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On the m-convexity of Cb(X)

By HUGO ARIZMENDI-PEIMBERT (Mexico)
and ANGEL CARRILLO-HOYO (Mexico)

Abstract. Let X be a topological space and Cb(X) the algebra of bounded
continuous complex functions defined on X, with the strict topology β defined
by R. Giles. In this paper a necessary and sufficient condition is given in order
that Cb(X) be an m-convex algebra, when X is a completely regular Hausdorff
space. The density of principal ideals in this algebra and an algebra of analytic
sequences are also studied.

1. Introduction

Let X be a topological space. We denote by B (X) the algebra of
all bounded complex functions on X, and by Cb (X) the subalgebra of
B (X) consisting of bounded continuous functions. The ideal in B (X)
of all bounded functions vanishing at infinity is denoted by B0(X) and
B00(X) denotes the subspace of B0(X) consisting of all the elements in
B(X) with compact support.

The strict topology β on the algebra Cb(X) was introduced by C. Buck

in [4] when X is a locally compact Hausdorff space. For an arbitrary topo-
logical space X it was defined by R. Giles [5] as the locally convex topol-
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ogy on Cb(X) given by the seminorms

‖f‖ϕ = sup
x∈Y

|f(x)ϕ(x)|, (1)

where ϕ ranges on B0(X). If we restrict the functions ϕ to the class
B00 (X) we obtain the compact-open topology κ, and we obtain the uni-
form convergence topology σ defined by the sup norm ‖f‖∞ = sup

x∈X
|f(x)|,

if we allow ϕ to be any function in B(X). This shows that κ 4 β 4 σ.
If X is a locally compact space, then the strict topology β on the

algebra Cb(X) can be defined by the family of seminorms (1), but with
ϕ restricted to the space C0(X) = Cb (X) ∩ B0 (X). This is the way in
which C. Buck defined the strict topology.

We recall that X is called a k-space if it is a space in which a set is
closed iff its intersection with every compact closed set is closed. If X is a
locally compact or metrizable space then X is a k-space.

In [5] it is shown that the algebra (Cb(X), β) is complete if and only
if X is a k-space.

A commutative locally convex algebra A with unit e, whose topology
is given by the family {‖ ‖α : α ∈ Λ} of seminorms on A, is said to be
locally A-convex if for each x ∈ A and α ∈ Λ there exists some constant
M(x, α) > 0 such that

‖xy‖α ≤ M(x,α)‖y‖α for all y ∈ A. (2)

If the above constant M(x,α) does not depend on α i.e. (2) holds for
all α ∈ Λ and some constant Mx depending only on x, then we say that A

is a locally uniformly A-convex algebra.
We say that A is a locally m-convex (shortly m-convex) algebra if

every seminorm ‖ ‖α is submultiplicative i.e. ‖xy‖α ≤ ‖x‖α‖y‖α for all
α ∈ Λ and x, y ∈ A.

The algebra (Cb(X), β) is locally uniformly A-convex, since ‖fg‖φ ≤
‖f‖∞‖g‖φ for every φ ∈ B0 (X) and f, g ∈ Cb(X). It is easy to see that the
topological algebras (Cb(X), σ) and (Cb(X), κ) are m-convex algebras. In
this paper we establish, among other things, some conditions under which
the algebra (Cb(X), β) is also an m-convex algebra.
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By M (A) (resp., M#(A)) we denote the space of all continuous non-
zero linear multiplicative complex functionals on A (resp., all non zero
linear multiplicative complex functionals on A).

If X is a completely regular Hausdorff space, then it is well known
that M (Cb (X) , β) = X, i.e. h ∈ M (Cb(X), β) if and only if h(f) = x̂(f)
for all f ∈ Cb(X) and a fixed x ∈ X, where x̂ (f) = f(x).

2. The Wiener property

A commutative complete complex m-convex algebra A with unit sat-
isfies the Wiener property: x ∈ A is invertible if and only if x̂(f) 6= 0 for
every f ∈ M(A).

In this section we formulate for (Cb(X), β) a result, Corollary 2.2,
that resembles the Wiener property and we use this result to prove that
a particular commutative locally convex complete algebra with unit is not
m-convex.

The next theorem is the complex version of the Stone–Weierstrass
theorem given in [5].

Theorem 2.1. Let A be a self adjoint β-closed subalgebra of Cb(X)
which separates points and contains, for each x in X, a function nonvan-

ishing at x. Then A = Cb (X).

Corollary 2.2. Let X be a completely regular Hausdorff space. Sup-

pose f ∈ Cb(X) is such that f(x) 6= 0 for every x ∈ X. Then the ideal

fCb (X) is dense in (Cb(X), β).

Proof. Since X is a completely regular Hausdorff space, Cb(X) sep-
arates points and so does fCb(X), and since f

f g ∈ Cb(X) for every g ∈
Cb (X), fCb(X) is self adjoint. ¤

When the above function f is not invertible in Cb(X) we obtain the
following

Theorem 2.3. If f ∈ Cb(X) is such that f(x) 6= 0 for every x ∈ X

and infx∈X |f(x)| = 0, then the ideal fCb(X) is of infinite codimension.
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Proof. Let us assume that f satisfies the hypothesis. For each n ≥ 1
let us define the function hn(x) = 2n√|f(x)| for all x ∈ X. Then we obtain
a sequence (hnCb(X))∞n=1 of ideals of Cb (X) such that

h1Cb(X) ( h2Cb(X) ( . . . .

This implies that {hn : n ≥ 1} is a set of linearly independent elements.
Since the function g

f is not bounded whenever g is not the null element
in the linear space 〈hn〉 generated by the set {hn : n ≥ 1}, it follows that
〈hn〉 ∩ fCb(X) = {0} and then the ideal fCb(X) is of infinite codimension.

¤

Corollary 2.4. Let X be a completely regular Hausdorff k-space. If

there exists f ∈ Cb(X) as in the above theorem, then (Cb(X), β) is not an

m-convex algebra.

Proof. We know that M (Cb (X) , β) = X, and by hypothesis x̂ (f) =
f(x) 6= 0 for every x ∈ X. Therefore, (Cb(X), β) is a commutative com-
plete complex algebra with unit that does not satisfy the Wiener condition.
Thus, (Cb (X) , β) is not an m-convex algebra. ¤

3. The M-convexity of (Cb(X), β)

Let A be a topological algebra. In [2] an element x ∈ A is said to be
M-invertible (resp., M#-invertible) if x̂(f) 6= 0 for every f ∈ M(A) (resp.,
f ∈ M#(A)). The set of all M-invertible (M#-invertible) elements in A is
denoted by GM(A) (GM#(A)). The set of all invertible elements in A is
denoted, as usual, by G (A).

Suppose X is a completely regular Hausdorff space. Since
M (Cb(X), β) = X and M# (Cb(X)) = β(X) (the Stone–Čech compactifi-
cation of X) we have

GM(Cb(X), β) = {f ∈ Cb(X) : f(x) 6= 0, ∀x ∈ X}

and

G(Cb(X)) = GM# (Cb(X)) =
{
f ∈ Cb(X) : inf

x∈X
|f(x)| > 0

}
.
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Proposition 3.1. Suppose X is a completely regular Hausdorff space.

The following properties are equivalent:

(1) Cb(X) = C(X), where C(X) is the space of all complex continuous

functions on X.

(2) G (Cb(X)) = GM (Cb(X), β).

Proof. It is obvious that (1)⇒ (2). To show (2)⇒ (1) we assume the
contrary, namely that there exists f ∈ C(X) which is not a bounded func-
tion. Then 1+ |f(x)| 6= 0 for every x ∈ X and it is not a bounded function.
Therefore, the element h = 1

1+f belongs to GM(Cb(X), β)�G (Cb (X)). ¤

A topological algebra A is said to be a Q-algebra if G (A) is an open
set in A, in other words the complement of G (A) is closed in A. In the
topological algebra (Cb(X), β), with X a completely regular non compact
Hausdorff space, the set of invertible elements has the opposite property,
as we can see in the following

Proposition 3.2. Let X be a completely regular noncompact Haus-

dorff space. The set of all noninvertible elements of Cb (X) is dense in

(Cb (X) , β).

Proof. Let ϕ ∈ B0 (X) and ε > 0. There exists a compact subset
K ⊂ X such that |ϕ(x)| < ε for every x /∈ K. Since X is a completely
regular noncompact Hausdorff space there exist x0 /∈ K and a function
g ∈ Cb(X) such that g(x) = 1 if x ∈ K, g (x0) = 0 and 0 ≤ g(x) ≤ 1 for
all x ∈ X. It immediately follows that g is not invertible in Cb (X) and
‖g − 1‖ϕ < ε. ¤

In what follows we establish a necessary and sufficient condition for
the m-convexity of (Cb(X), β), when X is a completely regular Hausdorff
space. For this we follow the proof of Proposition 4 in [11].

Theorem 3.3. Let X be a completely regular Hausdorff space.

(Cb(X), β) is an m-convex algebra if and only if B0 (X) = B00 (X).

Proof. Let us assume that B00(X) ( B0(X) and suppose that
(Cb(X), β) is an m-convex algebra; so there exists a system P of submul-
tiplicative seminorms that defines β. Thus, for ϕ ∈ B0(X)�B00(X) we
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can find a submultiplicative seminorm ‖ ‖ belonging to P and two positive
constants p and q such that

p ‖f‖ϕ ≤ ‖f‖ ≤ q ‖f‖ϕ

for all f ∈ Cb (X). Then ‖f‖ < 1 whenever q ‖f‖ϕ < 1, and so ‖fn‖ < 1
and p ‖fn‖ϕ < 1 for all n ≥ 1. Since limx→∞ ϕ (x) = 0 we can find a
compact subset K of X such that q |ϕ(x)| < 1

2 for every x /∈ K.
Let f ∈ Cb(X) with f(x) = 0 if x ∈ K, 0 ≤ f(x) ≤ 2 for all x ∈ X

and f (x1) = 2 for some x1 /∈ K for which ϕ (x1) 6= 0. We have that
q ‖f‖ϕ < 1, and then p ‖fn‖ϕ < 1 for all n ≥ 1. On the other hand,

p ‖fn‖ϕ ≥ 2n |ϕ (x1)| p

for all n ≥ 1 and the expression on the right tends to ∞ as n grows. This
shows that (Cb (X) , β) is a non m-convex algebra.

If we have B0 (X) = B00 (X) then the topology β coincides with κ and
then

(Cb (X) , β) = (Cb (X) , κ)

is clearly m-convex. ¤

Corollary 3.4. Let X be a locally compact Hausdorff space.

(Cb(X), β) is an m-convex algebra if and only if C0(X) = C00(X).

Proof. If (Cb(X), β) is an m-convex algebra, then B0(X) = B00(X).
If f ∈ C0(X), then f ∈ B00(X). Thus, f ∈ C00(X).

Conversely, since X is a locally compact Hausdorff space, the strict
and the uniform topologies in Cb are given by the families of seminorms
{‖ ‖ϕ : ϕ ∈ C0(X)} and {‖ ‖ϕ : ϕ ∈ C00(X)}, respectively. Thus, these
two topologies coincide and (Cb(X), β) is an m-convex algebra. ¤

Remark 3.5. Observe that Cb(X) = C(X), where X is a locally com-
pact space, does not imply in general that C0(X) = C00(X), as we can see
in the following example:

Let Ω and ω be the first uncountable and countable ordinal numbers,
respectively. It can be proved that the space

Y = [0,Ω]× [0, ω]− (Ω, ω)
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is pseudocompact and so Cb(Y ) = C (Y ). Let f : Y → C be defined
as f (α, 0) = 1, f(α, ω) = 0 and f(α, n) = 1

n for every α ∈ [0, Ω] and
n = 1, 2, . . . . It is easy to see that f ∈ C0(Y )�C00(Y ). Thus, (Cb(X), β)
is not m-convex.

A space X is called a P -space if every function in C0(X) is constant in
some neighborhood of each point of X. If X is a locally compact Hausdorff
space such that its Stone–Ĉech compactification is a P -space, then C0(X)
coincides with C00(X) and therefore (Cb(X), β) is an m-convex algebra.
For example, every ordinal segment [0, τ), where τ is an infinite ordinal
with uncountable cofinality, has this property.

In [1], for a locally A-convex algebra (A, τ(P )) with unit, where P =
{pα | α ∈ Λ} is a family of seminorms which determines the topology τ ,
another topology τ(P̃ ) is defined. This topology τ(P̃ ) is the weakest locally
m-convex topology on A which is stronger than τ(P ), and it is given by
the family of seminorms P̃ = {p̃α | α ∈ Λ}, where

p̃α(x) = sup {pα(xy) : pα(y) ≤ 1} .

For (Cb(X), β) this locally m-convex topology will be denoted by β(P̃ )
and it is defined by the seminorms

p̃ϕ(f) = sup
{
‖fg‖ϕ : ‖g‖ϕ ≤ 1

}
,

where f, g ∈ Cb(X) and ϕ ∈ B0 (X).
The following lemma is obvious.

Lemma 3.6. Let X be a locally compact Hausdorff space. There

exists a real function ϕ ∈ B0 (X) such that ϕ(x) 6= 0 for all x ∈ X if and

only if X is σ-compact.

Proposition 3.7. If X is a locally compact and σ-compact Haus-

dorff space then the topology β(P̃ ) in Cb(X) coincides with the uniform

topology.

Proof. It is clear that

p̃ϕ(f) ≤ ‖f‖∞
for all f ∈ Cb(X) and ϕ ∈ B0 (X).
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On the other hand, by the above lemma there exists ϕ ∈ B0(X) such
that ϕ(x) 6= 0 for all x ∈ X. Given ε > 0 and f ∈ Cb(X), let x ∈ X be
such that

‖f‖∞ − ε < |f (x)| ,
then

‖f‖∞ − ε < |f (x)| =
∣∣∣∣f (x)

1
ϕ (x)

ϕ (x)
∣∣∣∣ ≤ ‖fgε‖ϕ ,

where gε (x) = 1
ϕ(x) and gε (y) = 0 if y 6= x. Thus, ‖f‖∞ ≤ p̃ϕ(f).

The space [0,Ω) is a locally compact Hausdorff space, but it is not
a σ-compact space. In this case, the β(P̃ ) topology coincides with the
open-compact topology in Cb([0, Ω)).

On the other hand, β(P̃ ) coincides with the uniform topology in the
space Y of Remark 3.5, because ‖f‖∞ = p̃ (f) for the function f defined
there. ¤

4. The algebra H(D)

Let H(D) be the algebra of all holomorphic functions in the unit com-
plex open disc D, and let A denotes the space of all complex sequences
a = (ak)∞k=0 such that if z is a complex number and |z| < 1, then

∑∞
k=0 akz

k

converges. The transformation

f(z) =
∞∑

k=0

ak (f) zk → a (f) = (ak(f))∞k=0 (3)

identifies H(D) with the sequence space A.
Let A be endowed with the Hadamard product, i.e. the coordinatewise

product, and the compact-open topology inherited from H(D) through the
identification (3); this topology, that we denote by τ (A), can be given by
the sequence (‖ ‖n)∞n=1 of seminorms on A defined as

‖(ak (f))∞k=0‖n = sup
k≥0

(
|ak (f) |rk

n

)
,

for n ≥ 1, where (rn)∞n=1 is an increasing sequence of positive numbers
tending to 1.
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Then A becomes an algebra of analytic sequences, moreover, (A, τ(A))
is a locally convex, metrizable complete commutative algebra with unit
e = (1, 1, . . . ) and orthogonal basis (en)∞n=0, where enk = δnk for n, k ≥ 0.

In [3], it is proved that (ak(f))∞k=0 ∈ A is invertible if and only if it
satisfies

i) ak(f) 6= 0 for every k ≥ 0 and

ii) limk→∞ |an (f) |1/k = 1.

Now we prove the following

Proposition 4.1. If a(f) = (ak(f))∞k=0 in A is such that ak(f) 6= 0 for

every k ≥ 0, then a(f)A is dense in (A, τ(A)) and if a (f) is not invertible,

then the ideal a (f) A is of infinite codimension.

Proof. Let us assume first that a (f) ∈ `∞, then by Theorem 2.2 we
have that a(f)l∞ is dense in (`∞, c0) and so, for each j ∈ l∞, b ∈ c0 and
ε > 0 there exists h ∈ `∞ such that

sup
k≥0

|(jk − ak (f) hk) bk| < ε.

In particular, for the sequence (rn)∞n=1 we have
(
rk
n

)∞
k=0

∈ c0 for each
positive integer n ≥ 1, and so

sup
k≥0

∣∣∣(jk − ak (f)hk) rk
n

∣∣∣ < ε.

This implies that `∞ ⊂ a(f)A (the τ (A)-closure of a (f) A) and since
`∞ is dense in (A, τ (A)), it follows that a (f) A is dense in A with the
compact-open topology τ (A).

If a (f) ∈ A is such that a(f) /∈ `∞, then there exists b ∈ A such that
a(f)b ∈ `∞ and so we are led to the previous case.

On the other hand, if a (f) ∈ A is such that ak (f) 6= 0 for all
k = 0, 1, . . . , and it is not invertible, then a (f) /∈ Mk, where Mk =
{a(g) ∈ A : ak (g) = 0} for each k ≥ 0, and therefore a (f) A cannot be
contained in any Mk, but each proper ideal is contained in some maximal
ideal; so a (f)A must be contained in some ideal Mp with p ∈ β (N)�N.

Since the algebra A is functionally continuous (see [3]), this ideal Mp is
dense of infinite codimension and hence a (f) A is of infinite codimension.

¤
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UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
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