On the continuous solutions of a generalization of the Goła̧b-Schinzel equation

By JANUSZ BRZDȨK (Kraków)

Abstract

Let J be a real nontrivial interval, $0 \in J, F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be symmetric, $0 \in F\left(\mathbb{R}^{2}\right), M: J \rightarrow \mathbb{R}$ be continuous, and $M(0)=0$. We determine the continuous solutions $f: \mathbb{R} \rightarrow J$ of the functional equation $$
f(x+M(f(x)) y)=F(x, y)
$$

The functional equation

$$
\begin{equation*}
f(x+M(f(x)) y)=F(x, y) \tag{1}
\end{equation*}
$$

where $f, M: \mathbb{R} \rightarrow \mathbb{R}$ and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, is a generalization of the well known Goła̧b-Schinzel equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{2}
\end{equation*}
$$

For the details concerning functional equation (2) and applications of it we refer e.g. to [1], [2], [4], [7], [11], [12], [15], [16], [19] and for its generalizations to [3], [5], [6], [8]-[10], [13], [14], [17], [18].

If we consider (1) as an equation of three unknown functions f, M, and F, then it is very easy to describe the general solution of it. Namely, given arbitrary functions $f, M: \mathbb{R} \rightarrow \mathbb{R}$, the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is uniquely

Key words and phrases: functional equation, Goła̧b-Schinzel functional equation, continuous solution.
determined by (1). Moreover, with $y=0$, from (1) we get $f(x)=F(x, 0)$ for $x \in \mathbb{R}$.

In the case where we solve the equation with respect to f (assuming that F and M are given) it is clear that the last equality does not need to be a sufficient condition for f to satisfy (1). In other words, for some F and M there may be no solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1).

In this paper we determine those pairs of functions $M: J \rightarrow \mathbb{R}$ and $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$, which admit a continuous solution $f: \mathbb{R} \rightarrow J$ of (1), under the additional assumptions that F is symmetric, $0 \in F\left(\mathbb{R}^{2}\right), M: J \rightarrow \mathbb{R}$ is continuous, and $M(0)=0$, where J is a nontrivial real interval with 0 .

We begin with the following
Lemma 1. Suppose that $g: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, $g(0) \neq 0$, $0 \in g((0,+\infty))$ and

$$
\begin{equation*}
g(x+g(x) y)=g(y+g(y) x) \quad \text { for } x, y \in \mathbb{R} \tag{3}
\end{equation*}
$$

Then there exist $b, d \in(0,+\infty)$ with

$$
\begin{align*}
D & :=g^{-1}((-\infty, 0)) \cap[0,+\infty) \in\{\emptyset,(d,+\infty)\} \tag{4}\\
B & :=g^{-1}((0,+\infty)) \cap[0,+\infty)=[0, b) \tag{5}
\end{align*}
$$

Proof. For the proof of (4) by contradiction suppose that there are $a, w \in(0,+\infty)$ with $a<w, g(a)<0$ and $g(w)=0$. Put $i_{0}=\inf \{x \in$ $(a,+\infty): g(x)=0\}$. Then, by the continuity of $g, w \geq i_{0}>a, g\left(i_{0}\right)=0$ and $g\left(\left(a, i_{0}\right)\right) \subset(-\infty, 0)$. Take $c \in\left(\frac{1}{2}\left(a+i_{0}\right), i_{0}\right)$ with

$$
g(c)>\frac{a-i_{0}}{2 i_{0}}
$$

Clearly

$$
a=\frac{a+i_{0}}{2}+\frac{a-i_{0}}{2}<c+g(c) i_{0}<c<i_{0} .
$$

Thus, on account of (3),

$$
0>g\left(c+g(c) i_{0}\right)=g\left(i_{0}+g\left(i_{0}\right) c\right)=g\left(i_{0}\right)=0
$$

This is a contradiction, which completes the proof of (4).
Next observe that, in view of (4) and the hypotheses, $g(0)>0$, whence $B \neq \emptyset$. So for the proof of (5) by contradiction suppose that $g(a)>0$ and
$g(w)=0$ for some $a, w \in(0,+\infty), w<a$. Let $s_{0}=\sup \{x \in(0, a): g(x)=0\}$. It is easy to see that $w \leq s_{0}<a, g\left(s_{0}\right)=0$ and $g\left(\left(s_{0}, a\right)\right) \subset(0,+\infty)$. Take $c \in\left(s_{0}, \frac{1}{2}\left(a+s_{0}\right)\right)$ with $2 s_{0} g(c)<a-s_{0}$. Then

$$
a=\frac{a+s_{0}}{2}+\frac{a-s_{0}}{2}>c+g(c) s_{0}>c>s_{0} .
$$

This brings a contradiction, because

$$
0<g\left(c+g(c) s_{0}\right)=g\left(s_{0}+g\left(s_{0}\right) c\right)=g\left(s_{0}\right)=0 .
$$

Thus we have completed the proof of Lemma 1.
Lemma 2. Let g be as in Lemma 1. Then there exists $c \in(-\infty, 0)$ such that one of the following two conditions holds:

$$
\begin{align*}
& g(x)=c x+1 \quad \text { for } x \in \mathbb{R} \tag{6}\\
& g(x)=\max \{c x+1,0\} \quad \text { for } x \in \mathbb{R} . \tag{7}
\end{align*}
$$

Proof. On account of Lemma 1 there exist $b, d \in(0,+\infty)$ such that (4) and (5) are valid. Put $A=\{y+g(y) b: y \in \mathbb{R}\}$. Since $g(b)=0$ and, by $(3), g(y+g(y) b)=g(b+g(b) y)=g(b)=0$ for $y \in \mathbb{R}$, we have

$$
\begin{equation*}
g(A)=\{0\} . \tag{8}
\end{equation*}
$$

Next A is connected and $b=b+g(b) b \in A$. Hence $A \subset[b,+\infty)$, which yields

$$
\begin{equation*}
g(y) \geq 1-\frac{y}{b} \quad \text { for } y \in \mathbb{R} \tag{9}
\end{equation*}
$$

First consider the case $D \neq \emptyset$. Clearly $g(d)=0$ and $d \geq b$. Suppose $d>b$. Then $1-\frac{d}{b}<0$ and, by (3),

$$
0=g(d)=g(d+g(d) x)=g(x+g(x) d) \quad \text { for } x \in \mathbb{R}
$$

This brings a contradiction, because, in view of (9),

$$
x+g(x) d \geq x+\left(1-\frac{x}{b}\right) d=x\left(1-\frac{d}{b}\right)+d>d \quad \text { for } x<0 .
$$

Thus we have proved that $b=d$. Hence from (8) we get $y+g(y) b=b$ for $y \in \mathbb{R}$, which implies (6) with $c=-\frac{1}{b}$.

Now assume $D=\emptyset$. Suppose that $g(z) \neq 1-\frac{z}{b}$ for some $z<0$. Then, by $(9), g(z)>1-\frac{z}{b}$, whence $z+g(z) b>b$ and consequently there is $e \in(0, b)$ with

$$
\begin{equation*}
z+g(z) y>b \quad \text { for } y \in(b-e, b) \tag{10}
\end{equation*}
$$

Take $y_{0} \in(b-e, b)$ with $g\left(y_{0}\right)<-\frac{y_{0}}{z}$, which means that $y_{0}+g\left(y_{0}\right) z>0$. Next $g\left(y_{0}\right)>0,0<y_{0}<b$ and $z<0$, so we have $y_{0}+g\left(y_{0}\right) z \in(0, b)$. This brings a contradiction, because, by (10),

$$
g\left(y_{0}+g\left(y_{0}\right) z\right)=g\left(z+g(z) y_{0}\right)=0
$$

In this way we have shown that

$$
\begin{equation*}
g(y)=1-\frac{y}{b} \quad \text { for } y \leq 0 \tag{11}
\end{equation*}
$$

Take $y \in(0, b)$. Then $g(y)>0$ and $y+g(y) x \rightarrow-\infty$ if $x \rightarrow-\infty$. Hence there exists $x<-\frac{b y}{b-y}$ with $y+g(y) x<0$. Note that $x(b-y)<-b y$, which implies $x+y-\frac{1}{b} x y<0$. Whence, by (11),

$$
x+g(x) y=x+\left(-\frac{1}{b} x+1\right) y=x+y-\frac{1}{b} x y<0
$$

and consequently

$$
\begin{aligned}
-\frac{1}{b}(y+g(y) x)+1 & =g(y+g(y) x)=g(x+g(x) y) \\
& =-\frac{1}{b}\left(x+y-\frac{1}{b} x y\right)+1
\end{aligned}
$$

Thus $g(y)=-\frac{1}{b} y+1$. This and (11) imply (7) (with $c=-\frac{1}{b}$), which completes the proof.

Proposition 1. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous solution of (3) such that $0 \in g(\mathbb{R})$. Then either $g(\mathbb{R})=\{0\}$ or there exists $c \in \mathbb{R} \backslash\{0\}$ such that (6) or (7) holds.

Proof. Suppose that $g\left(x_{0}\right) \neq 0$ for some $x_{0} \in \mathbb{R}$. Then

$$
0 \neq g\left(x_{0}\right)=g\left(x_{0}+g\left(x_{0}\right) 0\right)=g\left(0+g(0) x_{0}\right)=g\left(g(0) x_{0}\right)
$$

Hence $g(0) \neq 0$. Further, according to the hypothesis, there is $z_{0} \in \mathbb{R}$ with $g\left(z_{0}\right)=0$. If $z_{0}>0$, we derive the statement from Lemma 2. If $z_{0}<0$, we define $g_{0}: \mathbb{R} \rightarrow \mathbb{R}$ by $g_{0}(x)=g(-x)$. Then

$$
\begin{aligned}
g_{0}\left(x+g_{0}(x) y\right) & =g(-x+g(-x)(-y))=g(-y+g(-y)(-x)) \\
& =g_{0}\left(y+g_{0}(y) x\right)
\end{aligned}
$$

for $x, y \in \mathbb{R}, g_{0}(0)=g(0) \neq 0$ and $g_{0}\left(-z_{0}\right)=g\left(z_{0}\right)=0$. Thus, on account of Lemma 2 , there is $c_{0} \in(-\infty, 0)$ such that $g_{0}(x)=c_{0} x+1$ for $x \in \mathbb{R}$ or $g_{0}(x)=\max \left\{c_{0} x+1,0\right\}$ for $x \in \mathbb{R}$. Consequently (6) or (7) holds with $c=-c_{0}$, which completes the proof.

Finally we have the following
Theorem 1. Assume that J is a real nontrivial interval, $0 \in J, M$: $J \rightarrow \mathbb{R}$ is continuous, $M(0)=0, F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is symmetric, and $0 \in F\left(\mathbb{R}^{2}\right)$. Then a continuous function $f: \mathbb{R} \rightarrow J$ is a solution of equation (1) if and only if one of the following three conditions holds.
(i) $f(\mathbb{R})=\{0\}=F\left(\mathbb{R}^{2}\right)$.
(ii) M is bijective and there exists $c \in \mathbb{R} \backslash\{0\}$ such that

$$
\begin{aligned}
F(x, y)=M^{-1}((c x+1)(c y+1)) & \text { for } x, y \in \mathbb{R} \\
f(x)=M^{-1}(c x+1) & \text { for } x \in \mathbb{R}
\end{aligned}
$$

(iii) There exist a continuous one-to-one function $h:[0,+\infty) \rightarrow J$ and $c \in \mathbb{R} \backslash\{0\}$ such that $h(0)=0$,

$$
\begin{aligned}
M(y) & =h^{-1}(y) & & \text { for } y \in h([0,+\infty)) \\
F(x, y) & =h(s(c x+1) s(c y+1)) & & \text { for } x, y \in \mathbb{R} \\
f(x) & =h(s(c x+1)) & & \text { for } x \in \mathbb{R}
\end{aligned}
$$

where $s(x)=\max \{x, 0\}$.
Proof. It is easy to check that, in either of the cases described in (i)-(iii), f satisfies (1). So now assume that $f: \mathbb{R} \rightarrow J$ is a continuous solution of equation (1).

If $F\left(\mathbb{R}^{2}\right)=\{0\}$, then, by (1), we have

$$
f(x)=f(x+M(f(x)) 0)=F(x, 0)=0 \quad \text { for } x \in \mathbb{R},
$$

which means that (i) holds. Therefore it remains to consider the case where $F\left(x_{1}, y_{1}\right) \neq 0$ for some $x_{1}, y_{1} \in \mathbb{R}$.

According to the hypothesis there exist $x_{0}, y_{0} \in \mathbb{R}$ such that $F\left(x_{0}, y_{0}\right)=0$. Put $z_{0}=x_{0}+M\left(f\left(x_{0}\right)\right) y_{0}, z_{1}=x_{1}+M\left(f\left(x_{1}\right)\right) y_{1}$, and $g=M \circ f$. Suppose that $g(0)=0$. Then (1) yields

$$
\begin{aligned}
0 & \neq F\left(x_{1}, y_{1}\right)=f\left(z_{1}\right)=f\left(z_{1}+g\left(z_{1}\right) 0\right)=F\left(z_{1}, 0\right)=F\left(0, z_{1}\right) \\
& =f\left(0+g(0) z_{1}\right)=f(0)=f\left(0+g(0) z_{0}\right)=F\left(0, z_{0}\right) \\
& =F\left(z_{0}, 0\right)=f\left(z_{0}+g\left(z_{0}\right) 0\right)=f\left(z_{0}\right)=F\left(x_{0}, y_{0}\right)=0,
\end{aligned}
$$

a contradiction. Thus $g(0) \neq 0$. Further $g\left(z_{0}\right)=M\left(f\left(z_{0}\right)\right)=M\left(F\left(x_{0}, y_{0}\right)\right)=0$ and, for $x, y \in \mathbb{R}$,

$$
\begin{aligned}
g(x+g(x) y) & =M(f(x+M(f(x)) y))=M(F(x, y)) \\
& =M(F(y, x))=g(y+g(y) x),
\end{aligned}
$$

whence, on account of Proposition 1, (6) or (7) holds with some $c \in \mathbb{R} \backslash\{0\}$.
Suppose first that g is of the form (6). Then $g(\mathbb{R})=\mathbb{R}$ and

$$
\begin{equation*}
M\left(f\left(y_{1}\right)\right)=g\left(y_{1}\right)=c y_{1}+1 \neq c y_{2}+1=g\left(y_{2}\right)=M\left(f\left(y_{2}\right)\right) \tag{12}
\end{equation*}
$$

for every $y_{1}, y_{2} \in \mathbb{R}, y_{1} \neq y_{2}$, which means that the function $f(\mathbb{R}) \ni y \rightarrow$ $M(y) \in \mathbb{R}$ is a bijection. Hence $f(\mathbb{R})=J$, because M is continuous. Next

$$
\begin{align*}
M(F(x, y)) & =g(x+g(x) y) \\
& =c(x+(c x+1) y)+1=(c x+1)(c y+1) \tag{13}
\end{align*}
$$

for $x, y \in \mathbb{R}$. Consequently (ii) holds.
Now assume (7). Let $P=\{x \in \mathbb{R}: c x+1 \geq 0\}$ and $P_{0}=P \backslash\left\{-\frac{1}{c}\right\}$. Then $g\left(\mathbb{R} \backslash P_{0}\right)=\{0\}, M(f(P))=g(P)=[0,+\infty)$, and (12) holds for every $y_{1}, y_{2} \in P, y_{1} \neq y_{2}$. Thus the function $M_{0}: f(P) \ni y \rightarrow M(y) \in$ $[0,+\infty)$ is bijective. Put $h=M_{0}^{-1}$. It is easily seen that $f(x)=h(c x+1)$ for $x \in P$ and, for $x \in \mathbb{R} \backslash P_{0}$,

$$
f(x)=f\left(x+g(x) z_{0}\right)=F\left(x, z_{0}\right)=F\left(z_{0}, x\right)=f\left(z_{0}\right)=0,
$$

whence $h(0)=f\left(-\frac{1}{c}\right)=0$ and $f(y)=h(s(c y+1))$ for $y \in \mathbb{R}$. Further

$$
\begin{aligned}
F(y, x) & =F(x, y)=f(x+M(f(x)) y) \\
& =f(x)=0 \quad \text { for } x \in \mathbb{R} \backslash P_{0}, y \in \mathbb{R}
\end{aligned}
$$

Finally observe that, for $x, y \in P_{0}, c(x+g(x) y)+1=(c x+1)(c y+1)>0$, which means that $x+g(x) y \in P_{0}$ and consequently (13) holds. This completes the proof.

The following corollary generalizes to some extent Corollary 4 in [8].
Corollary 1. Let J and M be as in Theorem 1. Then a continuous function $f: \mathbb{R} \rightarrow J$ satisfies the functional equation

$$
\begin{equation*}
f(x+M(f(x)) y)=f(x) f(y) \tag{14}
\end{equation*}
$$

if and only if one of the following four conditions holds.
$1^{\circ} f(\mathbb{R})=\{0\}$.
$2^{\circ} f(\mathbb{R})=\{1\}$.
$3^{\circ} J=\mathbb{R}$ and there exist $a>0$ and $c \in \mathbb{R} \backslash\{0\}$ such that $M(x)=$ $|x|^{\frac{1}{a}}(\operatorname{sign}(x))$ and $f(x)=|c x+1|^{a}(\operatorname{sign}(c x+1))$ for $x \in \mathbb{R}$.
$4^{\circ}[0,+\infty) \subset J$ and there exist $a>0$ and $c \in \mathbb{R} \backslash\{0\}$ such that $M(x)=x^{\frac{1}{a}}$ for $x \in[0,+\infty)$ and $f(x)=(\max \{c x+1,0\})^{a}$ for $x \in \mathbb{R}$.
Proof. It is easy to check that if one of conditions $1^{\circ}-4^{\circ}$ holds, then f satisfies (14). So assume now that $f: \mathbb{R} \rightarrow J$ is a continuous solution of equation (14).

First consider the case where $0 \notin f(\mathbb{R})$. Suppose that $x \in \mathbb{R}$ and $M(f(x)) \neq 1$. Put

$$
z=\frac{x}{1-M(f(x))}
$$

Then $z=x+M(f(x)) z$ and consequently

$$
f(z)=f(x+M(f(x)) z)=f(x) f(z)
$$

whence $f(x)=1$.
Thus we have proved that, for every $x \in \mathbb{R}, f(x)=1$ or $M(f(x))=1$. Since M is continuous, this means that $f(\mathbb{R})=\{1\}$ or $M(f(\mathbb{R}))=\{1\}$.

In the first case we clearly get 2° and in the latter one we have

$$
\begin{equation*}
f(x+y)=f(x+M(f(x)) y)=f(x) f(y) \quad \text { for } x, y \in \mathbb{R} \tag{15}
\end{equation*}
$$

Next $f(\mathbb{R}) \neq\{1\}$ and (15) imply $f(x)=\exp c x$ for $x \in \mathbb{R}$ with some $c \in \mathbb{R} \backslash\{0\}$ (see e.g. [1]). But then $f(\mathbb{R})=(0,+\infty)$ and consequently $M((0,+\infty))=M(f(\mathbb{R}))=\{1\}$, which is impossible, because M is continuous and $M(0)=0$.

Now assume that $0 \in f(\mathbb{R})$. Put $F(x, y)=f(x) f(y)$ for $x, y \in \mathbb{R}$. Then $0 \in F\left(\mathbb{R}^{2}\right)$ and f satisfies (1). Thus conditions (i)-(iii) of Theorem 1 are valid. It is easily seen that, in case (ii), M^{-1} and, in case (iii), h are multiplicative. This completes the proof (see [1], pp. 29-31).

Below we give two simple examples showing that without the assumptions $M(0)=0$ and $0 \in F\left(\mathbb{R}^{2}\right)$ in Theorem 1 the statement of the theorem is not valid.

Example 1. Let $f(x)=\sin x$ and $F(x, y)=\sin (x+y)$ for $x, y \in \mathbb{R}$, $M(x)=|x|$ for $|x|>1$ and $M([-1,1])=\{1\}$. Then (1) holds, $0 \in F\left(\mathbb{R}^{2}\right)$, and $M(0)=1$.

Example 2. Let $f(x)=1+\exp x$ and $F(x, y)=1+\exp (x+y)$ for $x, y \in \mathbb{R}, M(x)=x$ for $x<1$ and $M([1,+\infty))=\{1\}$. Then (1) holds, $0 \notin F\left(\mathbb{R}^{2}\right)$, and $M(0)=0$.

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, Vol. 31, Cambridge University Press, 1989.
[2] J. AcZÉl and S. Go乇A̧B, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[3] J. Aczél and J. Schwaiger, Continuous solutions of the Goła̧b-Schinzel equation on the nonnegative reals and on related domains, Sitzungsber. Österr. Akad. Wiss., Math.-naturwiss. Kl., Abt. II 208 (1999), 171-177.
[4] K. Baron, On the continuous solutions of the Goła̧b-Schinzel equation, Aequationes Math. 38 (1989), 155-162.
[5] N. Brillouët-Belluot, On some functional equations of Goła̧b-Schinzel type, Aequationes Math. 42 (1991), 239-270.
On the continuous solutions of a generalization...
[6] N. BrillouËt-Belluot, Note on some functional equations of Gołạb-Schinzel type, Akademia Ped. Kraków. Rocznik Nauk.-Dyd. 204., Prace Mat. 17 (2000), 65-74.
[7] N. Brillouët and J. Dhombres, Équations fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), 253-293.
[8] J. Brzdȩk, Subgroups of the group Z_{n} and a generalization of the Goła̧b-Schinzel functional equation, Aequationes Math. 43 (1992), 59-71.
[9] J. Brzdȩk, Some remarks on solutions of the functional equation $f\left(x+f(x)^{n} y\right)=$ $t f(x) f(y)$, Publ. Math. Debrecen 43 (1993), 147-160.
[10] J. Chudziak, Continuous solutions of a generalization of the Gołąb-Schinzel equation, Aequationes Math. 61 (2001), 63-78.
[11] S. GoモA̧B and A. Schinzel, Sur l'équation fonctionnelle $f(x+y f(x))=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.
[12] P. Javor, Continuous solutions of the functional equation $f(x+y f(x))=f(x) f(y)$, Proc. Internat. Sympos. on Topology and its Applications (Herceg-Novi, 1968), Savez Drŭstava Mat. Fiz. i Astronom., Belgrade, 1969, 206-209.
[13] P. Kahlig and J. Matkowski, On some extensions of the Gołạb-Schinzel functional equation, Ann. Math. Siles. 8 (1994), 13-31.
[14] A. Mureńko, On solutions of the Gołạb-Schinzel equation, Internat. J. Math. Math. Sci. 27 (2001), 541-546.
[15] P. Plaumann and S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264.
[16] C. G. Popa, Sur l'équation fonctionnelle $f(x+y f(x))=f(x) f(y)$, Ann. Polon. Math. 17 (1965), 193-198.
[17] L. Reich, Über die stetigen Lösungen der Gołạb-Schinzel-Gleichung auf $\mathbb{R}_{\geq 0}$, Sitzungsber. Österr. Akad. Wiss., Math.-naturwiss. Kl., Abt. II 208 (1999), 165-170.
[18] M. Sablik, A conditional Gołąb-Schinzel equation, Anzeiger Österr. Akad. Wiss., Math.-naturwiss. Kl., Abt. II 137 (2000), 11-15.
[19] S. WoŁodźko, Solution générale de l'équation fonctionnelle $f(x+y f(x))=$ $f(x) f(y)$, Aequationes Math. 2 (1968), 12-29.

JANUSZ BRZDȨK
DEPARTMENT OF MATHEMATICS
PEDAGOGICAL UNIVERSITY
PODCHORȦŻYCH 2
30-084 KRAKÓW
POLAND
E-mail: jbrzdek@wsp.krakow.pl
(Received May 13, 2002; revised October 16, 2002)

