On the range of elementary operators

By ALEKSEJ TURNŠEK (Ljubljana)

Abstract

Let \mathcal{H} be a separable infinite dimensional Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of operators on \mathcal{H} into itself. For a two-sided ideal $\mathcal{J} \subset$ $\mathcal{B}(\mathcal{H})$ with unitarily invariant norm and an elementary operator $\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ we consider the question when $\overline{\left.\operatorname{ran(\mathcal {E}}\right|_{\mathcal{J}}}{ }^{\mathcal{J}}=\overline{\operatorname{ran\mathcal {E}} \cap \mathcal{J}^{\mathcal{J}}}$. We prove that this holds when: (i) $\mathcal{E}(X)=A X B$ and \mathcal{J} is separable: (ii) $\mathcal{E}(X)=A X B+C X D$, where A and C, respectively B and D are commuting normal operators and $\mathcal{J}=\mathcal{C}_{p}$ with $p>1 ;\left(\right.$ iii $\mathcal{E}(X)=\sum A_{i} X B_{i}$, where $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{n}\right)$ are n-tuples of mutually commuting normal operators and $\mathcal{J}=\mathcal{C}_{2}$. Finally, as an application of (iii) we prove some results about double operator integrals.

1. Introduction

Let $\mathcal{B}(\mathcal{H})$ denote the algebra of all bounded linear operators on an infinite dimensional complex separable Hilbert space \mathcal{H}. For a compact operator X let $s_{1}(X) \geq s_{2}(X) \geq \ldots$ denote the singular values of X, i.e., the eigenvalues of $|X|=\sqrt{X^{*} X}$, arranged in a non-increasing order, with their multiplicities counted. A unitarily invariant norm is any norm $\|\cdot\|$ defined on some two-sided ideal $\mathcal{J} \subseteq \mathcal{B}(\mathcal{H})$ which satisfies the following two conditions. For unitary operators $U, V \in \mathcal{B}(\mathcal{H})$ the equality

[^0]$\|U X V\|=\|X\|$ holds, and $\|X\|=s_{1}(X)$ for all rank one operators. All ideals considered in this note are two-sided with unitarily invariant norms; as usual we call them norm ideals. It is a well-known fact that there is a one-to-one correspondence between symmetric gauge functions defined on sequences of real numbers and unitarily invariant norms defined on ideals of operators. More precisely, if $\|\|\|$ is a unitarily invariant norm, then there is a unique symmetric gauge function ϕ such that
$$
\|X\|=\phi\left(\left\{s_{j}(X)\right\}\right)
$$
for all $X \in \mathcal{J}$.
Especially well-known among unitarily invariant norms are the von Neumann-Schatten p-norms defined as
$$
\|X\|_{p}=\left(\sum_{j} s_{j}^{p}(X)\right)^{1 / p}
$$
if $1 \leq p<\infty$, and $\|X\|_{\infty}=s_{1}(X)$. The associated norm ideals, denoted by \mathcal{C}_{p}, are the von Neumann-Schatten p-classes. For a complete account on the theory of norm ideals, the reader is referred to [6].

Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{n}\right)$ be n-tuples of operators and define the elementary operator $\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by $\mathcal{E}(X)=$ $\sum_{i=1}^{n} A_{i} X B_{i}$. If \mathcal{J} is any norm ideal, then $\mathcal{E}(\mathcal{J}) \subseteq \mathcal{J}$. However it can also happen that $\mathcal{E}(X) \in \mathcal{J}$ for some $X \in \mathcal{B}(\mathcal{H}) \backslash \mathcal{J}$; hence $\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{J}}\right) \subseteq \operatorname{ran} \mathcal{E} \cap \mathcal{J}$ and then we also have $\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{J})}\right.}{ }^{\mathcal{J}} \subseteq \overline{\operatorname{ran\mathcal {E}} \cap \mathcal{J}}^{\mathcal{J}}$, where $\overline{(\cdot)}^{\mathcal{J}}$ denotes closure in the norm of the ideal \mathcal{J}. So we may well ask if the reverse inclusion is possible. Let us say that elementary operator \mathcal{E} satisfies property (R) with respect to the norm ideal \mathcal{J}, if

$$
{\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{J}}\right)}}^{\mathcal{J}}=\overline{\operatorname{ran} \mathcal{E} \cap \mathcal{J}}^{\mathcal{J}}
$$

or equivalently,

$$
\text { if } \mathcal{E}(X) \in \mathcal{J}, \text { then } \mathcal{E}(X)=\lim _{n} \mathcal{E}\left(X_{n}\right), \text { and } X_{n} \in \mathcal{J}
$$

In this note we prove that multiplications, i.e., $\mathcal{E}(X)=A X B$, satisfy property (R) with respect to each separable norm ideal \mathcal{J}. When \mathcal{E} is an elementary operator of length two this is not true anymore. Namely, this is
a consequence of the fact that there exists a trace class (even rank one) nonzero trace commutator $A X-X A$, where A is normal, see [14]. However, let A and C, respectively B and D be normal commuting operators and let $\mathcal{E}(X)=A X B+C X D$. We show then that \mathcal{E} satisfies property (R) with respect to the von Neumann-Schatten classes \mathcal{C}_{p} with $p>1$. If \boldsymbol{A} and \boldsymbol{B} are n-tuples of commuting normal operators and $\mathcal{E}(X)=\sum_{i=1}^{n} A_{i} X B_{i}$, then \mathcal{E} satisfies property (R) with respect to the Hilbert-Schmidt class \mathcal{C}_{2}. Applying this last fact, we prove some results about double operator integrals, see [12].

2. Main results

Lemma 2.1. Let $A \in \mathcal{B}(\mathcal{H})$ and suppose that $\mathcal{E}(X)=A X A^{*}$. Then \mathcal{E} satisfies property (R) with respect to each separable norm ideal \mathcal{J}.

Proof. We divide the proof into three steps.
First step. Suppose that $A \geq 0$ and injective; let E be its spectral measure and denote $E_{n}=E(\{z \in \mathbb{C}:|z|>1 / n\})$. Then with respect to the decomposition $\mathcal{H}=\operatorname{ran} E_{n} \oplus \operatorname{ran}^{\perp} E_{n}$ one obtains

$$
A=\left[\begin{array}{cc}
A_{1}^{(n)} & 0 \\
0 & A_{2}^{(n)}
\end{array}\right], \quad X=\left[\begin{array}{cc}
X_{11}^{(n)} & X_{12}^{(n)} \\
X_{21}^{(n)} & X_{22}^{(n)}
\end{array}\right],
$$

where $A_{1}^{(n)}$ is invertible. From $A X A \in \mathcal{J}$, using the fact that \mathcal{J} is an ideal, we get that

$$
\left[\begin{array}{cc}
A_{1}^{(n)} X_{11}^{(n)} A_{1}^{(n)} & 0 \\
0 & 0
\end{array}\right] \in \mathcal{J}
$$

Since $A_{1}^{(n)}$ is invertible, it follows that

$$
X_{n}=\left[\begin{array}{cc}
X_{11}^{(n)} & 0 \\
0 & 0
\end{array}\right] \in \mathcal{J}
$$

Notice that $X_{n}=E_{n} X E_{n}$ and we have

$$
A X A-A X_{n} A=A X A-A E_{n} X E_{n} A=A X A-E_{n} A X A E_{n} .
$$

Since $E_{n} \underset{n}{ } 1$ strongly (A is injective) [6, Theorem 6.3] (at this point we need separability) tells us that the sequence $E_{n} A X A E_{n} \underset{n}{\rightarrow} A X A$ in the norm of the ideal \mathcal{J}, and in this case the desired conclusion follows.

Second step. Now suppose that $A \geq 0$ but not necessarily injective. With respect to the decomposition $\mathcal{H}=\operatorname{ker}^{\perp} A \oplus \operatorname{ker} A$ one obtains

$$
A=\left[\begin{array}{cc}
A_{1} & 0 \\
0 & 0
\end{array}\right], \quad X=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right]
$$

where A_{1} is injective. Then

$$
A X A=\left[\begin{array}{cc}
A_{1} X_{11} A_{1} & 0 \\
0 & 0
\end{array}\right] \in \mathcal{J}
$$

and we can apply the previous step to finish the proof.
Third step. Finally, suppose that $A \in \mathcal{B}(\mathcal{H})$ is arbitrary and let $A=U|A|$ be its polar decomposition. Then since \mathcal{J} is an ideal, we have $U^{*}\left(A X A^{*}\right) U=|A| X|A| \in \mathcal{J}$. As we already know we can write $|A| X|A|=\lim _{n}|A| X_{n}|A|$ with operators $X_{n} \in \mathcal{J}$. From the estimate

$$
\begin{aligned}
\left\|A X A^{*}-A X_{n} A^{*}\right\| & =\left\|U\left(|A| X|A|-|A| X_{n}|A|\right) U^{*}\right\| \\
& \leq\left\||A| X|A|-|A| X_{n}|A|\right\|
\end{aligned}
$$

the lemma follows.
A familiar device of considering 2×2 operator matrices enables us to give the following theorem.

Theorem 2.2. Let $A, B \in \mathcal{B}(\mathcal{H})$ and suppose that $\mathcal{E}(X)=A X B$. Then \mathcal{E} satisfies property (R) with respect to each separable norm ideal \mathcal{J}.

Proof. On $\mathcal{H} \oplus \mathcal{H}$ put

$$
\tilde{A}=\left[\begin{array}{cc}
A & 0 \\
0 & B^{*}
\end{array}\right], \quad \tilde{X}=\left[\begin{array}{cc}
0 & X \\
0 & 0
\end{array}\right] .
$$

Then

$$
\tilde{A} \tilde{X} \tilde{A}^{*}=\left[\begin{array}{cc}
0 & A X B \\
0 & 0
\end{array}\right] \in \mathcal{J}
$$

and by the previous lemma we can find a sequence

$$
\tilde{X}_{n}=\left[\begin{array}{ll}
X_{11}^{(n)} & X_{12}^{(n)} \\
X_{21}^{(n)} & X_{22}^{(n)}
\end{array}\right] \in \mathcal{J}
$$

such that $\tilde{A} \tilde{X}_{n} \tilde{A}_{n}^{*} \underset{A}{\rightarrow} \tilde{X} \tilde{A}^{*}$. Hence $A X_{12}^{(n)} B \underset{n}{\rightarrow} A X B$ and operators $X_{12}^{(n)} \in \mathcal{J}$.
Before going on to prove the next theorem we state some known results. Recall that if \mathcal{U} and \mathcal{V} are subspaces of a Banach space \mathcal{X} with norm $\|\cdot\|, \mathcal{U}$ is said to be orthogonal to \mathcal{V} if $\|u+v\| \geq\|v\|$ for all $u \in \mathcal{U}$ and $v \in \mathcal{V}$. The range-kernel orthogonality of elementary operators has been considered by a number of authors, see [1], [2], [3], [9], [10] for generalized derivations $X \mapsto A X-X B$, and [7], [16], [17] for some more general results. Let $\mathcal{E}(X)=A X B+C X D$, where A, C, respectively B, D are commuting normal operators.

Theorem 2.3 ([17, Theorem 3.4]). Let $p>1, S \in \mathcal{C}_{p}$ and suppose that $\operatorname{ker} A \cap \operatorname{ker} C=\operatorname{ker} B^{*} \cap \operatorname{ker} D^{*}=\{0\}$. Then $S \in \operatorname{ker} \mathcal{E}$ if and only if $\|\mathcal{E}(X)+S\|_{p} \geq\|S\|_{p}$ for all $X \in \mathcal{C}_{p}$.

Theorem 2.4 ([7]). Let $p \geq 1, S \in \mathcal{C}_{p} \cap \operatorname{ker} \mathcal{E}$ and $\mathcal{E}(X) \in \mathcal{C}_{p}$ for some $X \in \mathcal{B}(\mathcal{H})$. If $\operatorname{ker} A \cap \operatorname{ker} C=\operatorname{ker} B^{*} \cap \operatorname{ker} D^{*}=\{0\}$, then $\|\mathcal{E}(X)+S\|_{p} \geq$ $\|S\|_{p}$.

Let \mathcal{X} be a Banach space, \mathcal{U} a subspace and define the orthogonal complement of \mathcal{U} as

$$
\mathcal{U}_{\perp}=\{x \in \mathcal{X}:\|u+x\| \geq\|x\| \text { for all } u \in \mathcal{U}\}
$$

Applying the preceding two theorems we obtain
Proposition 2.5. Let $p>1$. Then

$$
\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{p}}\right)_{\perp}=\left(\operatorname{ran} \mathcal{E} \cap \mathcal{C}_{p}\right)_{\perp}=\operatorname{ker}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{p}}\right)
$$

Next simple proposition deals with orthogonal complements.
Proposition 2.6. Let \mathcal{U} and \mathcal{V} be closed subspaces of a Banach space \mathcal{X} and suppose that \mathcal{U}_{\perp} and \mathcal{V}_{\perp} are also subspaces. If $\mathcal{U} \subseteq \mathcal{V}, \mathcal{U}_{\perp}=\mathcal{V}_{\perp}$ and $\mathcal{U} \oplus \mathcal{U}_{\perp}=\mathcal{V} \oplus \mathcal{V}_{\perp}=\mathcal{X}$, then $\mathcal{U}=\mathcal{V}$.

Proof. Take $v \in \mathcal{V}$. Then $v=v+0=u+u_{\perp}$ and from this it follows that $v-u=u_{\perp}$. But $v-u \in \mathcal{V}$ and $u_{\perp} \in \mathcal{U}_{\perp}=\mathcal{V}_{\perp}$, hence $v-u=0$. So we have proved that $v=u \in \mathcal{U}$ and this proves the reverse inclusion $\mathcal{V} \subseteq \mathcal{U}$.

Lemma 2.7. Let $\mathcal{E}(X)=A X B+C X D$ with A, C, respectively B, D commuting normal operators and let $p>1$. If $\operatorname{ker} A \cap \operatorname{ker} C=$ $\operatorname{ker} B^{*} \cap \operatorname{ker} D^{*}=\{0\}$, then

$$
\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\left.\mathcal{C}_{p}\right)}\right.}{ }^{\mathcal{C}_{p}}=\overline{\operatorname{ran\mathcal {E}\cap \mathcal {C}_{p}}{ }^{\mathcal{C}_{p}}}
$$

In other words this means that \mathcal{E} satisfies property (R) with respect to the von Neumann-Schatten ideals \mathcal{C}_{p} with $p>1$.

Proof. [17, Corollary 3.7] tells us that

$$
\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{p}}\right)}{ }^{\mathcal{C}_{p}} \oplus \operatorname{ker}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{p}}\right)=\mathcal{C}_{p} .
$$

From Proposition 2.5 we know that $\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{p}}\right)_{\perp}=\left(\operatorname{ran} \mathcal{E} \cap \mathcal{C}_{p}\right)_{\perp}$. Since furthermore $\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\left.\mathcal{C}_{p}\right)}\right.}{ }^{\mathcal{C}_{p}} \subseteq \overline{\operatorname{ran\mathcal {E}} \cap \mathcal{C}_{p}}{ }^{\mathcal{C}}$ pe can apply Proposition 2.6 to complete the proof.

In the next theorem we shall show that the condition $\operatorname{ker} A \cap \operatorname{ker} C=$ ker $B^{*} \cap \operatorname{ker} D^{*}=\{0\}$ is superfluous.

Theorem 2.8. Let $\mathcal{E}(X)=A X B+C X D$ with A, C, respectively B, D commuting normal operators. Then \mathcal{E} satisfies property (R) with respect to the von Neumann-Schatten ideals \mathcal{C}_{p} with $p>1$.

Proof. With respect to the decompositions $\mathcal{H}_{1}=\mathcal{H}=\operatorname{ker}^{\perp} A \oplus \operatorname{ker} A$ and $\mathcal{H}_{2}=\mathcal{H}=\operatorname{ker}^{\perp} B \oplus \operatorname{ker} B$ we can write operators $A, C: \mathcal{H}_{1} \rightarrow \mathcal{H}_{1}$, $B, D: \mathcal{H}_{2} \rightarrow \mathcal{H}_{2}$ and $X: \mathcal{H}_{2} \rightarrow \mathcal{H}_{1}$ as

$$
\begin{gathered}
A=\left[\begin{array}{cl}
A_{1} & 0 \\
0 & 0
\end{array}\right], \quad C=\left[\begin{array}{cc}
C_{1} & 0 \\
0 & C_{2}
\end{array}\right], \quad B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & 0
\end{array}\right], \\
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & D_{2}
\end{array}\right], \quad X=\left[\begin{array}{ll}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{array}\right] .
\end{gathered}
$$

Then

$$
\mathcal{E}(X)=\left[\begin{array}{cc}
A_{1} X_{11} B_{1}+C_{1} X_{11} D_{1} & C_{1} X_{12} D_{2} \\
C_{2} X_{21} D_{1} & C_{2} X_{22} D_{2}
\end{array}\right] .
$$

Since ker $A_{1} \cap \operatorname{ker} C_{1}=\operatorname{ker} B_{1}^{*} \cap \operatorname{ker} D_{1}^{*}=\{0\}$ we can apply Lemma 2.7 for the elementary operator in the upper left corner. For the other entries we use Theorem 2.2 and the proof is finished.

Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{n}\right)$ be n-tuples of mutually commuting normal operators and let $\mathcal{E}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ be the elementary operator $\mathcal{E}(X)=\sum_{i=1}^{n} A_{i} X B_{i}$. We can prove property (R) for the elementary operator \mathcal{E} in the case of Hilbert-Schmidt operators. It is a consequence of the following theorem:

Theorem 2.9 ([16, Theorem 3.1]). Let $\mathcal{E}(S)=0$ for some $S \in \mathcal{C}_{2}$. If $\mathcal{E}(X) \in \mathcal{C}_{2}$ for some $X \in \mathcal{B}(\mathcal{H})$, then $\|\mathcal{E}(X)+S\|_{2}^{2}=\|\mathcal{E}(X)\|_{2}^{2}+\|S\|_{2}^{2}$.

Namely, we reason as follows. Since $\left.\mathcal{E}\right|_{\mathcal{C}_{2}}$ is normal operator, $\operatorname{ran}^{\perp}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)=\operatorname{ker}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)$. Hence for $S \in \operatorname{ran}^{\perp}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)$ it follows that $S \in$ $\operatorname{ker}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)$. But then Theorem 2.9 implies that $S \in\left(\operatorname{ran} \mathcal{E} \cap \mathcal{C}_{2}\right)^{\perp}$. This means that $\operatorname{ran}^{\perp}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right) \subseteq\left(\operatorname{ran} \mathcal{E} \cap \mathcal{C}_{2}\right)^{\perp}$. Since the reverse inclusion is trivial, we have thus proved that $\operatorname{ran}^{\perp}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)=\left(\operatorname{ran} \mathcal{E} \cap \mathcal{C}_{2}\right)^{\perp}$. In particular we have ${\overline{\operatorname{ran}\left(\left.\mathcal{E}\right|_{\mathcal{C}_{2}}\right)}}^{\mathcal{C}_{2}}={\overline{\operatorname{ran\mathcal {E}} \cap \mathcal{C}_{2}}}^{\mathcal{C}_{2}}$. We can summarize these results in

Theorem 2.10. Let $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{n}\right)$ be n-tuples of mutually commuting normal operators and let \mathcal{E} be the elementary operator $\mathcal{E}(X)=\sum_{i=1}^{n} A_{i} X B_{i}$. Then \mathcal{E} satisfies property (R) with respect to the Hilbert-Schmidt ideal.

3. An application

Let A and B be normal bounded operators and denote by E and F respectively, their spectral measures. Furthermore let f be bounded Borel measurable function defined on $\sigma(A) \times \sigma(B)$. Then let $f(A, B): \mathcal{C}_{2} \rightarrow \mathcal{C}_{2}$ denote bounded operator on \mathcal{C}_{2} defined by

$$
f(A, B) X=\int_{\sigma(A)} \int_{\sigma(B)} f(z, w) E(d z) X F(d w) .
$$

It is known that this functional calculus could not, in general, be defined on the whole $\mathcal{B}(\mathcal{H})$, see [5], but merely on the Hilbert-Schmidt class. For a nice account on double operator integrals see [11], [12]. For a more prospective insight we list the main properties of this functional calculus:
(i) $f(A, B) X=A X$ for $f(z, w)=z, f(A, B) X=X B$ for $f(z, w)=w$.
(ii) $(\alpha f+\beta g)(A, B) X=\alpha f(A, B) X+\beta g(A, B) X$.
(iii) $(f g)(A, B) X=f(A, B)(g(A, B) X)$.
(iv) $f(A, B)^{*}=\bar{f}(A, B)$.
(v) $\operatorname{tr}\left(f(A, B) X(g(A, B) Y)^{*}\right)=\operatorname{tr}\left(((f \bar{g})(A, B) X) Y^{*}\right)$.

As pointed out in [12], the following integral representation formula is an important special case of (iii): if f is a Lipschitz function on $\sigma(A) \cup \sigma(B)$ and $X \in \mathcal{C}_{2}$, then

$$
f(A) X-X f(B)=\int_{\sigma(A)} \int_{\sigma(B)} \frac{f(z)-f(w)}{z-w} E(d z)(A X-X B) F(d w)
$$

As one notes, the right side of this formula is well defined if merely $A X-$ $X B \in \mathcal{C}_{2}$. Thus a natural question is, whether we have equality also in this case. In fact, the main result in [12] states that this formula remains valid also in this case. Our intention is to present a proof based on our results.

Theorem 3.1. Let A and B be normal bounded operators such that $A X-X B \in \mathcal{C}_{2}$ for some $X \in \mathcal{B}(\mathcal{H})$. Then for every Lipschitz function f defined on $\sigma(A) \cup \sigma(B)$ we have

$$
f(A) X-X f(B)=\tilde{f}(A, B)(A X-X B)
$$

where

$$
\tilde{f}(z, w)= \begin{cases}(f(z)-f(w))(z-w)^{-1} & \text { if } z \neq w \\ 0 & \text { if } z=w\end{cases}
$$

Proof. Since $A X-X B \in \mathcal{C}_{2}$, it follows from Theorem 2.10 that we can find operators $X_{n} \in \mathcal{C}_{2}$ such that

$$
A X_{n}-X_{n} B \underset{n}{\rightarrow} A X-X B
$$

in \mathcal{C}_{2} norm. Then we have

$$
\begin{gather*}
\tilde{f}(A, B)\left(A X_{n}-X_{n} B\right)=f(A) X_{n}-X_{n} f(B) \\
\underset{n}{\rightarrow} \tilde{f}(A, B)(A X-X B) \tag{1}
\end{gather*}
$$

If L is a Lipschitz constant of the function f, then applying [8, Corollary 1] we get

$$
\begin{aligned}
\|\left(f(A) X_{n}-X_{n} f(B)\right) & -(f(A) X-X f(B)) \|_{2} \\
& =\left\|f(A)\left(X_{n}-X\right)-\left(X_{n}-X\right) f(B)\right\|_{2} \\
& \leq L\left\|A\left(X_{n}-X\right)-\left(X_{n}-X\right) B\right\|_{2} .
\end{aligned}
$$

Hence

$$
f(A) X_{n}-X_{n} f(B) \underset{n}{\rightarrow} f(A) X-X f(B)
$$

and this together with (1) completes the proof.
Remember that we have denoted by $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=$ $\left(B_{1}, \ldots, B_{n}\right) n$ - tuples of mutually commuting normal operators and define, besides \mathcal{E}, also the elementary operator $\mathcal{E}^{*}: \mathcal{B}(\mathcal{H}) \rightarrow \mathcal{B}(\mathcal{H})$ by $\mathcal{E}^{*}(X)=\sum_{i=1}^{n} A_{i}^{*} X B_{i}^{*}$. Recall, see [4], that left (Harte), respectively right (Harte) spectrum of the n-tuple \boldsymbol{A} is given by

$$
\begin{aligned}
& \sigma_{l}(\boldsymbol{A})=\left\{\boldsymbol{\lambda} \in \mathbb{C}^{n}: \sum_{i=1}^{n} X_{i}\left(A_{i}-\lambda_{i}\right)=1 \text { can not be solved for } X_{i} \in \mathcal{B}(\mathcal{H})\right\} \\
& \sigma_{r}(\boldsymbol{A})=\left\{\boldsymbol{\lambda} \in \mathbb{C}^{n}: \sum_{i=1}^{n}\left(A_{i}-\lambda_{i}\right) X_{i}=1 \text { can not be solved for } X_{i} \in \mathcal{B}(\mathcal{H})\right\},
\end{aligned}
$$

and that joint or Harte spectrum of \boldsymbol{A} is defined by

$$
\sigma_{H}(\boldsymbol{A})=\sigma_{l}(\boldsymbol{A}) \cup \sigma_{r}(\boldsymbol{A})
$$

If $C^{*}(\boldsymbol{A}) \subseteq \mathcal{B}(\mathcal{H})$ is a commutative C^{*}-algebra generated with identity and operators A_{1}, \ldots, A_{n}, then it is a well-known fact that its spectrum (the space of all multiplicative functionals) is homeomorphic to the joint spectrum $\sigma_{H}(\boldsymbol{A})$. Furthermore, [13, Theorem 12.22] gives us spectral measure \boldsymbol{E} defined on all Borel subsets of $\sigma_{H}(\boldsymbol{A})$ such that

$$
f(\boldsymbol{A})=\int_{\sigma_{H}(\boldsymbol{A})} f(\boldsymbol{z}) \boldsymbol{E}(d \boldsymbol{z})
$$

for every bounded Borel measurable function on $\sigma_{H}(\boldsymbol{A})$. Let us again turn our attention to double operator integrals. Namely, we are in analogous
position as before with two single operators A and B. We have two n-tuples $\boldsymbol{A}=\left(A_{1}, \ldots, A_{n}\right)$ and $\boldsymbol{B}=\left(B_{1}, \ldots, B_{n}\right)$ of mutually commuting normal operators with their spectral measures \boldsymbol{E}, respectively \boldsymbol{F}. Then for every bounded Borel measurable function $f(\boldsymbol{z}, \boldsymbol{w})$ defined on $\sigma_{H}(\boldsymbol{A}) \times \sigma_{H}(\boldsymbol{B})$ and for every $X \in \mathcal{C}_{2}$ operator

$$
f(\boldsymbol{A}, \boldsymbol{B}) X=\int_{\sigma_{H}(\boldsymbol{A})} \int_{\sigma_{H}(\boldsymbol{B})} f(\boldsymbol{z}, \boldsymbol{w}) \boldsymbol{E}(d \boldsymbol{z}) X \boldsymbol{F}(d \boldsymbol{w})
$$

is again in \mathcal{C}_{2}. Hence for the function $f(\boldsymbol{z}, \boldsymbol{w})=\overline{\boldsymbol{z}} \cdot \overline{\boldsymbol{w}}=\overline{z_{1}} \overline{w_{1}}+\ldots+\overline{z_{n}} \overline{w_{n}}$ and $X \in \mathcal{C}_{2}$ we have

$$
\mathcal{E}^{*}(X)=\int_{\sigma_{H}(\boldsymbol{A})} \int_{\sigma_{H}(\boldsymbol{B})} \frac{\overline{\boldsymbol{z}} \cdot \overline{\boldsymbol{w}}}{\boldsymbol{z} \cdot \boldsymbol{w}} \boldsymbol{E}(d \boldsymbol{z}) \mathcal{E}(X) \boldsymbol{F}(d \boldsymbol{w})
$$

As before, we notice that for the right side of this formula we do not need $X \in \mathcal{C}_{2}$, but merely $\mathcal{E}(X) \in \mathcal{C}_{2}$. However if this formula were true merely under the assumption $\mathcal{E}(X) \in \mathcal{C}_{2}$, then $\mathcal{E}(X)=0$ would imply $\mathcal{E}^{*}(X)=0$; a contradiction with Shulman's result [15, Corollary 3]. Nevertheless with stronger assumption that both $\mathcal{E}(X)$ and $\mathcal{E}^{*}(X)$ are in \mathcal{C}_{2} we have

Theorem 3.2. Suppose that $\mathcal{E}(X), \mathcal{E}^{*}(X) \in \mathcal{C}_{2}$ for some $X \in \mathcal{B}(\mathcal{H})$. Then

$$
\mathcal{E}^{*}(X)=\tilde{f}(\boldsymbol{A}, \boldsymbol{B}) \mathcal{E}(X)
$$

where

$$
\tilde{f}(\boldsymbol{z}, \boldsymbol{w})= \begin{cases}\frac{\overline{\boldsymbol{z}} \cdot \overline{\boldsymbol{w}}}{\boldsymbol{z} \cdot \boldsymbol{w}} & \text { if } \boldsymbol{z} \cdot \boldsymbol{w} \neq 0 \\ 0 & \text { if } \boldsymbol{z} \cdot \boldsymbol{w}=0\end{cases}
$$

Proof. We reason as in Theorem 3.1. Since $\mathcal{E}(X) \in \mathcal{C}_{2}$ we can find operators $X_{n} \in \mathcal{C}_{2}$ such that

$$
\mathcal{E}\left(X_{n}\right) \underset{n}{\rightarrow} \mathcal{E}(X)
$$

in \mathcal{C}_{2} norm. Thus

$$
\tilde{f}(\boldsymbol{A}, \boldsymbol{B}) \mathcal{E}\left(X_{n}\right)=\mathcal{E}^{*}\left(X_{n}\right) \underset{n}{\rightarrow} \tilde{f}(\boldsymbol{A}, \boldsymbol{B}) \mathcal{E}(X)
$$

But a result of WEISS, see [18], says that whenever both $\mathcal{E}(X)$ and $\mathcal{E}^{*}(X)$
belong to \mathcal{C}_{2}, then $\left\|\mathcal{E}^{*}(X)\right\|_{2}=\|\mathcal{E}(X)\|_{2}$. Hence

$$
\begin{aligned}
\left\|\mathcal{E}^{*}(X)-\mathcal{E}^{*}\left(X_{n}\right)\right\|_{2} & =\left\|\mathcal{E}^{*}\left(X-X_{n}\right)\right\|_{2} \\
& =\left\|\mathcal{E}\left(X-X_{n}\right)\right\|_{2}=\left\|\mathcal{E}(X)-\mathcal{E}\left(X_{n}\right)\right\|_{2} \underset{n}{\rightarrow} 0
\end{aligned}
$$

and this completes the proof.
Acknowledgement. The author thanks the anonymous referees for their helpful suggestions.

References

[1] J. H. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135-140.
[2] B. P. Duggal, A remark on normal derivations, Proc. Amer. Math. Soc. 126 (1998), 2047-2052.
[3] B. P. Duggal, Range kernel orthogonality of derivations, Linear Alg. Appl. 304 (2000), 103-108.
[4] Elementary operators \& applications, Proceedings of the International Workshop held in Blaubeuren, World Scientific Publishing Co., Inc., River Edge, NJ, 1992.
[5] Yu. B. Farfarovskaya, Example of Lipschitz function of self-adjoint operators that gives a nonnuclear increment under a nuclear perturbation, J. Soviet Math. 4 (1975), 426-433.
[6] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc. Providence, R.I. 18 (1969).
[7] D. Kečkić, Orthogonality of the range and the kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), 3369-3377.
[8] F. Kittaneh, On Lipschitz functions of normal operators, Proc. Amer. Math. Soc. 94 (1985), 416-418.
[9] F. Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc. 123 (1995), 1779-1785.
[10] F. Kittaneh, Operators that are orthogonal to the range of a derivation, J. Math. Anal. Appl. 203 (1997), 868-873.
[11] D. R. Jocić, A Hilbert-Schmidt norm equality associated with the Fugle-de-Putnam-Rosenblum's type theorem for generalized multipliers, J. Operator Theory 30 (1993), 31-40.
[12] D. R. Jocić, Integral representation formula for generalized normal derivations, Proc. Amer. Math. Soc. 127 (1999), 2303-2314.
[13] W. Rudin, Functional analysis, McGraw-Hill Series in Higher Mathematics, Mc-Graw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.
[14] V. S. Shulman, On multiplying operators and commutator traces, Zap. Nauch. Semin. 135 (1984), 182-194 (in Russian).
[15] V. S. Shulman, Multiplication operators and spectral synthesis, Soviet Math. Dokl. 42 (1991), 133-137.
[16] A. Turnšek, Elementary operators and orthogonality, Linear Alg. Appl. 317 (2000), 207-216.
[17] A. Turnšek, Orthogonality in \mathcal{C}_{p} classes, Monatsh. Math. 132 (2001), 349-354.
[18] G. Weiss, An extension of the Fuglede commutativity theorem modulo the Hilbert-Schmidt class to operators of the form $\sum M_{n} X N_{n}$, Trans. Amer. Math. Soc. 278 (1983), 1-20.

```
ALEKSEJ TURNŠEK
FACULTY OF MECHANICAL ENGINEERING
UNIVERSITY OF LJUBLJANA
1000 LJUBLJANA
SLOVENIA
E-mail: aleksej.turnsek@fs.uni-lj.si
```

(Received July 17, 2001; revised January 5, 2003)

[^0]: Mathematics Subject Classification: 47A13, 47A30, 47A60, 47B10, 47B15, 47B47, 47B49.
 Key words and phrases: elementary operators, von Neumann-Schatten classes, double operator integrals, orthogonality.
 This research was supported by the grant J1-3125-0101-01 from the Ministry of Science of Slovenia.

