus property for products of ideals

By MAREK BALCERZAK (Łódź) and ELŻBIETA KOTLICKA (Łódź)

Abstract. Let \mathcal{M} and \mathcal{N} stand for the ideals of meager sets and of null sets in \mathbb{R} , respectively. We prove that, for any Borel sets A, B in \mathbb{R}^2 which both are not in $\mathcal{M} \otimes \mathcal{N}$ (or $\mathcal{N} \otimes \mathcal{M}$), the set $A + B = \{a+b : a \in A, b \in B\}$ has the nonempty interior. Some general version of this theorem for B = -A is also considered.

0. Introduction

STEINHAUS [29] proved that, for each Lebesgue measurable set $A \subset \mathbb{R}$ of positive measure, the set A - A of all differences x - y with $x, y \in A$, contains a neighbourhood of 0. The analogous result for a linear set of the second category with the Baire property was obtained by PICCARD [27]. The both results have been extended in various directions by several authors. (See e.g. [19].) The scheme given in the Steinhaus theorem can be formulated as the respective property of a pair consisting of an algebra and an ideal of sets in \mathbb{R} (or, more generally, in a topological group). Other examples of pairs with the Steinhaus property and their applications to functional equations can be found in [6]. The Steinhaus property connected with invariant extensions of Lebesgue measure was investigated by KHARAZISHVILI [15, pp. 123–132].

Let \mathcal{M} and \mathcal{N} stand, respectively, for the σ -ideals of meager sets and of null sets in \mathbb{R} . Products $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ (which will be defined in

Mathematics Subject Classification: Primary 54E52; Secondary 28A12, 22A10, 39B22. Key words and phrases: Steinhaus property, ideal of sets, product of ideals, additive function.

Section 1) form σ -ideals of sets in \mathbb{R}^2 , which have been studied in several papers [21], [22], [11], [7], [8], [9], [10], [2], [4]. In [7], a weak version of the Steinhaus property for $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ assiociated with the σ algebra of Borel sets in \mathbb{R}^2 , was considered. Namely, the authors of [7] were interested in the case when there exists a countable set $W \subset \mathbb{R}^2$ such that $(A - A) \cap W \neq \emptyset$ for each Borel set $A \notin \mathcal{M} \otimes \mathcal{N}$ (or $A \notin \mathcal{N} \otimes \mathcal{M}$). From the theorems of Steinhaus and Piccard it easily follows that one can take as W the product \mathbb{Q}^2 of the rationals. The aim of our paper is to prove a general version of the Steinhaus property for $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$. Theorems 4 and 5 are our main results. In Section 1 we use a technique which turned out fruitful in [11], [9] and [2]. In Section 2 we follow some ideas of [16] and [4].

1. Very strong Steinhaus property

We use standard notation. Let $\mathbb{N} = \{1, 2, ...\}$. By $\mathcal{P}(X)$ we denote the power set of X. Let $(\mathbb{G}, +, 0)$ be an Abelian topological group. For $A, B \subset \mathbb{G}$ and $x \in \mathbb{G}$, we denote

$$A \pm x = \{a \pm x : a \in A\}, \quad -A = \{-a : a \in A\},$$

 $A \pm B = \{a \pm b : a \in A, b \in B\}.$

We say that $\mathcal{F} \subset \mathcal{P}(\mathbb{G})$ is *invariant* if $A + x \in \mathcal{F}$ for all $A \in \mathcal{F}$ and $x \in \mathbb{G}$. Let Σ and \mathfrak{I} be invariant families and let they form an algebra and an ideal of subsets of \mathbb{G} , respectively. We say that (Σ, \mathfrak{I}) has the *Steinhaus* property (in short SP) if A - A contains a neighbourhood of 0, for each $A \in \Sigma \setminus \mathfrak{I}$. In the sequel, we shall use, as Σ , the algebra $\mathcal{B} = \mathcal{B}(\mathbb{G})$ of Borel sets in \mathbb{G} . Observe that, for $\mathbb{G} = \mathbb{R}$, the pair $(\mathcal{B}, \mathbb{N})$ has SP if and only if (Σ, \mathbb{N}) has SP where Σ stands for the algebra of Lebesgue measurable sets. The analogous statement holds in the category case. By that reason, we attribute the Steinhaus property to an ideal \mathfrak{I} regardless of an algebra, but this will mean that $(\mathcal{B}, \mathfrak{I})$ has SP.

It is clear that for $A \subset \mathbb{G}$ we have

$$A - A = \{ x \in \mathbb{G} : (A + x) \cap A \neq \emptyset \}.$$

Now, we shall graduate the strength of the Steinhaus-type properties for a given ideal. Denote by Nb(0) the family of all neighbourhoods of 0.

An ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{G})$ is called proper if $\{\emptyset\} \neq \mathfrak{I} \neq \mathfrak{P}(\mathbb{G})$. We say that an invariant proper ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{G})$ possesses:

(a) the Steinhaus property, if

$$(\forall A \in \mathcal{B} \setminus \mathcal{I}) \ (\exists U \in Nb(0)) \ U \subset \{x \in \mathbb{G} : (A+x) \cap A \neq \emptyset\};\$$

(b) the strong Steinhaus property, if

$$(\forall A \in \mathcal{B} \setminus \mathcal{I}) \ (\exists U \in Nb(0)) \ U \subset \{x \in \mathbb{G} : (A+x) \cap A \notin \mathcal{I}\};\$$

(c) the very strong Steinhaus property, if there is a countable family $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ such that $\mathcal{B}\setminus \mathcal{I} = \bigcup_{n\in\mathbb{N}}\mathcal{F}_n$ and

$$(\forall n \in \mathbb{N}) (\exists U \in \mathrm{Nb}(0)) (\forall A, B \in \mathfrak{F}_n) \ U \subset \{x \in \mathbb{G} : (A+x) \cap B \notin \mathfrak{I}\};\$$

we then say that the very strong Steinhaus property for \mathfrak{I} is realized by the family $\{\mathfrak{F}_n\}_{n\in\mathbb{N}}$.

The above properties will be written in short as SP, SSP and VSSP. Clearly VSSP \implies SSP \implies SP. The family of all countable subsets of \mathbb{R} serves as a simple example of a σ -ideal without SP. Namely, it suffices to consider a nowhere dense perfect set $P \subset \mathbb{R}$ such that P - P is nowhere dense. (See e.g. [30].) Several examples of ideals without SP can be derived from [3, Section 3].

Theorem 1.

- (I) [25] Assume that there exists a countable base $\{U_n\}_{n\in\mathbb{N}}$ of open neighbourhoods of 0 in \mathbb{G} . Then SP \iff SSP for each invariant proper σ -ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{G})$.
- (II) [25] There is an invariant proper ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{R})$ which witnesses that $SP \Rightarrow SSP$.
- (III) There is a Banach space in which the ideal of meager sets witnesses that SSP \Rightarrow VSSP.

PROOF. I) It suffices to prove SP \implies SSP. Suppose that \mathfrak{I} does not have SSP. So, there is an $A \in \mathfrak{B} \setminus \mathfrak{I}$ such that for each $n \in \mathbb{N}$ there is an $x_n \in U_n$ with $(A+x_n) \cap A \in \mathfrak{I}$. Put $A_0 = A \setminus \bigcup_{n \in \mathbb{N}} (A+x_n)$. Thus $A_0 \in \mathfrak{B} \setminus \mathfrak{I}$ and $(A_0 + x_n) \cap A_0 = \emptyset$ for every *n*. Hence $U \not\subset \{x \in \mathbb{G} : (A + x) \cap A \neq \emptyset\}$ for each $U \in Nb(0)$. This shows that \mathfrak{I} does not have SP.

(II) Let \mathfrak{I} denote the ideal of all sets of the form $A \cup B$ where $A \in \mathfrak{N}$ and B is nowhere dense in \mathbb{R} . Then SP for \mathfrak{I} follows from SP for \mathfrak{N} . Let $\{U_n\}_{n\in\mathbb{N}}$ be a fixed countable base of open sets in \mathbb{R} . Define nowhere dense perfect sets P_k , $k \in \mathbb{N}$, as follows. If $j \in \mathbb{N}$ is given and P_j , i < j, are chosen, pick a nowhere dense perfect set P_j of positive measure, with the diameter less than 1/(2j), and such that

$$P_j \subset U_j \setminus \bigcup_{i < j} \bigcup_{n < i+j} \left(P_i \pm \frac{1}{n} \right).$$

Then $B = \bigcup_{k \in \mathbb{N}} P_k \in \mathcal{B} \setminus \mathcal{I}$, and

$$\left(B+\frac{1}{n}\right)\cap B\subset \bigcup_{i+j\leq n}\left(P_i+\frac{1}{n}\right)\cap P_j\in \mathfrak{I}\quad\text{for each }n\in\mathbb{N}.$$

Hence $U \not\subset \{x \in \mathbb{R} : (B+x) \cap B \in \mathcal{I}\}$ for each $U \in Nb(0)$. This shows that \mathcal{I} does not have SSP.

(III) Let \mathfrak{I} stand for the ideal of meager sets in the Banach space X of all bounded functions on [0, 1], endowed with the supremum norm. Fix an uncountable family \mathfrak{F} of pairwise disjoint balls in X. Then $\mathfrak{F} \subset \mathfrak{B} \setminus \mathfrak{I}$. Suppose that $\{\mathfrak{F}_n\}_{n \in \mathbb{N}}$ fulfils the statement of VSSP. Thus we can find an ucountable \mathfrak{F}_n . This yields a contradiction since $A \cap B \neq \emptyset$ for any $A, B \in \mathfrak{F}_n$, and $A \cap B = \emptyset$ for any distinct $A, B \in \mathfrak{F}$. It is not hard to check that \mathfrak{I} possesses SSP. (See e.g. [28, Theorem 3.5.12].)

Immediately from the definitions we obtain the following:

Proposition 1. If proper invariant ideals $\mathfrak{I}, \mathfrak{J} \subset \mathfrak{P}(\mathbb{G})$ possess SP (respectively, SSP, VSSP) then $\mathfrak{I} \cap \mathfrak{J}$ possesses SP (respectively, SSP, VSSP). Moreover, if VSSP for \mathfrak{I} and \mathfrak{J} is realized by $\{\mathfrak{F}_n\}_{n\in\mathbb{N}}$ and $\{\mathfrak{G}_n\}_{n\in\mathbb{N}}$, then VSSP for $\mathfrak{I} \cap \mathfrak{J}$ is realized by $\{\mathfrak{F}_n\}_{n\in\mathbb{N}} \cup \{\mathfrak{G}_n\}_{n\in\mathbb{N}}$.

Now, we are going to show that \mathcal{M} and \mathcal{N} have VSSP. Then we shall obtain a general result which implies that $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ have VSSP and consequently, they have SP.

Lebesgue measure on \mathbb{R} will be denoted by μ . Let $\{I_n\}_{n \in \mathbb{N}}$ stand for the family of all bounded open intervals with rational endpoints.

Theorem 2. The ideal \mathcal{M} has VSSP realized by the family $\{\mathfrak{F}_n\}_{n\in\mathbb{N}}$ where

$$\mathfrak{F}_n = \{ A \in \mathfrak{B} : I_n \setminus A \in \mathfrak{M} \} \text{ for } n \in \mathbb{N}.$$

PROOF. Clearly $\mathcal{B} \setminus \mathcal{M} = \bigcup_{n \in \mathbb{N}} \mathcal{F}_n$. Fix an $n \in \mathbb{N}$ and put $U = I_n - I_n$. Then U is an open interval and

$$U = \{x \in \mathbb{R} : (I_n + x) \cap I_n \neq \emptyset\} = \{x \in \mathbb{R} : (I_n + x) \cap I_n \notin \mathcal{M}\}.$$

Assume that $A, B \in \mathfrak{F}_n$ and $x \in U$. Thus

$$(A+x) \cap B \supset ((I_n \cap A) + x) \cap (I_n \cap B)$$

$$\supset (((I_n \setminus (I_n \setminus A)) + x) \cap (I_n \setminus (I_n \setminus B)))$$

$$= (I_n + x) \cap I_n \setminus (((I_n \setminus A) + x) \cup (I_n \setminus B)).$$

Since $(I_n + x) \cap I_n \notin \mathcal{M}$ and $I_n \setminus A$, $I_n \setminus B \in \mathcal{M}$, we have $(A + x) \cap B \notin \mathcal{M}$ as desired. \Box

Theorem 3. The ideal \mathbb{N} has VSSP realized by the family $\{\mathcal{G}_n\}_{n \in \mathbb{N}}$ where

$$\mathfrak{G}_n = \left\{ A \in \mathfrak{B} : \mu(A \cap I_n) > \frac{2}{3}\mu(I_n) \right\} \text{ for } n \in \mathbb{N}.$$

PROOF. Let us show that $\mathcal{B} \setminus \mathcal{N} = \bigcup_{n \in \mathbb{N}} \mathcal{G}_n$. Inclusion " \supset " is obvious. To prove inclusion " \subset " consider an $A \in \mathcal{B} \setminus \mathcal{N}$. Thus there exists an h > 0 such that $\mu(A \cap K)/\mu(K) > 5/6$ where K = (a-h, a+h). Pick an $I_n \subset K$ such that $\mu(K \setminus I_n) < \mu(K)/6$. We have

$$\mu(A \cap I_n)/\mu(I_n) = (\mu(A \cap K) - \mu(A \cap (K \setminus I_n)))/\mu(I_n)$$

$$\ge (\mu(A \cap K) - \mu(K \setminus I_n))/\mu(K) > \frac{5}{6} - \frac{1}{6} = \frac{2}{3}$$

Hence $A \in \mathfrak{G}_n$.

Now, fix an $n \in \mathbb{N}$ and put $U = (-\mu(I_n)/4, \mu(I_n)/4)$. It easily follows that

$$U = \{ x \in \mathbb{R} : \mu(I_n \cap (I_n + x)) > 3\mu(I_n)/4 \}.$$

Marek Balcerzak and Elżbieta Kotlicka

Assume that $A, B \in \mathcal{G}_n$ and $x \in U$. Thus

$$\mu((A+x)\cap B) \ge \mu((I_n\cap A)+x)\cap (I_n\cap B))$$

= $\mu((I_n+x)\cap I_n\setminus (((I_n\setminus A)+x)\cup (I_n\setminus B)))$
 $\ge \mu((I_n+x)\cap I_n) - \mu(I_n\setminus A) - \mu(I_n\setminus B)$
 $> 3\mu(I_n)/4 - \mu(I_n)/3 - \mu(I_n)/3 > 0.$

Now, from Proposition 1 and Theorems 2, 3 we deduce

Corollary 1. The ideal $\mathcal{M} \cap \mathcal{N}$ has VSSP.

Assume that \mathbb{G}_1 and \mathbb{G}_2 are topological groups, and let \mathfrak{I} and \mathfrak{J} be invariant proper ideals of sets in \mathbb{G}_1 and \mathbb{G}_2 , respectively. For an $A \subset \mathbb{G}_1 \times \mathbb{G}_2$ we put

$$A(\mathcal{J}) = \{ x \in \mathbb{G}_1 : A_x \notin \mathcal{J} \}$$

where $A_x = \{y \in \mathbb{G}_2 : (x, y) \in A\}, x \in \mathbb{G}_1$. We define

$$\mathfrak{I} \otimes \mathfrak{J} = \{ A \subset \mathbb{G}_1 \times \mathbb{G}_2 : A(\mathfrak{J}) \in \mathfrak{I} \}.$$

It is easy to check that $\mathfrak{I} \otimes \mathfrak{J}$ is an invariant proper ideal of sets in the group $\mathbb{G}_1 \times \mathbb{G}_2$. Moreover, if \mathfrak{I} and \mathfrak{J} are σ -ideals, so is $\mathfrak{I} \otimes \mathfrak{J}$.

Now, we are ready to formulate our main result:

Theorem 4. Assume that \mathfrak{I} and \mathfrak{J} are proper invariant ideals of sets in \mathbb{R} , and \mathfrak{I} is moreover a σ -ideal. Assume also the following conditions:

- (1) I has VSSP realized by a family $\{\mathfrak{F}_n\}_{n\in\mathbb{N}}$,
- (2) \mathcal{J} has VSSP realized by a family $\{\mathfrak{G}_m\}_{m\in\mathbb{N}}$,

(3) $(\forall A \in \mathcal{B}(\mathbb{R}^2))(\forall m \in \mathbb{N})\{x \in \mathbb{R} : A_x \in \mathcal{G}_m\} \in \mathcal{B}(\mathbb{R}).$

Then $\mathbb{I} \otimes \mathbb{J}$ has VSSP realized by the family $\{\mathcal{H}_{mn}\}_{m,n \in \mathbb{N}}$ where

$$\mathcal{H}_{mn} = \{ A \in \mathcal{B}(\mathbb{R}^2) : \{ x \in \mathbb{R} : A_x \in \mathcal{G}_m \} \in \mathcal{F}_n \}$$

for $m, n \in \mathbb{N}$.

PROOF. For brevity we write $\mathcal{B}(\mathbb{R}) = \mathcal{B}$ and $\mathcal{B}(\mathbb{R}^2) = \mathcal{B}^2$. First, we shall prove that

$$\mathcal{B}^2 \setminus (\mathfrak{I} \otimes \mathcal{J}) = \bigcup_{m,n \in \mathbb{N}} \mathcal{H}_{m,n}.$$
 (4)

So, let $A \in \mathcal{B}^2 \setminus (\mathcal{I} \otimes \mathcal{J})$. Since $A \in \mathcal{B}^2$, we have $A_x \in \mathcal{B}$ for each $x \in \mathbb{R}$. (See e.g. [28, 3.1.20].) Hence $A(\mathcal{J}) = \{x \in \mathbb{R} : A_x \in \mathcal{B} \setminus \mathcal{J}\}$. Thus by (2) we have

$$A(\mathcal{J}) = \bigcup_{m \in \mathbb{N}} \{ x \in \mathbb{R} : A_x \in \mathcal{G}_m \}.$$
 (5)

From $A \notin \mathfrak{I} \otimes \mathfrak{J}$ it follows that $A(\mathfrak{J}) \notin \mathfrak{I}$. Since \mathfrak{I} is a σ -ideal, by (5) there exists an $m \in \mathbb{N}$ such that $\{x \in \mathbb{R} : A_x \in \mathfrak{G}_m\} \notin \mathfrak{I}$. Now, by (3) and (1) we can find an $n \in \mathbb{N}$ such that $\{x \in \mathbb{R} : A_x \in \mathfrak{G}_m\} \in \mathfrak{F}_n$. Consequently, $A \in \mathcal{H}_{mn}$.

Now, let $A \in \mathcal{H}_{mn}$ for some $m, n \in \mathbb{N}$. Hence

$$A(\mathcal{J}) \supset \{x \in \mathbb{R} : A_x \in \mathfrak{G}_m\} \in \mathfrak{F}_n \subset \mathcal{B} \setminus \mathfrak{I}$$

and thus $A \notin \mathfrak{I} \otimes \mathfrak{J}$. So (4) has been proved.

The proof will be finished, if we show the condition

$$(\forall m, n \in \mathbb{N})(\exists W \in Nb(0, 0))(\forall A, B \in \mathcal{H}_{mn})$$

$$W \subset \{(x, y) \in \mathbb{R}^2 : (A + (x, y)) \cap B \notin \mathfrak{I} \otimes \mathfrak{J}\}.$$
 (6)

Fix any $m, n \in \mathbb{N}$. By (1) and (2) we deduce the existence of sets $U, V \in Nb(0)$ such that

$$(\forall C, C' \in \mathfrak{F}_n) \ U \subset \{x \in \mathbb{R} : (C+x) \cap C' \notin \mathfrak{I}\},\tag{7}$$

$$(\forall D, D' \in \mathcal{G}_m) \ V \subset \{x \in \mathbb{R} : (D+x) \cap D' \notin \mathcal{J}\}.$$
(8)

Define $W = U \times V$. Let $A, B \in \mathfrak{H}_{mn}$. Then $\widetilde{A}, \widetilde{B}$ given by

$$\widetilde{A} = \{ x \in \mathbb{R} : A_x \in \mathcal{G}_m \}, \quad \widetilde{B} = \{ x \in \mathbb{R} : B_x \in \mathcal{G}_m \}$$

are both in \mathcal{F}_n . Let $(x, y) \in W$, that is $x \in U$ and $y \in V$. Observe that

$$(\widetilde{A} + x) \cap \widetilde{B} \subset \{ s \in \mathbb{R} : (A_{s-x} + y) \cap B_s \notin \mathcal{J} \}.$$
(9)

Indeed, let $s \in (\widetilde{A} + x) \cap \widetilde{B}$. Then $s - x \in \widetilde{A}$ and $s \in \widetilde{B}$. Hence $A_{s-x}, B_s \in \mathcal{G}_m$. Now from $y \in V$ and (8) we obtain $(A_{s-x} + y) \cap B_s \notin \mathcal{J}$.

We know that $\widetilde{A}, \widetilde{B} \in \mathcal{F}_n$ and $x \in U$, so from (7) it follows that $(\widetilde{A} + x) \cap \widetilde{B} \notin \mathcal{I}$. Thus by (9) we have

$$\{s \in \mathbb{R} : (A_{s-x} + y) \cap B_s \notin \mathcal{J}\} \notin \mathcal{I}.$$
(10)

To finish the proof of (6) we have to show that $((A + (x, y)) \cap B)(\mathcal{J}) \notin \mathcal{I}$. Observe that

$$((A + (x, y)) \cap B)(\mathcal{J}) = \{s \in \mathbb{R} : (A_{s-x} + y) \cap B_s \notin \mathcal{J}\}.$$

Thus the assertion follows from (10).

Remark 1. If condition (1) in Theorem 4 is replaced by "J has SSP" and the remaining assumptions are unchanged then the assertion will be " $\mathfrak{I} \otimes \mathfrak{J}$ has SSP". Let us sketch the proof. Let $A \in \mathfrak{B}^2 \setminus (\mathfrak{I} \otimes \mathfrak{J})$. We can find an $n \in \mathbb{N}$ such that $B := \{x \in \mathbb{R} : A_x \in \mathfrak{G}_m\} \notin \mathfrak{I}$. Pick $U, V \in \mathrm{Nb}(0)$ such that $U \subset \{x \in \mathbb{R} : (B+x) \cap B \notin \mathfrak{I}\}$ and $V \subset \{y \in \mathbb{R} : (A_x+y) \cap A_{x'} \notin \mathfrak{I}\}$ for all $x, x' \in B$ (note that $A_x, A_{x'} \in \mathfrak{G}_m$). Then

$$U \times V \subset \{ (x, y) \in \mathbb{R}^2 : (A + (x, y)) \cap A \notin \mathfrak{I} \otimes \mathfrak{J} \}.$$

Indeed, if $(x, y) \in U \times V$, we have

$$(B+x) \cap B \subset \{s \in \mathbb{R} : (A_{s-x}+y) \cap A_s \notin \mathcal{J}\} = ((A+(x,y)) \cap A)(\mathcal{J}).$$

Since $(B + x) \cap B \notin \mathcal{I}$, the proof is finished.

Another version of Theorem 4 with the phrases "J has SP" and " $J \otimes J$ has SP" also works, with a similar demonstration.

Remark 2. Theorem 4 and its versions given in Remark 1 remain valid if \mathbb{R} is replaced, respectively, by Abelian topological groups \mathbb{G}_1 and \mathbb{G}_2 .

Remark 3. Montgomery [24] proved that, for any Borel set $A \subset \mathbb{R}^2$ and r > 0, the sets $\{x \in \mathbb{R} : A_x \notin \mathcal{M}\}$ and $\{x \in \mathbb{R} : \mu(A_x) > r\}$ are Borel. Consequently, if I is an interval, then the set

$$\{x \in \mathbb{R} : I \setminus A_x \in \mathcal{M}\} = \mathbb{R} \setminus \{x \in \mathbb{R} : ((\mathbb{R} \times I) \setminus A)_x \notin \mathcal{M}\}$$

is Borel. Similarly, the set

$$\{x \in \mathbb{R} : \mu(I \cap A_x) > r\} = \{x \in \mathbb{R} : \mu((\mathbb{R} \times I) \setminus A)_x > r\}$$

is Borel. (See also [14, 16.1, 22.22, 22.25].) Hence, for any member of the families $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$ and $\{\mathcal{G}_n\}_{n\in\mathbb{N}}$ from Theorems 2 and 3, condition (3) in Theorem 4 is fulfilled.

242

Now, using Theorems 2, 3, 4 together with Remark 3 and Proposition 1 we conclude

Corollary 2. $\mathcal{M} \otimes \mathcal{N}, \mathcal{N} \otimes \mathcal{M}$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ have VSSP.

Remark 4. Note that the ideals $\mathcal{M} \otimes \mathcal{M}$ and $\mathcal{N} \otimes \mathcal{N}$ are greater than the ideals of meager sets and of null sets in \mathbb{R}^2 , respectively. (See [26].) We shall obtain the respective equalities, if we reduce $\mathcal{M} \otimes \mathcal{M}$ and $\mathcal{N} \otimes \mathcal{N}$ to $\mathcal{M} \otimes \mathcal{M}$ and $\mathcal{N} \otimes \mathcal{N}$ where

$$\mathfrak{I} \widetilde{\otimes} \mathfrak{J} = \{ A \subset \mathbb{R}^2 : (\exists B \in \mathfrak{B}(\mathbb{R}^2) \cap (\mathfrak{I} \otimes \mathfrak{J})) \ A \subset B \}.$$

Analogously, we can consider $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ instead of $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$. The reduced products seem more natural in some contexts. However, since

$$\mathcal{B}(\mathbb{R}^2)\setminus (\mathfrak{I}\otimes\mathfrak{J})=\mathcal{B}(\mathbb{R}^2)\setminus (\mathfrak{I}\widetilde{\otimes}\mathfrak{J}),$$

there is no difference which kind of products we use to investigate the Steinhaus-type properties. Sometimes it is convenient to associate with $\mathbb{J} \otimes \mathcal{J}$ the smallest σ -algebra Σ containing $\mathcal{B}(\mathbb{R}^2) \cup (\mathfrak{I} \otimes \mathcal{J})$. (See [2].) Clearly, each set from $\Sigma \setminus (\mathfrak{I} \otimes \mathcal{J})$ contains a set from $\mathcal{B}(\mathbb{R}^2) \setminus (\mathfrak{I} \otimes \mathcal{J})$.

The Steinhaus property has important applications in functional equations theory. For instance, it leads to a simple proof of the fact that an additive function bounded on a measurable set of positive measure is continuous (the Ostrowski theorem; [20, p. 210]). A similar fact holds in the Baire category case [20, p. 210]. Moreover, there is a general theorem [20, Theoremm 2, p. 240] from which, together with SP for $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$, we conclude the following

Corollary 3. Let $\mathfrak{I} = \mathfrak{M} \otimes \mathfrak{N}$ or $\mathfrak{I} = \mathfrak{N} \otimes \mathfrak{M}$, and let $T \in \mathfrak{B}(\mathbb{R}^2) \setminus \mathfrak{I}$. Then every additive function $f : \mathbb{R}^2 \to \mathbb{R}$ bounded on T is continuous.

In turn, from Corollary 3 and Remark 4 we derive the next result, by the use of an argument similar to that in [20, p. 218] or [16, p. 146].

Corollary 4. Let $\mathfrak{I} = \mathfrak{M} \otimes \mathfrak{N}$ or $\mathfrak{I} = \mathfrak{N} \otimes \mathfrak{M}$, and let Σ denote the smallest σ -algebra containing $\mathfrak{B}(\mathbb{R}^2) \cup \mathfrak{I}$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be an additive function such that f|P is Σ -measurable for some $P \in \Sigma \setminus \mathfrak{I}$. Then f is continuous.

Marek Balcerzak and Elżbieta Kotlicka

2. Extended Steinhaus property

Fix an Abelian topological group \mathbb{G} and an invariant proper ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{G})$. Denote by $\operatorname{int}(A)$ the interior of a set $A \subset \mathbb{G}$. Note that if VSSP for \mathcal{I} is realized by $\{\mathcal{F}_n\}_{n\in\mathbb{N}}$, then $\operatorname{int}(B-A) \neq \emptyset$ for all $A, B \in \mathcal{F}_n$ and for each $n \in \mathbb{N}$. It is natural to ask whether $\operatorname{int}(B-A) \neq \emptyset$ for all $A, B \in \mathcal{F}_n$ \mathbb{I} and $\mathcal{I} = \mathcal{N}$. The answer is affirmative for $\mathcal{I} = \mathcal{M}$ and $\mathcal{I} = \mathcal{N}$. The respective results are well known and their various generalizations were studied in several papers. (See [5], [18], [19], [23], [12], [13].) We are going to establish this kind of Steinhaus property for $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$. We shall follow the method used in [16, Theoremm 2, p. 115]. First let us connect our investigations with the results of the previous section.

We say that an invariant proper ideal $\mathcal{I} \subset \mathcal{P}(\mathbb{G})$ possesses:

(a) the extended Steinhaus property, if

$$(\forall A, B \in \mathcal{B} \setminus \mathcal{I}) \operatorname{int}(\{x \in \mathbb{G} : (A+x) \cap B \neq \emptyset\}) \neq \emptyset;$$

(b) the extended strong Steinhaus property, if

$$(\forall A, B \in \mathcal{B} \setminus \mathcal{I}) \text{ int}(\{x \in \mathbb{G} : (A+x) \cap B \notin \mathcal{I}\}) \neq \emptyset.$$

Condition (a) states exactly that $int(B - A) \neq \emptyset$ for all $A, B \in \mathcal{B} \setminus \mathcal{I}$. The properties given in (a) and (b) will be written in short as ESP and ESSP. Clearly ESP \implies SP, ESSP \implies SSP and ESSP \implies ESP. The following proposition shows how to obtain ESP or ESSP when SP or SSP holds.

Proposition 2. For an invariant proper ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{G})$ satisfying the condition:

$$(\forall A, B \in \mathfrak{B} \setminus \mathfrak{I}) (\exists z \in \mathfrak{G}) \quad (A+z) \cap B \notin \mathfrak{I}, \tag{11}$$

we have SP \iff ESP and SSP \iff ESSP.

PROOF. We shall prove SSP \implies ESSP; the argument for SP \implies ESP is analogous. Let $A, B \in \mathcal{B} \setminus \mathcal{I}$. Pick a $z \in \mathbb{G}$ as in (11) and put $Z = (A + z) \cap B$. By SSP we have

$$U := \operatorname{int}(\{x \in \mathbb{G} : (Z + x) \cap Z \notin \mathfrak{I}\}) \neq \emptyset.$$

Observe that

$$U + z \subset \{y \in \mathbb{G} : (Z + y - z) \cap Z \notin \mathcal{I}\} \subset \{y \in \mathbb{G} : (A + y) \cap B \notin \mathcal{I}\}.$$

Hence $\operatorname{int}(\{y \in \mathbb{G} : (A + y) \cap B \notin \mathcal{I}\}) \neq \emptyset.$

Remark 5. T. NATKANIEC [25] observed that the following version of Theorem 1(I) holds. If \mathbb{G} has a countable base of open sets then ESP \iff ESSP for each proper invariant σ -ideal $\mathbb{J} \subset \mathcal{P}(\mathbb{G})$. Indeed, suppose that \mathbb{J} does not have ESSP. Thus there are sets $A, B \in \mathcal{B} \setminus \mathbb{J}$ such that $\operatorname{int}(\{x \in \mathbb{G} : (A + x) \cap B \notin \mathbb{J}\}) = \emptyset$. If $\{U_n\}_{n \in \mathbb{N}}$ is a base of open sets in \mathbb{G} , then for each $n \in \mathbb{N}$, pick an $x_n \in U_n$ with $(A + x_n) \cap B \in \mathbb{J}$. Thus $B_0 = B \setminus \bigcup_{n \in \mathbb{N}} (A + x_n) \in \mathcal{B} \setminus \mathbb{J}$ and $(A + x_n) \cap B_0 = \emptyset$ for every n. Hence $\operatorname{int}(\{x \in \mathbb{G} : (A + x) \cap B_0 \neq \emptyset\}) = \emptyset$ which shows that \mathbb{J} does not have ESP.

Theorem 5. $\mathcal{M} \otimes \mathcal{N}$ and $\mathcal{N} \otimes \mathcal{M}$ have ESSP.

PROOF. Let $\mathcal{J} = \mathcal{M} \otimes \mathcal{N}$ (the case of $\mathcal{N} \otimes \mathcal{M}$ is analogous). By virtue of Corollary 2 it suffices to check condition (11) in Proposition 2 for \mathcal{J} . To this aim we use the notion of a \mathcal{J} -density point considered in [4]. Let $\varphi(E)$ denote the set of \mathcal{J} -density points of a set E from the σ -algebra generated by $\mathcal{B}(\mathbb{R}^2) \cup (\mathcal{M} \otimes \mathcal{N})$. In [4], it is proved that φ has usual properties of the lower density operator (cf. [26, Chap. 22]). Let A, B be Borel sets in \mathbb{R}^2 that are not in \mathcal{J} . Pick $a \in \varphi(A), b \in \varphi(B)$ and put z = b - a. Now, $a \in \varphi(A)$ implies $b \in \varphi(A) + z = \varphi(A+z)$, and thus $b \in \varphi(A+z) \cap \varphi(B) =$ $\varphi((A+z) \cap B)$. Hence $(A+z) \cap B \notin \mathcal{J}$.

An ideal $\mathfrak{I} \subset \mathfrak{P}(\mathbb{G})$ is called *symmetric* if $-A \in \mathfrak{I}$ whenever $A \in \mathfrak{I}$. Obviously, if \mathfrak{I} is symmetric, then ESP for \mathfrak{I} is equivalent to

$$(\forall A, B \in \mathcal{B} \setminus \mathcal{I}) \text{ int}(A+B) \neq \emptyset.$$

Observe that if ideals $\mathfrak{I}, \mathfrak{J} \subset \mathfrak{P}(\mathbb{G})$ are symmetric, so is $\mathfrak{I} \otimes \mathfrak{J}$. Thus from Theorem 5 it immediately results the following corollary.

Corollary 5. For arbitrary Borel sets A, B in \mathbb{R}^2 which both are not in $\mathcal{M} \otimes \mathcal{N}$ (or $\mathcal{N} \otimes \mathcal{M}$), the set A + B has nonempty interior.

Let us finish with the observation that $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ does not possess the extended Steinhaus property. This will follow from the known general scheme. We say that ideals $\mathfrak{I}, \mathfrak{J} \subset \mathfrak{P}(\mathbb{G})$ are *Borel orthogonal* if there is a Borel set $A \in \mathfrak{I}$ such that $\mathbb{G} \setminus A \in \mathfrak{J}$. For $D \subset \mathbb{G}$, we say that an ideal \mathfrak{I} is *D-additive* if $A + D \in \mathfrak{I}$ whenever $A \in \mathfrak{I}$. Clearly, if \mathfrak{I} is an invariant σ -ideal then \mathfrak{I} is *D*-additive for each countable set $D \subset \mathbb{G}$.

Proposition 3 (cf. [1], [17]). Assume that $\mathfrak{I}, \mathfrak{J} \subset \mathfrak{P}(\mathbb{G})$ are Borel orthogonal proper ideals. Let additionally, \mathfrak{I} be invariant, symmetric and D-additive for some countable dense subgroup D of \mathbb{G} . Then there are Borel sets $A, B \notin \mathfrak{I} \cap \mathfrak{J}$ such that A+B = A-B = B-A and $\operatorname{int}(A+B) = \emptyset$.

PROOF. Let $C \subset \mathbb{G}$ be a Borel set such that $C \in \mathfrak{I}$ and $\mathbb{G} \setminus C \in \mathfrak{J}$. Put $B = (D - C) \cup (D + C)$. Then $B \in \mathfrak{I}, -B = B$, and for $A = \mathbb{G} \setminus B$ we have $A \in \mathfrak{J}, -A = A$. Hence A + B = A - B = B - A. Since $A \cup B = \mathbb{G}$, we infer that $A, B \notin \mathfrak{I} \cap \mathfrak{J}$. Moreover, $A - B \subset \mathbb{G} \setminus D$ by the definition of B. Since D is dense, we have $\operatorname{int}(A - B) = \emptyset$.

Proposition 3 applies to \mathcal{M} and \mathcal{N} and to \mathbb{Q} , the additive group of rationals in \mathbb{R} . (See [1], [17]). Observe that it also applies to $\mathcal{M} \otimes \mathcal{N}$, $\mathcal{N} \otimes \mathcal{M}$ and \mathbb{Q}^2 in \mathbb{R}^2 . Namely, if C, E are disjoint Borel sets such that $C \in \mathcal{M}, E \in \mathcal{N}$ and $C \cup E = \mathbb{R}$ (cf. [26]), then $C \times \mathbb{R} \in \mathcal{M} \otimes \mathcal{N}$ and $E \times \mathbb{R} \in \mathcal{N} \otimes \mathcal{M}$. Thus we may formulate the following result which contrasts with Corollary 2.

Corollary 6. There are Borel sets $A, B \subset \mathbb{R}^2$ which both are not in $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$, and such that A + B = A - B = B - A, $int(A + B) = \emptyset$.

As we have seen, the ideals $\mathcal{M} \cap \mathcal{N}$ and $(\mathcal{M} \otimes \mathcal{N}) \cap (\mathcal{N} \otimes \mathcal{M})$ witness that ESP can be false even while VSSP is true. Consequently, condition (11) in Proposition 2 is not fulfilled by these ideals.

ACKNOWLEDGEMENTS. We would like to thank TOMASZ NATKANIEC who has permitted us to include his results to Theorem 1 and Remark 5 in our paper.

References

- F. BAGEMIHL, Some sets of sums and differences, Michigan Math. J. 4 (1957), 289–290.
- [2] M. BALCERZAK, Some properties of ideals of sets in Polish spaces, (habilitation thesis), Lódź University Press, Lódź, 1991.
- [3] M. BALCERZAK, Can ideals without ccc be interesting?, Topology Appl. 55 (1994), 251–260.
- [4] M. BALCERZAK and J. HEJDUK, Density topologies for products of σ-ideals, *Real Anal. Exchange* 20 (1994–95), 163–177.
- [5] A. BECK, H. H. CORSON and A. B. SIMON, The interior points of the product of two subsets of a locally compact group, *Proc. Amer. Math. Soc.* 9 (1958), 648–652.
- [6] J. BRZDĘK, On functions which are almost additive modulo a subgroup, *Glasnik Mat.* 36 (2001), 1–9.
- [7] J. CICHOŃ, A. KAMBURELIS and J. PAWLIKOWSKI, On dense subsets of the measure algebra, Proc. Amer. Math. Soc. 94 (1985), 142–146.
- [8] J. CICHOŃ and J. PAWLIKOWSKI, On ideals of subsets of the plane and on Cohen reals, J. Symb. Logic 51 (1986), 560–569.
- [9] D. H. FREMLIN, Measure-additive coverings and measurable selectors, *Dissert. Math.* 256 (1987).
- [10] D. H. FREMLIN, The partially ordered sets of measure theory and Tukey's ordering, Note Mat. 21 (1991), 177–214.
- [11] M. GAVALEC, Iterated products of ideals of Borel sets, Colloq. Math. 50 (1985), 39–52.
- [12] A. JÁRAI, A Steinhaus type theorem, Publ. Math. Debrecen 47 (1995), 1-13.
- [13] A. JÁRAI, A generalization of a theorem of Piccard, Publ. Math. Debrecen 52 (1998), 497–506.
- [14] A. S. KECHRIS, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995.
- [15] A. B. KHARAZISHVILI, Applications of Point Set Theory in Real Analysis, *Kluwer Acad. Publ.*, Dordrecht, 1998.
- [16] A. B. KHARAZISHVILI, Strange Functions in Real Analysis, Marcel Dekker Inc., New York, 2000.
- [17] Z. KOMINEK, Measure, category, and the sums of sets, Amer. Math. Monthly 90 (1983), 561–562.
- [18] Z. KOMINEK and M. KUCZMA, Theorems of Bernstein–Doetsch, Piccard and Mehdi and semilinear topology, Arch. Math. 52 (1989), 595–602.
- [19] Z. KOMINEK and H. I. MILLER, Some remarks on a theorem of Steinhaus, *Glasnik Mat.* 20 (1985), 337–344.
- [20] M. KUCZMA, An Introduction to the Theory of Functional Equations and Inequalities, PWN, Warszawa – Katowice, 1985.
- [21] C. G. MENDEZ, On sigma-ideals of sets, Proc. Amer. Math. Soc. 60 (1976), 124–128.

- 248 M. Balcerzak and E. Kotlicka : Steinhaus property...
- [22] C. G. MENDEZ, On the Sierpiński–Erdös and the Oxtoby–Ulam theorems for some new sigma-ideals of sets, Proc. Amer. Math. Soc. 72 (1978), 182–188.
- [23] H. I. MILLER and H. L. WYZINSKI, On openness of density points under mappings, *Real Anal. Exchange* 25 (1999/2000), 383–386.
- [24] D. MONTGOMERY, Properties of plane sets and functions of two variables, Amer. J. Math. 56 (1934), 569–586.
- [25] T. NATKANIEC, e-mail letters to M. Balcerzak (April 2002).
- [26] J. C. OXTOBY, Measure and Category, Springer-Verlag, New York, 1971.
- [27] S. PICCARD, Sur les ensembles de distances de ensembles de points d'un espace Euclidean, Mêm. Univ. Neuchâtel 13 (1939).
- [28] S. M. SRIVASTAVA, A Course on Borel Sets, Springer-Verlag, New York, 1998.
- [29] H. STEINHAUS, Sur les distances des points des ensembles de mesure positive, Fund. Math. 1 (1920), 93–104.
- [30] J. VAN MILL, Homogeneous subsets of the real line, *Compositio Math.* **46** (1982), 3–13.

MAREK BALCERZAK

INSTITUTE OF MATHEMATICS LÓDŹ TECHNICAL UNIVERSITY AL. POLITECHNIKI 11, I-2 90-924 LÓDŹ AND FACULTY OF MATHEMATICS UNIVERSITY OF LÓDŹ UL. BANACHA 22 90-238 LÓDŹ POLAND

E-mail: mbalce@krysia.uni.lodz.pl

ELŻBIETA KOTLICKA INSTITUTE OF MATHEMATICS ŁÓDŹ TECHNICAL UNIVERSITY AL. POLITECHNIKI 11 I-2, 90-924 ŁÓDŹ POLAND

E-mail: ekot@ck-sg.p.lodz.pl

(Received May 27, 2002; revised September 27, 2002)