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Reverse order laws for the Drazin inverse
of a triple matrix product

By YONGGE TIAN (Kingston)

Abstract. Necessary and sufficient conditions are given for the reverse order
laws (ABC)D = CDBDAD, (ABC)D = CDB†AD, (ABC)D = C†BDA† and
(ABC)D = C†B†A† to hold for the Drazin inverse of the triple matrix product
ABC. Various consequences and related topics are also discussed.

1. Introduction

Suppose A and B are two invertible matrices of the same kind. Then
the product AB is also invertible, and the inverse of AB can be simply
written as the reverse order product (AB)−1 = B−1A−1 of A−1 and B−1.
This law can be used to simplify various matrix expressions that involve
inverses of matrix products. This identity is best known in linear algebra,
and is called the reverse order law for the inverse of matrix product. This
identity is, however, not valid in general for generalized inverses of prod-
ucts of matrices. For an m× n matrix A, the well-known Moore–Penrose
inverse A† is defined to be the unique solution of the following four Penrose
equations

(i) AXA = A, (ii) XAX = X,

(iii) (AX)∗ = AX, (iv) (XA)∗ = XA,
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where (·)∗ denotes the conjugate transpose of a matrix. A matrix X

is called a g-inverse of A if it satisfies (i) and is denoted by A−, while
the collection of all possible A− is denoted by {A−}. In general, if a
matrix X satisfies the equations i, . . . , j in (i)–(iv), then X is called an
{i, . . . , j}-inverse of A and is denoted by A(i,...,j). For different types
of generalized inverses of matrices, there are also different types of re-
verse order laws. For Moore–Penrose inverses, the standard reverse or-
der law for the matrix product AB is (AB)† = B†A†. For g-inverse of
matrix, the standard reverse order law (AB)− = B−A− has some vari-
ations B−A− ∈ {(AB)−}, {B−A−} ⊆ {(AB)−}, {B−A−} = {(AB)−},
etc. In addition, it is reasonable to consider various mixed-type reverse or-
der laws, such as, (AB)† = B†(A†ABB†)†A†, (AB)† = B∗(A∗ABB∗)†A∗,
(AB)† = B†A† − B†[(I − BB†)(I − A†A)]†A†, (ABC)† = (BC)†B(AB)†,
(ABC)† = (B†BC)†B†(ABB†)†, etc. Thus it is large work to investigate
various reverse order laws for generalized inverses of products of matrices,
which has been the object of many studies since 1960s. Various results
related to reverse order laws for generalized inverses, reflexive generalized
inverses, Moore–Penrose inverses, weighted Moore–Penrose inverses and
Drazin inverses, etc. of matrix products can be found in the literature, see,
e.g., [1]–[12], [14]–[17], [21]–[27].

A straightforward and effective method to investigate reverse order
laws for generalized inverses of matrix products is the rank of matrix. It
is obvious that any two matrices A and B of the same size are equal if
and only if rank(A − B) = 0. This statement seems quite trivial. If,
however, one can find some nontrivial formulas for the rank of A − B,
then necessary and sufficient conditions for A = B can be derived from
these rank formulas. This method can be applied to investigate any reverse
order laws for generalized inverses of matrix products, or more generally,
to investigate the relationship between any two matrix expressions that
involve generalized inverses of matrices. Several interesting rank equalities
found by the author are presented below

r(AA† −A†A) = 2r[A, A∗]− 2r(A),

r(AkA† −A†Ak) = r

[
Ak

A∗

]
+ r[Ak, A∗]− 2r(A),
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r(A∗A† −A†A∗) = r(AA∗A2 −A2A∗A),

r(AB −ABB†A†AB) = r[A∗, B] + r(AB)− r(A)− r(B),

r[(AB)†−B†(A†ABB†)†A†] = r

[
AB

ABB∗B

]
+ r[AB,AA∗AB]− 2r(AB),

r

(
[A,B]† −

[
A†

B†

])
= r[AA∗B,BB∗A],

r

(
[A,B]†[A,B]−

[
A†A 0

0 B†B

])
= r(A) + r(B)− r[A,B],

see [18], [19], [21], [22]. Let the right sides of the above rank equalities be
zero. Then one can immediately obtain necessary and sufficient conditions
such that the matrix expressions on the left sides are zero.

In this paper we study reverse order laws for Drazin inverses of matrix
products. The Drazin inverse of a square matrix A is defined to be the
unique solution X of the following three equations

(i) AkXA = Ak, (ii) XAX = X, (iii) AX = XA,

and is often denoted by X = AD, where k is the index of A, i.e., the
smallest nonnegative integer k such that rank(Ak) = rank(Ak+1). When
A is nonsingular, AD = A−1. It is quite easy to write out various reason-
able reverse order laws for the Drazin inverse of matrix products, such as,
(AB)D = BDAD, (AB)D = BD(ADABBD)DAD, (ABC)D = CDBDAD,
(ABC)D = (BC)DB(AB)D, etc. In addition, it is worthwhile to consider
reverse order laws combined both Moore–Penrose inverses and Drazin in-
verses, such as, (ABC)D=CDB†AD, (ABC)D=C†BDA† and (ABC)D=
C†B†A†, etc.

There is a close relationship between the Drazin inverse and the Moore-
Penrose inverse of matrix. A well-known result asserts that the Drazin
inverse of any square matrix A with index k can be expressed in the form

AD = Ak(A2k+1)†Ak, (1.1)

see, e.g., [3, p. 174]. Hence any question on Drazin inverses of matrices in
fact is a question on Moore–Penrose inverses of matrices.
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It is commonly seen in matrix analysis that a matrix is often written as
a product of three matrices, such as, Smith form decompositions, singular
value decompositions, eigenvalue decompositions, Schur decompositions,
etc. Hence it is natural to investigate the Drazin inverse of a triple matrix
product ABC. In this paper we show a set of rank equalities for the Drazin
inverse of a triple matrix product, and then derive from them necessary
and sufficient conditions for the reverse order laws

(ABC)D = CDBDAD, (ABC)D = (BC)DB(AB)D,

(ABC)D = CDB†AD, (ABC)D = C†BDA†, (ABC)D = C†B†A†

to hold.

The matrices considered in this paper are all over the fieldC of complex
numbers. For any A ∈ Cm×n, denote by A∗, r(A) and R(A) the conjugate
transpose, the rank and the range (column space) of A, respectively.

Lemma 1.1 ([13]). Let A ∈ Cm×n, B ∈ Cm×k, C ∈ Cl×n and D ∈
Cl×k with R(B) ⊆ R(A) and R(C∗) ⊆ R(A∗). Then

r

[
A B

C D

]
= r

[
A 0
0 D − CA†B

]
= r(A) + r(D − CA†B). (1.2)

Let

C = [C1, C2], B =
[

B1

B2

]
and A =

[
A1 0
0 A2

]
,

and suppose that

R(B1) ⊆ R(A1), R(B2) ⊆ R(A2), R(C∗
1 ) ⊆ R(A∗1), R(C∗

2 ) ⊆ R(A∗2).

Then (1.2) becomes

r(D − C1A
†
1B1 − C2A

†
2B2) = r




A1 0 B1

0 A2 B2

C1 C2 D


− r(A1)− r(A2). (1.3)

Lemma 1.2 ([17]). Suppose that A1, A2, A3, B1 and B2 satisfy the

range inclusions

R(Bi) ⊆ R(Ai+1), and R(B∗
i ) ⊆ R(A∗i ), i = 1, 2. (1.4)
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Then




0 0 A1

0 A2 B1

A3 B2 0



†

=




A†3B2A
†
2B1A

†
1 −A†3B2A

†
2 A†3

−A†2B1A
†
1 A†2 0

A†1 0 0


 , (1.5)

and

A†3B2A
†
2B1A

†
1 = [I, 0, 0]




0 0 A1

0 A2 B1

A3 B2 0



† 


I

0
0


 . (1.6)

Eq. (1.6) is from a general result in [17] for the product A†k+1BkA
†
k · · ·

· · ·B1A
†
1 with k = 2.

Lemma 1.3. Let A,X ∈ Cm×m with Ind(A) = k. Then X = AD if

and only if

Ak+1X = Ak, XAk+1 = Ak and r(X) = r(Ak). (1.7)

This assertion can be easily proved through the Jordan canonical form
of a matrix.

2. Main results

According to Lemma 1.2, the reverse order product CDBDAD can be
expressed in terms of the Moore–Penrose inverse of a block matrix.

Lemma 2.1. Let A, B,C ∈ Cm×m with Ind(A) = k1, Ind(B) = k2

and Ind(C) = k3. Then the product CDBDAD can be expressed in the

form

CDBDAD = [Ck3 , 0, 0]




0 0 A2k1+1

0 B2k2+1 Bk2Ak1

C2k3+1 Ck3Bk2 0



† 


Ak1

0
0




:= PN †Q, (2.1)
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where P , N and Q satisfy the three properties

R(Q) ⊆ R(N), R(P ∗) ⊆ R(N∗),

r(N) = r(Ak1) + r(Bk2) + r(Ck3).
(2.2)

Proof. According to (1.1), the product CDBDAD can be written as

CDBDAD = Ck3(C2k3+1)†Ck3Bk2(B2k2+1)†Bk2Ak1(A2k1+1)†Ak1 . (2.3)

Note that

R(Ak1) = R(A2k1+1), R[(Ak1)∗] = R[(A2k1+1)∗], (2.4)

R(Bk2) = R(B2k2+1), R[(Bk2)∗] = R[(B2k2+1)∗], (2.5)

R(Ck3) = R(C2k3+1), R[(Ck3)∗] = R[(C2k3+1)∗]. (2.6)

Hence by (1.6)

(C2k3+1)†Ck3Bk2(B2k2+1)†Bk2Ak1(A2k1+1)†

= [Im, 0, 0]




0 0 A2k1+1

0 B2k2+1 Bk2Ak1

C2k3+1 Ck3Bk2 0



† 


Im

0
0


 .

(2.7)

The combination of (2.3) and (2.7) yields (2.1). The three properties
in (2.2) are straightforward from (2.4), (2.5) and (2.6). ¤

The main results of the paper are given in the following two theorems.

Theorem 2.2. Let A,B,C ∈ Cm×m with Ind(A) = k1, Ind(B) = k2

and Ind(C) = k3, and denote M = ABC with Ind(M) = t. Then the

reverse order law (ABC)D = CDBDAD holds if and only if A,B and C

satisfy the following three rank equalities

r




0 0 A2k1+1 Ak1

0 B2k2+1 Bk2Ak1 0
C2k3+1 Ck3Bk2 0 0

M t+1Ck3 0 0 M t




= r(Ak1) + r(Bk2) + r(Ck3), (2.8)
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r




0 0 A2k1+1 Ak1M t+1

0 B2k2+1 Bk2Ak1 0
C2k3+1 Ck3Bk2 0 0

Ck3 0 0 M t




= r(Ak1) + r(Bk2) + r(Ck3), (2.9)

r

[
B2k2+1 Bk2Ak1

Ck3Bk2 0

]
= r(Bk2) + r(M t). (2.10)

Proof. Let X = CDBDAD. Then we see by (1.7) that X = MD if
and only if

M t+1X = M t, XM t+1 = M t, r(X) = r(M t),

which, in turn, are equivalent to

r(M t −M t+1X) = 0, r(M t −XM t+1) = 0, r(X) = r(M t). (2.11)

Replacing X in (2.11) with X = PN †Q in (2.1) and applying (1.2) to
them, we find that

r(M t −M t+1X) = r(M t −M t+1PN †Q) = r

[
N Q

M t+1P M t

]
− r(N),

r(M t −XM t+1) = r(M t − PN †QM t+1) = r

[
N QM t+1

P M t

]
− r(N),

r(X) = r(PN †Q) = r

[
N Q

P 0

]
− r(N).

Hence (2.11) is equivalent to the following three rank equalities

r

[
N Q

M t+1P M t

]
= r(N), r

[
N QM t+1

P M t

]
= r(N),

r

[
N Q

P 0

]
= r(N) + r(M t).

Substituting P , N and Q in (2.1) into them and simplifying yield (2.8),
(2.9) and (2.10). ¤
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Theorem 2.3. Let A,B, C ∈ Cm×m with Ind(A) = k1, Ind(B) =
k2 and Ind(C) = k3, and denote M = ABC with Ind(M) = t. Then

(ABC)D = CDBDAD holds if and only if A, B and C satisfy the following

rank equality

r




0 0 A2k1+1 Ak1 0
0 B2k2+1 Bk2Ak1 0 0

C2k3+1 Ck3Bk2 0 0 0
Ck3 0 0 0 M t

0 0 0 M t −M2t+1




= r(Ak1) + r(Bk2) + r(Ck3) + r(M t). (2.12)

Proof. Applying (1.3) to MD−CDBDAD = M t(M2t+1)†M t−PN †Q
gives

r(MD − CDBDAD) = r[PN †Q−M t(M2t+1)†M t]

= r




N 0 Q

0 −M2t+1 M t

P M t 0


− r(N)− r(M t)

= r




N Q 0
P 0 M t

0 M t −M2t+1


− r(N)− r(M t). (2.13)

Substituting P , N and Q in (2.1) into the right side of (2.13) and letting
it be zero gives (2.12). ¤

Two groups of necessary and sufficient conditions for (ABC)D =
CDBDAD to hold are given in Theorems 2.2 and 2.3. Although there
are three rank equalities in (2.8)–(2.10), each of them is easier to simplify
than (2.12) when A, B and C satisfy some conditions. Some consequences
of the above two theorems are given below.

Corollary 2.4. Let A,B,C ∈ Cm×m with Ind(B)= k, Ind(ABC)= t,

where A and C are nonsingular. Then (ABC)D = C−1BDA−1 if and

only if

R[C(ABC)t] = R(Bk) and R{[(ABC)tA]∗} = R[(Bk)∗]. (2.14)
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Proof. Under the given conditions, (2.8), (2.9) and (2.10) become

r




0 0 A Im

0 B2k+1 Bk 0
C Bk 0 0

M t+1 0 0 M t


 = 2m + r(Bk), (2.15)

r




0 0 A M t+1

0 B2k+1 Bk 0
C Bk 0 0
Im 0 0 M t


 = 2m + r(Bk), (2.16)

r

[
B2k+1 Bk

Bk 0

]
= r(Bk) + r(M t). (2.17)

By block Gaussian elimination, the left sides of (2.15), (2.16) and (2.17)
can further be simplified to

r




0 0 A Im

0 B2k+1 Bk 0
C Bk 0 0

M t+1 0 0 M t


 = r

[
B2k+1 Bk

M t+1C−1Bk M tA

]
+ 2m

= r

[
Bk

M tA

]
+ 2m,

r




0 0 A M t+1

0 B2k+1 Bk 0
C Bk 0 0
Im 0 0 M t


 = r

[
B2k+1 BkA−1M t+1

Bk CM t

]
+ 2m

= r[Bk, CM t] + 2m,

r

[
B2k+1 Bk

Bk 0

]
= r

[
0 Bk

Bk 0

]
= 2r(Bk).

Hence (2.15), (2.16) and (2.17) are simplified to

r

[
Bk

M tA

]
= r[Bk, CM t] = r(M t) = r(Bk),

which is, in turn, equivalent to (2.14). ¤
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A matrix X is called an outer inverse of A if XAX = X. Notice
that both (ABC)D and C−1BDA−1 are outer inverses of ABC. Hence
Corollary 2.4 can also be proved by the following rank formula

r(X1 −X2) = r

[
X1

X2

]
+ r[X1, X2]− r(X1)− r(X2)

for any two outer inverses X1 and X2 of a matrix. For more details, see
the author’s recent paper [19].

Corollary 2.5. Let A,B, C ∈ Cm×m with Ind(A) = k1, Ind(B) = k2

and Ind(C) = k3, and denote M = ABC with Ind(M) = t. Moreover

suppose that

AB = BA, AC = CA, BC = CB. (2.18)

Then (ABC)D = CDBDAD if and only if A, B and C satisfy (2.10).

Proof. Under (2.18), it follows that Ak1Bk2 = Bk2Ak1 , Ak1Ck3 =
Ck3Ak1 , Bk2Ck3 = Ck3Bk2 and M t = AtBtCt. By block Gaussian elimi-
nation, the left side of (2.12) is reduced to

r




0 0 A2k1+1 Ak1

0 B2k2+1 Bk2Ak1 0
C2k3+1 Ck3Bk2 0 0

M t+1Ck3 0 0 M t




= r




0 0 A2k1+1 Ak1

0 B2k2+1 Bk2Ak1 0
C2k3+1 Ck3Bk2 0 0

Mm+1Ck3 0 0 Mm




= r




0 0 A2k1+1 Ak1

0 B2k2+1 Bk2Ak1 0
C2k3+1 Ck3Bk2 0 0

Am+1Bm+1Cm+k3+1 0 0 AmBmCm




= r




0 0 0 Ak1

0 B2k2+1 Bk2Ak1 0
C2k3+1 0 0 0

0 −Am+1Bm+k2+1Cm −Am+k1+1BmCm 0
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= r




0 0 0 Ak1

0 B2k2+1 0 0
C2k3+1 0 0 0

0 0 0 0


 = r(Ak1) + r(Bk2) + r(Ck3).

Thus (2.8) is an identity under (2.18). It can be shown by a similar ap-
proach that (2.9) is an identity under (2.18). Thus we see from Theorem 2.2
that (ABC)D = CDBDAD if and only if A, B and C satisfy (2.10). ¤

Corollary 2.6. Let A,B ∈ Cm×m with Ind(A) = k, Ind(B) = l and

Ind(AB) = t. Then the following three statements are equivalent:

(a) (AB)D = BDAD.

(b) r




0 A2k+1 Ak 0
B2l+1 BlAk 0 0

Bl 0 0 (AB)t

0 0 (AB)t (AB)2t+1


 = r(Ak) + r(Bl) + r[(AB)t].

(c) A and B satisfy the following three rank equalities

r[(AB)t] = r(BlAk),

r




0 A2k+1 Ak

B2l+1 BlAk 0
(AB)t+1Bl 0 −(AB)t


 = r(Ak) + r(Bl),

r




0 A2k+1 Ak(AB)t+1

B2l+1 BlAk 0
Bl 0 −(AB)t


 = r(Ak) + r(Bl).

Proof. Taking C = Im in (2.12) and simplifying gives (b). Taking
B = Im and replacing C with B in (2.8), (2.9) and (2.10) gives (c). ¤

If one of A, B and C is nilpotent, i.e., Ak = 0 or Bk = 0 or Ck = 0
for some positive integer k, then AD = 0 or BD = 0 or CD = 0. In this
case, the law (ABC)D = CDBDAD = 0 is trivial for consideration. If
one of A, B and C is normal, then its Drazin inverse and Moore–Penrose
inverse are the same. These cases motivate us to consider some mixed-type
reverse order laws for Drazin inverses and Moore–Penrose inverses, such
as, (ABC)D = CDB†AD, (ABC)D = C†BDA†, (ABC)D = C†B†A† and
so on.
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Theorem 2.7. Let A,B,C ∈ Cm×m with Ind(A) = k1, Ind(B) = k2

and Ind(C) = k3, and denote M = ABC with Ind(M) = t. Then

(a) (ABC)D = CDB†AD if and only if

r




0 0 A2k1+1 Ak1 0
0 B∗BB∗ B∗Ak1 0 0

C2k3+1 Ck3B∗ 0 0 0
Ck3 0 0 0 M t

0 0 0 M t −M2t+1




= r(Ak1) + r(B) + r(Ck3) + r(M t). (2.19)

(b) (ABC)D = C†BDA† if and only if

r




0 0 A∗AA∗ A∗ 0
0 B2k+1 BkA∗ 0 0

C∗CC∗ C∗Bk 0 0 0
C∗ 0 0 0 M t

0 0 0 M t −M2t+1




= r(A) + r(Bk) + r(C) + r(M t). (2.20)

(c) (ABC)D = C†B†A† if and only if

r




0 0 A∗AA∗ A∗ 0
0 B∗BB∗ B∗A∗ 0 0

C∗CC∗ C∗B∗ 0 0 0
C∗ 0 0 0 M t

0 0 0 M t −M2t+1




= r(A) + r(B) + r(C) + r(M t). (2.21)

Proof. It is well known that B† can be expressed in the form B† =
B∗(B∗BB∗)†B∗ (see [28]). Hence the product CDB†AD can be rewritten
as

CDB†AD = Ck3(C2k3+1)†Ck3B∗(B∗BB∗)†B∗Ak1(A2k1+1)†Ak1 .
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Applying Lemma 1.2 to it gives

CDB†AD = [Ck3 , 0, 0]




0 0 A2k1+1

0 B∗BB∗ B∗Ak1

C2k3+1 Ck3B∗ 0



† 


Ak1

0
0




:= PN †Q,

where P , N and Q satisfy the three properties

R(Q) ⊆ R(N), R(P ∗) ⊆ R(N∗), r(N) = r(Ak1) + r(B) + r(Ck3).

Find the rank of MD−CDB†AD = M t(M2t+1)†M t−PN †Q by (1.3) and
let it be zero to give (2.19). Parts (b) and (c) can be shown similarly. ¤

Corollary 2.8. Let A,B, C ∈ Cm×m with Ind(AB) = k and

Ind(BC) = l, and denote M = ABC with Ind(M) = t. Then (ABC)D =
(BC)DB(AB)D if and only if

r




0 (AB)2k+1 (AB)k 0
(BC)2l+1 (BC)lB(AB)k 0 0

(BC)l 0 0 M t

0 0 M t M2t+1




= r[(AB)k] + r[(BC)l] + r(M t).

Proof. Writing ABC = (AB)B†(BC) and applying Theorem 2.7(a)
to it, we see that (ABC)D = (BC)D(B†)†(AB)D = (BC)DB(AB)D if and
only if

r




0 0 (AB)2k+1 (AB)k 0
0 (B†)∗B†(B†)∗ (B†)∗(AB)k 0 0

(BC)2l+1 (BC)l(B†)∗ 0 0 0
(BC)l 0 0 0 M t

0 0 0 M t −M2t+1




= r[(AB)k] + r(B) + r[(BC)l] + r(M t).
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Note that (B†)∗[(B†)∗B†(B†)∗]†(B†)∗ = B. Hence the left side of the
above equality can be simplified by (1.2) to

r




0 0 (AB)2k+1 (AB)k 0
0 (B†)∗B†(B†)∗ (B†)∗(AB)k 0 0

(BC)2l+1 (BC)l(B†)∗ 0 0 0
(BC)l 0 0 0 M t

0 0 0 M t −M2t+1




= r




0 0 (AB)2k+1 (AB)k 0
0 (B†)∗B†(B†)∗ 0 0 0

(BC)2l+1 0 −(BC)lB(AB)k 0 0
(BC)l 0 0 0 M t

0 0 0 M t −M2t+1




= r




0 (AB)2k+1 (AB)k 0
(BC)2l+1 (BC)lB(AB)k 0 0

(BC)l 0 0 M t

0 0 M t M2t+1


 + r(B).

Thus the result in the corollary follows. ¤

Remarks. Many rank equalities for Drazin inverses of matrices can
be established by (1.1), (1.2) and (1.3). From them, one can derive nec-
essary and sufficient conditions for various equalities that involve Drazin
inverses of matrices to hold, such as, (AAD)∗ = AAD, A∗AD = ADA∗,
A†AD = ADA†, A∗ADA = AADA∗, ADA∗A = AA∗AD, AAD = BBD,
etc. The results obtained illustrate many new properties for Drazin in-
verses of matrices. For more details, see the author’s recent paper [20].
We now can summarize the work in the paper and [20] as a general topic:
Given two matrix expressions p(AD

1 , . . . , AD
k ) and q(BD

1 , . . . , BD
l ) of the

same size involving matrices and their Drazin inverses. Then determine
necessary and sufficient conditions such that

p(AD
1 , . . . , AD

k ) = q(BD
1 , . . . , BD

l ).
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Obviously, the equality is equivalent to

r[p(AD
1 , . . . , AD

k )− q(BD
1 , . . . , BD

l )] = 0.

If some rank formulas can be established for the matrix expression on the
left side of the above equality, then necessary and sufficient conditions can
be derived from the rank formulas for p(AD

1 , . . . , AD
k ) = q(BD

1 , . . . , BD
l )

to hold. This method has been proved to be quite effective for char-
acterizing various equalities for generalized inverses of matrices. Using
this method, the author gave in a previous paper [17] necessary and suffi-
cient conditions for A†k · · ·A†1 ∈ {A−}, A† = A†k · · ·A†1, AA† = AA†k · · ·A†1,
etc. to hold, where A = A1 · · ·Ak. In a recent paper [23], the author
gives a necessary and sufficient condition for {A−k · · ·A−1 } ⊆ {A−} to hold
through determining the maximal rank of A− AA−k · · ·A−1 A with respect
to A−1 , . . . , A−k . For square matrices A1, . . . , Ak of the same order and
their product A = A1 · · ·Ak, one can also use rank method to characterize
various equalities for their Drazin inverses, such as, AtAD

k · · ·AD
1 A = At,

AD
k · · ·AD

1 AAD
k · · ·AD

1 = AD
k · · ·AD

1 , AAD
k · · ·AD

1 = AD
k · · ·AD

1 A, AD =
AD

k · · ·AD
1 , AD = A†k · · ·A†1, etc. where the reverse order law AD = AD

k · · ·
· · ·AD

1 is investigated in Wang [24] by rank method.

Acknowledgement. The author would like to thank the referee for
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