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Steinhaus property for products of ideals

By MAREK BALCERZAK (ÃLódź) and ELŻBIETA KOTLICKA (ÃLódź)

Abstract. Let M and N stand for the ideals of meager sets and of null sets
in R, respectively. We prove that, for any Borel sets A, B in R2 which both are
not in M⊗N (or N⊗M), the set A+B = {a+b : a ∈ A, b ∈ B} has the nonempty
interior. Some general version of this theorem for B = −A is also considered.

0. Introduction

Steinhaus [29] proved that, for each Lebesgue measurable set A ⊂ R
of positive measure, the set A − A of all differences x − y with x, y ∈ A,
contains a neighbourhood of 0. The analogous result for a linear set of
the second category with the Baire property was obtained by Piccard

[27]. The both results have been extended in various directions by several
authors. (See e.g. [19].) The scheme given in the Steinhaus theorem can
be formulated as the respective property of a pair consisting of an alge-
bra and an ideal of sets in R (or, more generally, in a topological group).
Other examples of pairs with the Steinhaus property and their applica-
tions to functional equations can be found in [6]. The Steinhaus property
connected with invariant extensions of Lebesgue measure was investigated
by Kharazishvili [15, pp. 123–132].

Let M and N stand, respectively, for the σ-ideals of meager sets and
of null sets in R. Products M ⊗ N and N ⊗M (which will be defined in

Mathematics Subject Classification: Primary 54E52; Secondary 28A12, 22A10, 39B22.
Key words and phrases: Steinhaus property, ideal of sets, product of ideals, additive
function.



236 Marek Balcerzak and Elżbieta Kotlicka

Section 1) form σ-ideals of sets in R2, which have been studied in several
papers [21], [22], [11], [7], [8], [9], [10], [2], [4]. In [7], a weak version of
the Steinhaus property for M ⊗ N and N ⊗ M assiociated with the σ-
algebra of Borel sets in R2, was considered. Namely, the authors of [7]
were interested in the case when there exists a countable set W ⊂ R2 such
that (A − A) ∩ W 6= ∅ for each Borel set A /∈ M ⊗ N (or A /∈ N ⊗ M).
From the theorems of Steinhaus and Piccard it easily follows that one can
take as W the product Q2 of the rationals. The aim of our paper is to
prove a general version of the Steinhaus property for M⊗N and N ⊗M.
Theorems 4 and 5 are our main results. In Section 1 we use a technique
which turned out fruitful in [11], [9] and [2]. In Section 2 we follow some
ideas of [16] and [4].

1. Very strong Steinhaus property

We use standard notation. Let N = {1, 2, . . . }. By P(X) we denote
the power set of X. Let (G,+, 0) be an Abelian topological group. For
A,B ⊂ G and x ∈ G, we denote

A± x = {a± x : a ∈ A}, −A = {−a : a ∈ A},

A±B = {a± b : a ∈ A, b ∈ B}.

We say that F ⊂ P(G) is invariant if A + x ∈ F for all A ∈ F and x ∈ G.
Let Σ and I be invariant families and let they form an algebra and an
ideal of subsets of G, respectively. We say that (Σ, I) has the Steinhaus
property (in short SP) if A − A contains a neighbourhood of 0, for each
A ∈ Σ\ I. In the sequel, we shall use, as Σ, the algebra B = B(G) of Borel
sets in G. Observe that, for G = R, the pair (B,N) has SP if and only
if (Σ, N) has SP where Σ stands for the algebra of Lebesgue measurable
sets. The analogous statement holds in the category case. By that reason,
we attribute the Steinhaus property to an ideal I regardless of an algebra,
but this will mean that (B, I) has SP.

It is clear that for A ⊂ G we have

A−A = {x ∈ G : (A + x) ∩A 6= ∅}.
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Now, we shall graduate the strength of the Steinhaus-type properties for
a given ideal. Denote by Nb(0) the family of all neighbourhoods of 0.

An ideal I ⊂ P(G) is called proper if {∅} 6= I 6= P(G). We say that an
invariant proper ideal I ⊂ P(G) possesses:

(a) the Steinhaus property , if

(∀A ∈ B \ I) (∃U ∈ Nb(0)) U ⊂ {x ∈ G : (A + x) ∩A 6= ∅};

(b) the strong Steinhaus property, if

(∀A ∈ B \ I) (∃U ∈ Nb(0)) U ⊂ {x ∈ G : (A + x) ∩A /∈ I};

(c) the very strong Steinhaus property, if there is a countable family
{Fn}n∈N such that B \ I =

⋃
n∈N Fn and

(∀n ∈ N) (∃U ∈ Nb(0)) (∀A, B ∈ Fn) U ⊂ {x ∈ G : (A + x) ∩B /∈ I};

we then say that the very strong Steinhaus property for I is realized by the
family {Fn}n∈N.

The above properties will be written in short as SP, SSP and VSSP.
Clearly VSSP =⇒ SSP =⇒ SP. The family of all countable subsets
of R serves as a simple example of a σ-ideal without SP. Namely, it suffices
to consider a nowhere dense perfect set P ⊂ R such that P −P is nowhere
dense. (See e.g. [30].) Several examples of ideals without SP can be derived
from [3, Section 3].

Theorem 1.

(I) [25] Assume that there exists a countable base {Un}n∈N of open neigh-

bourhoods of 0 in G. Then SP ⇐⇒ SSP for each invariant proper

σ-ideal I ⊂ P(G).

(II) [25] There is an invariant proper ideal I ⊂ P(R) which witnesses that

SP; SSP.

(III) There is a Banach space in which the ideal of meager sets witnesses

that SSP; VSSP.

Proof. I) It suffices to prove SP =⇒ SSP. Suppose that I does not
have SSP. So, there is an A ∈ B \ I such that for each n ∈ N there is an
xn ∈ Un with (A+xn)∩A ∈ I. Put A0 = A\⋃n∈N(A+xn). Thus A0 ∈ B\I
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and (A0 + xn)∩A0 = ∅ for every n. Hence U 6⊂ {x ∈ G : (A + x)∩A 6= ∅}
for each U ∈ Nb(0). This shows that I does not have SP.

(II) Let I denote the ideal of all sets of the form A ∪ B where A ∈ N

and B is nowhere dense in R. Then SP for I follows from SP for N. Let
{Un}n∈N be a fixed countable base of open sets in R. Define nowhere dense
perfect sets Pk, k ∈ N, as follows. If j ∈ N is given and Pj , i < j, are
chosen, pick a nowhere dense perfect set Pj of positive measure, with the
diameter less than 1/(2j), and such that

Pj ⊂ Uj \
⋃

i<j

⋃

n<i+j

(
Pi ± 1

n

)
.

Then B =
⋃

k∈N Pk ∈ B \ I, and
(

B +
1
n

)
∩B ⊂

⋃

i+j≤n

(
Pi +

1
n

)
∩ Pj ∈ I for each n ∈ N.

Hence U 6⊂ {x ∈ R : (B + x) ∩ B ∈ I} for each U ∈ Nb(0). This shows
that I does not have SSP.

(III) Let I stand for the ideal of meager sets in the Banach space X

of all bounded functions on [0, 1], endowed with the supremum norm. Fix
an uncountable family F of pairwise disjoint balls in X. Then F ⊂ B \ I.
Suppose that {Fn}n∈N fulfils the statement of VSSP. Thus we can find
an ucountable Fn. This yields a contradiction since A ∩ B 6= ∅ for any
A,B ∈ Fn, and A ∩ B = ∅ for any distinct A,B ∈ F. It is not hard to
check that I possesses SSP. (See e.g. [28, Theorem 3.5.12].) ¤

Immediatelly from the definitions we obtain the following:

Proposition 1. If proper invariant ideals I, J ⊂ P(G) possess SP (re-

spectively, SSP, VSSP) then I∩ J possesses SP (respectively, SSP, VSSP).

Moreover, if VSSP for I and J is realized by {Fn}n∈N and {Gn}n∈N, then

VSSP for I ∩ J is realized by {Fn}n∈N ∪ {Gn}n∈N.

Now, we are going to show that M and N have VSSP. Then we shall
obtain a general result which implies that M⊗N and N ⊗M have VSSP
and consequently, they have SP.

Lebesgue measure on R will be denoted by µ. Let {In}n∈N stand for
the family of all bounded open intervals with rational endpoints.
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Theorem 2. The ideal M has VSSP realized by the family {Fn}n∈N
where

Fn = {A ∈ B : In \A ∈ M} for n ∈ N.

Proof. Clearly B\M =
⋃

n∈N Fn. Fix an n ∈ N and put U = In−In.
Then U is an open interval and

U = {x ∈ R : (In + x) ∩ In 6= ∅} = {x ∈ R : (In + x) ∩ In /∈ M}.

Assume that A, B ∈ Fn and x ∈ U . Thus

(A + x) ∩B ⊃ ((In ∩A) + x) ∩ (In ∩B)

⊃ (((In \ (In \A)) + x) ∩ (In \ (In \B))

= (In + x) ∩ In \ (((In \A) + x) ∪ (In \B)).

Since (In + x)∩ In /∈ M and In \A, In \B ∈ M, we have (A + x)∩B /∈ M

as desired. ¤

Theorem 3. The ideal N has VSSP realized by the family {Gn}n∈N
where

Gn =
{

A ∈ B : µ(A ∩ In) >
2
3
µ(In)

}
for n ∈ N.

Proof. Let us show that B\N =
⋃

n∈N Gn. Inclusion “⊃” is obvious.
To prove inclusion “⊂” consider an A ∈ B \N. Thus there exists an h > 0
such that µ(A∩K)/µ(K) > 5/6 where K = (a−h, a+h). Pick an In ⊂ K

such that µ(K \ In) < µ(K)/6. We have

µ(A ∩ In)/µ(In) = (µ(A ∩K)− µ(A ∩ (K \ In)))/µ(In)

≥ (µ(A ∩K)− µ(K \ In))/µ(K) >
5
6
− 1

6
=

2
3
.

Hence A ∈ Gn.
Now, fix an n ∈ N and put U = (−µ(In)/4, µ(In)/4). It easily follows

that

U = {x ∈ R : µ(In ∩ (In + x)) > 3µ(In)/4}.



240 Marek Balcerzak and Elżbieta Kotlicka

Assume that A, B ∈ Gn and x ∈ U . Thus

µ((A + x) ∩B) ≥ µ((In ∩A) + x) ∩ (In ∩B))

= µ((In + x) ∩ In \ (((In \A) + x) ∪ (In \B)))

≥ µ((In + x) ∩ In)− µ(In \A)− µ(In \B)

> 3µ(In)/4− µ(In)/3− µ(In)/3 > 0. ¤

Now, from Proposition 1 and Theorems 2, 3 we deduce

Corollary 1. The ideal M ∩N has VSSP.

Assume that G1 and G2 are topological groups, and let I and J be
invariant proper ideals of sets in G1 and G2, respectively. For an A ⊂
G1 ×G2 we put

A(J) = {x ∈ G1 : Ax /∈ J}

where Ax = {y ∈ G2 : (x, y) ∈ A}, x ∈ G1. We define

I⊗ J = {A ⊂ G1 ×G2 : A(J) ∈ I}.

It is easy to check that I ⊗ J is an invariant proper ideal of sets in the
group G1 ×G2. Moreover, if I and J are σ-ideals, so is I⊗ J.

Now, we are ready to formulate our main result:

Theorem 4. Assume that I and J are proper invariant ideals of sets

in R, and I is moreover a σ-ideal. Assume also the following conditions:

(1) I has VSSP realized by a family {Fn}n∈N,

(2) J has VSSP realized by a family {Gm}m∈N,

(3) (∀A ∈ B(R2))(∀m ∈ N){x ∈ R : Ax ∈ Gm} ∈ B(R).

Then I⊗ J has VSSP realized by the family {Hmn}m,n∈N where

Hmn = {A ∈ B(R2) : {x ∈ R : Ax ∈ Gm} ∈ Fn}

for m, n ∈ N.

Proof. For brevity we write B(R) = B and B(R2) = B2. First, we
shall prove that

B2 \ (I⊗ J) =
⋃

m,n∈N
Hm,n. (4)
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So, let A ∈ B2 \ (I ⊗ J). Since A ∈ B2, we have Ax ∈ B for each x ∈ R.
(See e.g. [28, 3.1.20].) Hence A(J) = {x ∈ R : Ax ∈ B \ J}. Thus by (2)
we have

A(J) =
⋃

m∈N
{x ∈ R : Ax ∈ Gm}. (5)

From A /∈ I⊗ J it follows that A(J) /∈ I. Since I is a σ-ideal, by (5) there
exists an m ∈ N such that {x ∈ R : Ax ∈ Gm} /∈ I. Now, by (3) and (1)
we can find an n ∈ N such that {x ∈ R : Ax ∈ Gm} ∈ Fn. Consequently,
A ∈ Hmn.

Now, let A ∈ Hmn for some m,n ∈ N. Hence

A(J) ⊃ {x ∈ R : Ax ∈ Gm} ∈ Fn ⊂ B \ I

and thus A /∈ I⊗ J. So (4) has been proved.
The proof will be finished, if we show the condition

(∀m,n ∈ N)(∃W ∈ Nb(0, 0))(∀A,B ∈ Hmn)

W ⊂ {(x, y) ∈ R2 : (A + (x, y)) ∩B /∈ I⊗ J}. (6)

Fix any m, n ∈ N. By (1) and (2) we deduce the existence of sets U, V ∈
Nb(0) such that

(∀C,C ′ ∈ Fn) U ⊂ {x ∈ R : (C + x) ∩ C ′ /∈ I}, (7)

(∀D, D′ ∈ Gm) V ⊂ {x ∈ R : (D + x) ∩D′ /∈ J}. (8)

Define W = U × V . Let A, B ∈ Hmn. Then Ã, B̃ given by

Ã = {x ∈ R : Ax ∈ Gm}, B̃ = {x ∈ R : Bx ∈ Gm}

are both in Fn. Let (x, y) ∈ W , that is x ∈ U and y ∈ V . Observe that

(Ã + x) ∩ B̃ ⊂ {s ∈ R : (As−x + y) ∩Bs /∈ J}. (9)

Indeed, let s ∈ (Ã+x)∩ B̃. Then s−x ∈ Ã and s ∈ B̃. Hence As−x, Bs ∈
Gm. Now from y ∈ V and (8) we obtain (As−x + y) ∩Bs /∈ J.

We know that Ã, B̃ ∈ Fn and x ∈ U , so from (7) it follows that
(Ã + x) ∩ B̃ /∈ I. Thus by (9) we have

{s ∈ R : (As−x + y) ∩Bs /∈ J} /∈ I. (10)



242 Marek Balcerzak and Elżbieta Kotlicka

To finish the proof of (6) we have to show that ((A + (x, y)) ∩ B)(J) /∈ I.
Observe that

((A + (x, y)) ∩B)(J) = {s ∈ R : (As−x + y) ∩Bs /∈ J}.

Thus the assertion follows from (10). ¤

Remark 1. If condition (1) in Theorem 4 is replaced by “ I has SSP”
and the remaining assumptions are unchanged then the assertion will be
“ I⊗J has SSP”. Let us sketch the proof. Let A ∈ B2 \(I⊗J). We can find
an n ∈ N such that B := {x ∈ R : Ax ∈ Gm} /∈ I. Pick U, V ∈ Nb(0) such
that U ⊂ {x ∈ R : (B + x)∩B /∈ I} and V ⊂ {y ∈ R : (Ax + y)∩Ax′ /∈ J}
for all x, x′ ∈ B (note that Ax, Ax′ ∈ Gm). Then

U × V ⊂ {(x, y) ∈ R2 : (A + (x, y)) ∩A /∈ I⊗ J}.

Indeed, if (x, y) ∈ U × V , we have

(B + x) ∩B ⊂ {s ∈ R : (As−x + y) ∩As /∈ J} = ((A + (x, y)) ∩A)(J).

Since (B + x) ∩B /∈ I, the proof is finished.

Another version of Theorem 4 with the phrases “ I has SP” and “ I⊗J

has SP” also works, with a similar demonstration.

Remark 2. Theorem 4 and its versions given in Remark 1 remain valid
if R is replaced, respectively, by Abelian topological groups G1 and G2.

Remark 3. Montgomery [24] proved that, for any Borel set A ⊂ R2

and r > 0, the sets {x ∈ R : Ax /∈ M} and {x ∈ R : µ(Ax) > r} are Borel.
Consequently, if I is an interval, then the set

{x ∈ R : I \Ax ∈ M} = R \ {x ∈ R : ((R× I) \A)x /∈ M}

is Borel. Similarly, the set

{x ∈ R : µ(I ∩Ax) > r} = {x ∈ R : µ((R× I) \A)x > r}

is Borel. (See also [14, 16.1, 22.22, 22.25].) Hence, for any member of the
families {Fn}n∈N and {Gn}n∈N from Theorems 2 and 3, condition (3) in
Theorem 4 is fulfilled.
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Now, using Theorems 2, 3, 4 together with Remark 3 and Proposition 1
we conclude

Corollary 2. M⊗N, N ⊗M and (M⊗N) ∩ (N ⊗M) have VSSP.

Remark 4. Note that the ideals M ⊗M and N ⊗ N are greater than
the ideals of meager sets and of null sets in R2, respectively. (See [26].)
We shall obtain the respective equalities, if we reduce M⊗M and N ⊗N

to M ⊗̃M and N ⊗̃N where

I⊗̃J = {A ⊂ R2 : (∃B ∈ B(R2) ∩ (I⊗ J)) A ⊂ B}.

Analogously, we can consider M⊗̃N and N⊗̃M instead of M⊗N and N⊗M.
The reduced products seem more natural in some contexts. However, since

B(R2) \ (I⊗ J) = B(R2) \ (I ⊗̃ J),

there is no difference which kind of products we use to investigate the
Steinhaus-type properties. Sometimes it is convenient to associate with
I ⊗̃ J the smallest σ-algebra Σ containing B(R2)∪(I ⊗̃ J). (See [2].) Clearly,
each set from Σ \ (I ⊗̃ J) contains a set from B(R2) \ (I⊗ J).

The Steinhaus property has important applications in functional equa-
tions theory. For instance, it leads to a simple proof of the fact that an
additive function bounded on a measurable set of positive measure is con-
tinuous (the Ostrowski theorem; [20, p. 210]). A similar fact holds in the
Baire category case [20, p. 210]. Moreover, there is a general theorem [20,
Theoremm 2, p. 240] from which, together with SP for M⊗N and N⊗M,
we conclude the following

Corollary 3. Let I = M ⊗ N or I = N ⊗M, and let T ∈ B(R2) \ I.

Then every additive function f : R2 → R bounded on T is continuous.

In turn, from Corollary 3 and Remark 4 we derive the next result, by
the use of an argument similar to that in [20, p. 218] or [16, p. 146].

Corollary 4. Let I = M ⊗̃N or I = N ⊗̃M, and let Σ denote the

smallest σ-algebra containing B(R2) ∪ I. Let f : R2 → R be an additive

function such that f |P is Σ-measurable for some P ∈ Σ \ I. Then f is

continuous.
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2. Extended Steinhaus property

Fix an Abelian topological group G and an invariant proper ideal
I ⊂ P(G). Denote by int(A) the interior of a set A ⊂ G. Note that if
VSSP for I is realized by {Fn}n∈N, then int(B −A) 6= ∅ for all A,B ∈ Fn

and for each n ∈ N. It is natural to ask whether int(B − A) 6= ∅ for
all A,B ∈ B \ I. The answer is affirmative for I = M and I = N. The
respective results are well known and their various generalizations were
studied in several papers. (See [5], [18], [19], [23], [12], [13].) We are going
to establish this kind of Steinhaus property for M ⊗ N and N ⊗ M. We
shall follow the method used in [16, Theoremm 2, p. 115]. First let us
connect our investigations with the results of the previous section.

We say that an invariant proper ideal I ⊂ P(G) possesses:

(a) the extended Steinhaus property, if

(∀A,B ∈ B \ I) int({x ∈ G : (A + x) ∩B 6= ∅}) 6= ∅;

(b) the extended strong Steinhaus property, if

(∀A,B ∈ B \ I) int({x ∈ G : (A + x) ∩B /∈ I}) 6= ∅.

Condition (a) states exactly that int(B − A) 6= ∅ for all A,B ∈ B \ I.
The properties given in (a) and (b) will be written in short as ESP and
ESSP. Clearly ESP =⇒ SP, ESSP =⇒ SSP and ESSP =⇒ ESP. The
following proposition shows how to obtain ESP or ESSP when SP or SSP
holds.

Proposition 2. For an invariant proper ideal I ⊂ P(G) satisfying the

condition:

(∀A, B ∈ B \ I) (∃ z ∈ G) (A + z) ∩B /∈ I, (11)

we have SP ⇐⇒ ESP and SSP ⇐⇒ ESSP.

Proof. We shall prove SSP =⇒ ESSP; the argument for SP =⇒
ESP is analogous. Let A,B ∈ B \ I. Pick a z ∈ G as in (11) and put
Z = (A + z) ∩B. By SSP we have

U := int({x ∈ G : (Z + x) ∩ Z /∈ I}) 6= ∅.
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Observe that

U + z ⊂ {y ∈ G : (Z + y − z) ∩ Z /∈ I} ⊂ {y ∈ G : (A + y) ∩B /∈ I}.
Hence int({y ∈ G : (A + y) ∩B /∈ I}) 6= ∅. ¤

Remark 5. T. Natkaniec [25] observed that the following version of
Theorem 1(I) holds. If G has a countable base of open sets then ESP ⇐⇒
ESSP for each proper invariant σ-ideal I ⊂ P(G). Indeed, suppose that I

does not have ESSP. Thus there are sets A,B ∈ B \ I such that int({x ∈
G : (A + x) ∩ B /∈ I}) = ∅. If {Un}n∈N is a base of open sets in G,
then for each n ∈ N, pick an xn ∈ Un with (A + xn) ∩ B ∈ I. Thus
B0 = B \⋃

n∈N(A + xn) ∈ B \ I and (A + xn)∩B0 = ∅ for every n. Hence
int({x ∈ G : (A + x) ∩ B0 6= ∅}) = ∅ which shows that I does not have
ESP.

Theorem 5. M⊗N and N ⊗M have ESSP.

Proof. Let J = M⊗N (the case of N ⊗M is analogous). By virtue
of Corollary 2 it suffices to check condition (11) in Proposition 2 for J. To
this aim we use the notion of a J-density point considered in [4]. Let ϕ(E)
denote the set of J-density points of a set E from the σ-algebra generated
by B(R2) ∪ (M ⊗̃N). In [4], it is proved that ϕ has usual properties of
the lower density operator (cf. [26, Chap. 22]). Let A,B be Borel sets in
R2 that are not in J. Pick a ∈ ϕ(A), b ∈ ϕ(B) and put z = b − a. Now,
a ∈ ϕ(A) implies b ∈ ϕ(A)+z = ϕ(A+z), and thus b ∈ ϕ(A+z)∩ϕ(B) =
ϕ((A + z) ∩B). Hence (A + z) ∩B /∈ J. ¤

An ideal I ⊂ P(G) is called symmetric if −A ∈ I whenever A ∈ I.
Obviously, if I is symmetric, then ESP for I is equivalent to

(∀A,B ∈ B \ I) int(A + B) 6= ∅.
Observe that if ideals I, J ⊂ P(G) are symmetric, so is I ⊗ J. Thus from
Theorem 5 it immediately results the following corollary.

Corollary 5. For arbitrary Borel sets A, B in R2 which both are not

in M⊗N (or N ⊗M), the set A + B has nonempty interior.

Let us finish with the observation that (M ⊗ N) ∩ (N ⊗M) does not
possess the extended Steinhaus property. This will follow from the known
general scheme.
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We say that ideals I, J ⊂ P(G) are Borel orthogonal if there is a Borel
set A ∈ I such that G \ A ∈ J. For D ⊂ G, we say that an ideal I is
D-additive if A + D ∈ I whenever A ∈ I. Clearly, if I is an invariant
σ-ideal then I is D-additive for each countable set D ⊂ G.

Proposition 3 (cf. [1], [17]). Assume that I, J ⊂ P(G) are Borel

orthogonal proper ideals. Let additionally, I be invariant, symmetric and

D-additive for some countable dense subgroup D of G. Then there are

Borel sets A,B /∈ I∩J such that A+B = A−B = B−A and int(A+B) = ∅.
Proof. Let C ⊂ G be a Borel set such that C ∈ I and G \ C ∈ J.

Put B = (D−C)∪ (D +C). Then B ∈ I, −B = B, and for A = G \B we
have A ∈ J, −A = A. Hence A + B = A−B = B −A. Since A ∪B = G,
we infer that A,B /∈ I ∩ J. Moreover, A − B ⊂ G \ D by the definition
of B. Since D is dense, we have int(A−B) = ∅. ¤

Proposition 3 applies to M and N and to Q, the additive group of
rationals in R. (See [1], [17]). Observe that it also applies to M ⊗ N,
N ⊗ M and Q2 in R2. Namely, if C,E are disjoint Borel sets such that
C ∈ M, E ∈ N and C ∪ E = R (cf. [26]), then C × R ∈ M ⊗ N and
E × R ∈ N ⊗ M. Thus we may formulate the following result which
contrasts with Corollary 2.

Corollary 6. There are Borel sets A,B ⊂ R2 which both are not in

(M⊗N)∩(N⊗M), and such that A+B = A−B = B−A, int(A+B) = ∅.
As we have seen, the ideals M ∩ N and (M ⊗ N) ∩ (N ⊗ M) witness

that ESP can be false even while VSSP is true. Consequently, condition
(11) in Proposition 2 is not fulfilled by these ideals.
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[12] A. Járai, A Steinhaus type theorem, Publ. Math. Debrecen 47 (1995), 1–13.
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