Publ. Math. Debrecen 63/1-2 (2003), 249–254

On a characterization of infinite cyclic groups

By CZESŁAW BAGIŃSKI (Białystok) and JAN KREMPA (Warszawa)

Abstract. In a paper on representation theory of algebras a characterization of infinite cyclic group was given. We provide a simpler proof of this characterization and some related results.

In [2] the following result was proved:

Theorem 1. Let G be a torsion-free finitely generated group. G is cyclic if and only if G satisfies the following two conditions:

- (a) for any nontrivial subgroup H of G the index $|N_G(H):H|$ is finite,
- (b) for any two cyclic subgroups H_1 , H_2 of G the intersection $H_1 \cap H_2$ is a nontrivial subgroup of G.

This theorem was crucial for the proof of the main result of [2], concerning representation theory of algebras. The proof given on pages 138– 141 of [2], depends on cohomological arguments. Here we give two proofs obtained by elementary methods. The first one is based on the well known classical result due to I. Schur.

Lemma 1. If the center Z(G) of a group G has finite index in G, then its commutator subgroup G' is finite.

Mathematics Subject Classification: Primary 20E25; Secondary 20E15.

Key words and phrases: cyclic group, finitely generated group, torsion-free group.

An easy combinatorial proof of the lemma can be found in [7] (Lemma 2.1, p. 4). Other proofs are available for instance in [4] (Theorem 1.4, p. 49) or [8] (Theorem 10.1.4, p. 287).

The second proof of Theorem 1 is also based on elementary group theory. We will use the following well known lemma due to Miller and Moreno.

Lemma 2. If every proper subgroup of a finite group G is abelian, then G is solvable.

The proof of this lemma one can find, for example, either in the introductory part of [6] (Theorem 6.3, p. 62) or in [5] (Exercise 6, p. 14).

So both proofs are essentially different than that given in [2] (we prove only the part \Leftarrow because the part \Rightarrow is obvious). Our notation and terminology is standard, as for example in [3], [8].

In both proofs we shall apply the following lemma, almost proved on page 141 in [2].

Lemma 3. If G satisfies the conditions (a) and (b) of Theorem 1, then the center Z(G) of G has finite index in G.

PROOF. Let $G = \langle x_1, \ldots, x_n \rangle$. By (b) the intersection $\langle x_1 \rangle \cap \langle x_2 \rangle \cap \cdots \cap \langle x_n \rangle$ is a nontrivial cyclic subgroup. Let c be its generator. Since c is a power of each x_i , it commutes with each x_i and then it commutes with all elements of G that is c is a central element. Now by (a) $|G : \langle c \rangle|$ is finite because $G = N_G(\langle c \rangle)$. Since $|G : Z(G)| \leq |G : \langle c \rangle|$, the lemma follows. \Box

THE FIRST PROOF OF THE THEOREM. By Lemma 3 we know that $[G: Z(G)] < \infty$. Thus, by Lemma 1 the commutator subgroup G' of G is finite. But G is torsion-free, so G' is trivial and then G is abelian. Hence by the structure theorem for finitely generated abelian groups G is cyclic.

THE SECOND PROOF OF THE THEOREM. It follows from Lemma 3 that $|G : C| < \infty$ where $C \subseteq Z(G)$ is a cyclic subgroup. We proceed by induction on |G : C|. If |G : C| is prime, then obviously G is abelian and consequently it is cyclic. So by the induction hypothesis we may assume that every proper subgroup H of G such that $C \leq H$ is cyclic. Hence

250

in the finite group $\overline{G} = G/Z(G)$ all proper subgroups are cyclic. Thus by Lemma 2 the group \overline{G} is solvable. The group \overline{G} , being solvable, contains a maximal normal subgroup \overline{M} of prime index, say q. Its preimage M is, by induction assumption, cyclic and normal in G.

Let $M = \langle m \rangle$, and let $k \neq 0$ be such that $m^k = z \in Z(G)$. If $g \in G \setminus M$ then obviously, as on page 138 of [2], $g^{-1}mg = m^s$ for some integer s, since $M \leq G$. Thus $z = g^{-1}zg = g^{-1}(m^k)g = (g^{-1}mg)^k = m^{sk} = z^s$, which implies s = 1 and so mg = gm. Therefore $M \subseteq Z(G)$ and G is abelian because the factor group G/Z(G) is cyclic. Hence G is cyclic. \Box

The above considerations give an opportunity to discuss some modifications of the assumptions of Theorem 1. In particular the following version of condition (a) can be considered:

(a') for any nontrivial cyclic subgroup C of G the index $|N_G(C) : C|$ is finite.

Notice that, if $C \subseteq G$ is a cyclic subgroup then $C \subseteq Z_G(C) \subseteq N_G(C)$ and $|N_G(C) : Z_G(C)| < \infty$, because $\operatorname{Aut}(C)$ is a finite group. Hence, in the condition (a') one can replace $N_G(C)$ by $Z_G(C)$. We also have the following immediate observation:

Lemma 4. If a group G satisfies the condition (a) or (b) of Theorem 1 or the condition (a') then every subgroup of G satisfies the same condition.

Now we have the following slightly stronger version of Theorem 1

Theorem 2. Let G be a torsion-free group. G is cyclic if and only if G satisfies the conditions (a') and (b).

PROOF. \Leftarrow Let $H \subseteq G$ be a finitely generated subgroup. Then in view of Lemma 4 H satisfies the same condition. Hence, by the proof of Theorem 1 we know, that H is cyclic. It means that G is locally cyclic and hence abelian. Now if $1 \neq C$ is a cyclic subgroup of G then C is of finite index in G. Hence G is cyclic, by previous theorem.

If G is torsion-free abelian, then we already used that the Theorem 1 follows immediately from (a') or (b) and from the structure theorem for finitely generated abelian groups. The following generalization is true:

Proposition 1. Let G be a torsion-free finitely generated solvable group. If G satisfies the condition either (a') or (b) then G is cyclic.

PROOF. Let A be a maximal abelian normal subgroup of G.

If G satisfies (a') then, by Lemma 4, every cyclic subgroup of A has finite index in A and hence, since A is torsion-free, it follows that A must be cyclic. Moreover, again by (a') $|G:A| < \infty$, so G satisfies the assumption (b) which gives G cyclic by Theorem 1.

Suppose now that G satisfies the assumption (b) only. Thus A must be locally cyclic. Let $g \in G \setminus A$ be an arbitrary element. Since $\langle g \rangle \cap A \neq \{e\}$, g induces an automorphism of finite order on A. But it is known ([3]) that the only nontrivial automorphism of finite order of a locally cyclic torsionfree group is of the form $a \longrightarrow a^{-1}$. Therefore using the same arguments as in the end of the second proof of Theorem 1 we obtain that G = A. Hence G is cyclic because it is finitely generated.

Using Lemma 4 we immediately obtain

Corollary 1. Let G be a torsion-free locally solvable group. If G satisfies the condition (a') then G is cyclic. If G satisfies the condition (b) then G is locally cyclic.

In the proof of the above proposition we have not used the assumption that G is solvable in full generality. In fact we showed that

Corollary 2. Let G be a torsion-free group and let A be a maximal abelian subgroup of G. If G satisfies the condition (a') then A is cyclic; If G satisfies the condition (b) then A is locally cyclic. In both cases $N_G(A) = A$.

Remark 1. In [1] there was constructed a nonabelian finitely generated non-torsion group G, which is torsion-by-cyclic. Obviously this group satisfies the condition (b), hence it is torsion-free, and does not satisfy the condition (a) and even (a'). See also Theorems 31.3 and 31.4 of [6].

Remark 2. In Theorem 28.3 of [6] there is constructed a 2-generated torsion-free simple group G such that every proper subgroup of G is cyclic

252

and every two maximal subgroups have trivial intersection. It is clear that this group satisfies the condition (a) and does not satisfy the condition (b).

Remark 3. If F is a (finitely generated) free nonabelian group then it is torsion-free, satisfies the condition (a') (but not (a)), and certainly does not satisfy the condition (b).

Remark 4. Let G be finitely generated and suppose that G satisfies the conditions (a) and (b). If we suppose G to contain torsion elements, then by (b), G must be a p-group having exactly one subgroup of order p. Because this subgroup is cyclic and normal then, by (a), G is finite and, as it is well known, G is either a cyclic p-group or a generalized quaternion group Q_{2^n} for some $n \ge 3$.

On the other hand, for each sufficiently large prime p OL'SHANSKII constructed an infinite p-group G(p) whose subgroups are cyclic of order p. This group satisfies (a) and does not satisfy (b). The group G(p)can be extended to a p-group containing exactly one subgroup of order pand whose every subgroup is cyclic ([6], Theorem 31.8). Obviously this extension satisfies (b) and beside the unique subgroup of order p all subgroups satisfy (a).

References

- S. I. ADJAN, Certain torsion-free groups, Izv. Acad. Nauk SSSR Ser. Mat. 35 (1971), 459–468.
- [2] P. DOWBOR, Stabilizer conjecture for representation-tame Galois coverings of algebras, J. Algebra 239 (2001), 112–149.
- [3] L. FUCHS, Infinite Abelian Groups, Vol. I, II, Acacemic Press, London, 1970, 1973.
- [4] J. M. GORCHAKOV, Groups with Finite Conjugacy Classes, Moscow, 1978.
- [5] H. KURZWEIL and B. STELLMACHER, Theorie der endlichen Gruppen, Springer-Verlag, Berlin, 1998.
- [6] A. YU. OL'SHANSKII, Geometry of Defining Relations in Groups, Nauka, Moscow, 1989.
- [7] D. S. PASSMAN, Infinite Group Rings, Marcel Dekker, New York, 1971.

254 C. Bagiński and J. Krempa : On a characterization of infinite...

[8] D. J. S. ROBINSON, A Course in the Theory of Groups, Springer-Verlag, New York, 1996.

CZESłAW BAGIŃSKI FACULTY OF COMPUTER SCIENCE BIAŁYSTOK TECHNICAL UNIVERSITY WIEJSKA 45A, 15-351 BIAŁYSTOK POLAND

E-mail: baginski@ii.pb.bialystok.pl

JAN KREMPA INSTITUTE OF MATHEMATICS WARSAW UNIVERSITY BANACHA 2, 02-097 WARSZAWA POLAND

E-mail: jkrempa@mimuw.edu.pl

(Received September 6, 2002; revised November 29, 2002)