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On the differences between polynomial values
and perfect powers
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Dedicated to the memory of Professor Péter Kiss

Abstract. Let F (X) ∈ Z[X] be a polynomial of degree n ≥ 2, and let x,
b, y, m be non-zero integers with m ≥ 2, |y| ≥ 2 and F (x) 6= bym. Under
some natural assumptions on F , we give explicit lower bounds for |F (x)− bym|,
depending only on n, m, b, H(F ) and n, b, F (x),H(F ), respectively. These results
generalize Theorems 1 and 2 of Bugeaud and Hajdu [8]. To prove our results,
we slightly improve and make completely explicit the upper bound obtained in [3]
for the unknown exponent m in the superelliptic equation (1).

1. Introduction

Let a, b, x, y, n, m be non-zero integers with n,m ≥ 2, |y| ≥ 2 and
axn 6= bym. The first effective lower bound for |axn − bym| which is in-
dependent of x and y was proved by Turk [16], in case of a= b =1. A
result of similar strength valid for arbitrary a and b, however not com-
pletely explicit, can also be deduced from the work of Shorey [14]. Later,
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Bugeaud [5] considerably sharpened Turk’s estimate for |xn − ym|. Re-
cently, thanks to some refined arguments, Bugeaud and Hajdu [8] im-
proved and extended Bugeaud’s result to arbitrary a and b. The purpose
of this paper is to generalize the results of Bugeaud and Hajdu [8] to
differences of the form |F (x)− bym|, where F (X) ∈ Z[X] is a polynomial
of degree n ≥ 2.

Under certain assumptions on F , we derive explicit lower bounds for
|F (x)−bym| (cf. Theorem 2) from our Theorem 1 which provides an explicit
upper bound for the exponent m in the equation

f(x) = bym in x, y,m ∈ Z, with |y| ≥ 2, m ≥ 1, (1)

in terms of b and the height of f ∈ Z[X]. The first results proving that m

is bounded were given by Tijdeman [15] and Schinzel and Tijdeman

[13]. Later, several effective but not completely explicit upper bounds were
obtained for m; see [2], [4], [3] and the references given there. Our Theorem
1 slightly improves and makes explicit in each parameter the previously
best known bound (cf. [3]) on m. In our proof we will follow the approach
of Brindza, Evertse and Győry [4]. They gave an estimate for m from
above in terms of the discriminant of f .

2. New results

Throughout the paper, we use the following notation. For every posi-
tive real number s, we put log∗ s = max{1, log s}. Let

f(x) = a0x
n + a1x

n−1 + . . . + an = a0

n∏

i=1

(x− αi), a0 6= 0,

be a polynomial with integer coefficients. We write

H(f) = max
0≤i≤n

|ai| and M(f) = |a0|
n∏

i=1

max(1, |αi|)

for the “classical” height and the Mahler-height of f , respectively.
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Theorem 1. Let f(X) ∈ Z[X] be a polynomial of degree n ≥ 2 and

b a non-zero integer. If f has at least two distinct roots, then equation (1)
with x, y, m ∈ Z and |y| ≥ 2, m ≥ 1 implies

m ≤ 224n+56n7n+17M(f)3n−3(log∗M(f))3n(log∗ |b|)
5
2 .

As was mentioned above, our Theorem 1 slightly improves and makes
completely explicit the previously best known result of this type, estabil-
ished in [3]. In the special case f(x) = axn + c, a similar result was proved
in [8]. Our Theorem 1 is also related to Theorem 5 of Brindza, Evertse

and Győry [4], where it is assumed that b = 1 and f is irreducible and
monic, but the bound given for m depends only on n and the discriminant
of f .

In the proof of Theorem 1 we will follow the approach of [4]. We obtain
the following result as a consequence of Theorem 1.

Theorem 2. Let F (X) ∈ Z[X] be a polynomial of degree n ≥ 2,

and let b, x, y, m be integers with b 6= 0, m ≥ 1, |y| ≥ 2. Suppose that

F (x) 6= bym, and if F (X) is of the special form F (X) = t1(X − t2)n + t3
with t1, t2, t3 ∈ Z, then also assume that F (x) 6= bym + t3. Then we have

|F (x)− bym| ≥ m
1
3n 2−8− 56

3n n−
23
6
− 17

3n

(
H(F ) log

5
6n∗ |b|

)−1

. (2)

We note that to give a lower bound for |F (x) − bym|, we need to use
the classical height instead of the Mahler-height. The reason is that for
every k ∈ Z, plainly H(F − k) ≤ H(F ) + |k|, but M(f) does not have a
similar nice property. However, the use of the classical height already in
Theorem 1 would result in a worse estimate for |F (x)− bym|.

As in [8], by combining Theorem 2 with an estimate for the size of the
solutions of superelliptic equations, we derive a lower bound for |F (x) −
bym| in terms of |F (x)|.

Theorem 3. Let F (X) ∈ Z[X] be a polynomial of degree n ≥ 2,

and let b, x, y, m be integers with b 6= 0, m ≥ 3, |y| ≥ 2. Suppose that

F (x) 6= bym, and if F (X) is of the special form F (X) = t1(X − t2)n + t3
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with t1, t2, t3 ∈ Z, then also assume that F (x) 6= bym + t3. Then

|F (x)− bym| ≥ c1n
− 23

6 H(F )−1 (log∗ |b|)−
4

3n+1 (log∗ log∗ |F (x)|) 1
3n+1 , (3)

where c1 denotes an effectively computable absolute constant.

Theorem 2 generalizes the estimate

|axn − bym| ≥ m2/5n(20n)−2−11/n

(
|a| log

1
n∗ |b|

)−1

of Bugeaud and Hajdu [8]. Similarly, our Theorem 3 is an extension
of Theorem 2 of [8]. Observe that our bound in (2) in the special case
F (x) = axn yields an estimate of similar strength as in [8], up to the
exponent of m. This difference comes from the fact that ∆(axn + k) ≤
c2|k|n, while in general we only have ∆(F (x)+k) ≤ c3|k|2n. Here ∆(g(x))
denotes the discriminant of g(x) ∈ Z[x] and c2, c3 are constants depending
on a, n and F , respectively.

3. Some lemmas

For a non-zero algebraic number α of degree l over Q, whose minimal
polynomial over Z is a

∏l
i=1(X − αi), let

h(α) =
1
l

(
log |a|+

l∑

i=1

log max(1, |αi|)
)

denote the absolute logarithmic height of α. Let K be a number field of
degree dK, with unit rank rK and regulator RK. In the course of our proof,
we use an independent system of units in K with small height, provided
by the following lemma.

Lemma 1. There exists an independent system ε1, . . . , εrK of units

in K satisfying
rK∏

i=1

h(εi) ≤ dK−rKrK!RK (4)

and

h(εi) ≤ rK!dK−1(9(log 3dK)3/8)rK−1RK, i = 1, . . . , rK. (5)
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Moreover, for every non-zero algebraic integer α ∈ K, there exists a unit ε

in the multiplicative subgroup generated by ε1, . . . , εrK such that

h(εα) ≤ (log NK/Q(α))/(2dK) + (rK + 1)rK+1 log3rK+3(3dK)RK. (6)

Proof. This is a reformulation of Lemme 1 and Lemme 2 of [6]. ¤

Our proof ultimately depends on Baker’s estimate for linear forms in
logarithms. We use the following version due to Matveev [12], which is
a sharpening of an estimate given by Baker and Wüstholz [1].

Lemma 2. Let K be an algebraic number field of degree D over Q.

Let α1, . . . , αn ∈ K∗ with absolute logarithmic heights h(αj) (1 ≤ j ≤ n),
and log α1, . . . , log αn arbitrary fixed non-zero values of the logarithms.

Suppose that

Aj ≥ max{Dh(αj), | log αj |, 0.16} (1 ≤ j ≤ n).

Consider the linear form

Λ = b1 log α1 + . . . + bn log αn,

with b1, . . . , bn ∈ Z and put B = max{|b1|, . . . , |bn|}. If Λ 6= 0, then

log |Λ| > −C(n) log(eD) log(eB)D2Ω,

where Ω = A1 · · ·An and C(n) = 26n+20.

Proof. This is a reformulation of Corollary 2.3 of Matveev [12]. ¤

We deduce Theorem 3 from Theorem 2 by using an explicit upper
bound for the size of the solutions of superelliptic equations.

Lemma 3. Let a and m be non-zero integers with m ≥ 3 and Q(X) =∏r
i=1(X−αi)ei ∈ Z[X] be a monic polynomial of degree n ≥ 2 with distinct

roots α1, . . . , αr. Put ∆(Q) =
∏

i6=j(αi − αj) and let mi = m/ gcd(m, ei)
for i = 1, . . . , r. Suppose that for some i, j with 1 ≤ i 6= j ≤ r, we have

gcd(mi,mj) ≥ 3. Then all the solutions (x, y) ∈ Z2 of

Q(x) = aym (7)

satisfy

|x| ≤ H(Q)m+1 exp
{

(c4nm)c5n2m|∆(Q)|5nm|a|n2m(log∗ |a∆(Q)|)2n2m
}

,

where c4 and c5 are effectively computable absolute constants.
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Proof. This easily follows from the Proposition of Bugeaud [7]. ¤

4. Proof of the theorems

We follow the method of the proofs in [4] and [3], but with explicit
constants.

Proof of Theorem 1. We have two cases to distinguish. First we as-
sume that f has an irreducible factor P ∈ Z[X] of degree ≥ 2. Let δ be a
root of P , moreover, let RK, hK, DK and rK be the regulator, class number,
discriminant and unit rank of the field K = Q(δ), respectively. Combining
the inequality

dK ≤ 2
log 3

log |DK|,

due to Győry [9] with a result of Lenstra [10], we have

hKRK ≤ 1
(dK − 1)!

|DK|
1
2 logdK−1 |DK|. (8)

By an estimate of Mahler [11] on the discriminant of P , we get

|DK| ≤ ddKK M(P )2dK−2.

Since P |f implies M(P ) ≤ M(f), this yields

|DK| ≤ ddKK M(f)2dK−2.

Combining the last inequality with (8) we obtain

hKRK ≤ 1√
2π

ddK−1
K e2dK−1M(f)dK−1(log∗M(f))dK−1. (9)

Let a0 denote the leading coefficient of f , and let β1, . . . , βn be the zeros
of g(x) = an−1

0 f( x
a0

). Set

∆(g) =
∏

βi 6=βj

(βi − βj),

and write g in the form g(x) = P k1
1 (x)P2(x) where P1(x) = adK

0 P ( x
a0

)
and P2 are relatively prime polynomials in Z[X]. Let β1, . . . , βdK be the
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zeros of P1 with β1 = δ and (x, y) be an arbitrary, however, fixed solution
to (1). The greatest common divisor of the principal ideals 〈a0x−β1〉 and
〈g(a0x)(a0x − β1)−k1〉 divides ∆n(g). Therefore there are integral ideals
A, B, C in K such that

A〈a0x− β1〉 = BCw (10)

where
w =

m

gcd(m, k1)
.

Further,
max{NK/Q(A), NK/Q(B)} ≤ |a0 · b ·∆(g)|n2

.

Hence using Lemma 1, (6) and (9), by a simple calculation we obtain
that the ideals AhK and BhK have generators α and β, respectively, with

max{h(α), h(β)} ≤ c6. (11)

Here

c6 = 0.12n3(n− 1)ddK−1
K e2dK−1(rK + 1)rK+1

× (log 3dK)3rK+3M(f)dK−1(log∗M(f))dK log∗ |b|.

Equation (10) can be rewritten as

α(a0x− β1)hK = εβγw, (12)

where γ is a generator of ChK and ε is a unit in K. Let ε1, . . . , εrK be
an independent system of units with the properties specified in Lemma 1.
Then we can express ε as ε = ε′εl1

1 . . . εr
lrKK , where ε′ is a unit with

h(ε′) ≤ (rK + 1)rK+1(log(3dK))3rK+3RK.

Modifying γ if necessary, we may assume that max
1≤i≤rK

|li| < w.
If |a0x| ≤ M(g) + 1 then

2m ≤ |y|m ≤ (2M(g) + 1)n,

and Theorem 1 is proved.
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Otherwise, from |a0x| > M(g) + 1 it follows that |a0x − βi| > 1 for
i = 1, . . . , dK. Thus we have

|an−1
0 bym|hK ≥ max

1≤i≤dK
|a0x− βi|hK

≥ |a0x− βj |hK ≥ |ε′(j)|
rK∏

i=1

|ε(j)
i ||α(j)|−1|β(j)| |γ(j)|

≥|ε′|−dK+1|ε1|−w
. . . |εrK |

−w|α|−1|β|−dK+1|γ|w.

Here |ν|denotes the house of the algebraic number ν, i.e. the maximum of
the absolute values of its conjugates, and j is the appropriate index for
which |γ(j)| = |γ|. Supposing m ≥ n + 1 (otherwise Theorem 1 follows),
the last inequality yields

h(γ) ≤ 2.182c6d
2K log∗ |y|,

with the same c6 as above. We may assume that |a0x| ≥ 1
2 |y|

m
n , or else we

obtain
|a0x|+ M(g) ≥ |y|mn ,

and Theorem 1 follows. Thus we get

|a0x− βi| ≥ 1
4
|y|mn (1 ≤ i ≤ dK). (13)

We may suppose that

|βi − βj |
|a0x− βi| ≥

|β2 − β1|
|a0x− β2| , 1 ≤ i, j ≤ dK, i 6= j.

Hence we have
∏

1≤i, j≤dK
βi 6=βj

|βi − βj |
|a0x− βi| ≤

4dK(dK−1)|∆(g)|
|y|mdK(dK−1)

n

. (14)

If
(a0x−β1

a0x−β2

)hK = 1, then β1−β2

a0x−β1
is an algebraic integer. Thus

∣∣∣∣NL/Q
(

β1 − β2

a0x− β1

)∣∣∣∣ =

∣∣∣∣∣
NL/Q(β1 − β2)(

NK/Q(a0x− β1)
)s

∣∣∣∣∣ ≥ 1,
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with L = Q(β1, β2) and [L : K] = s. Combining this last inequality with
(13), by s ≤ dK we obtain

|∆(g)|n2 ≥ |NL/Q(β1 − β2)| ≥ |NK/Q(a0x− β1)|s

≥
∣∣∣∣∣
(

1
4
|y|m/n

)dK
∣∣∣∣∣
s

≥ 2dKs(m/n−2) ≥ 2(2m/n)−2n2
,

which implies Theorem 1.
If (a0x−β1

a0x−β2
)hK 6=1, then we may assume that |y| m

2n ≥ 2|∆(g)|hK (oth-
erwise we would obtain a much better estimate for m). So by (14) we
get

log

∣∣∣∣∣
(

a0x− β1

a0x− β2

)hK
− 1

∣∣∣∣∣

≤ log
(

hK
∣∣∣∣
a0x− β1

a0x− β2
− 1

∣∣∣∣
)
≤ −m

2n
log∗ |y|.

(15)

In the case
∣∣(a0x−β1

a0x−β2

)hK − 1
∣∣ > 1

3 one can obtain a very good bound for m

by (15). Otherwise, using Lemma 2, (4) and (9), we get
∣∣∣∣∣
(

a0x− β1

a0x− β2

)hK
− 1

∣∣∣∣∣

=

∣∣∣∣∣∣

(
ε1

ε
(2)
1

)l1

. . .

(
εrK

εrK
(2)

)lrK ε′β/α

ε′(2)β(2)/α(2)

(
γ

γ(2)

)w

− 1

∣∣∣∣∣∣

≥ 1
2

∣∣∣∣∣b0 log(−1) +
rK∑

i=1

li log
εi

ε
(2)
i

+ log
ε′β/α

ε′(2)β(2)/α(2)
+ w log

γ

γ(2)

∣∣∣∣∣

≥ exp
{−c7(n)M(f)3n−3(log∗M(f))3n−1 log2

∗ |b| log∗ |y| log∗m
}

,

where b0 is an integer with |b0| ≤ w(rK + 1) and

c7(n) = 223.1n+48.418n7n+14 log n.

Here the superscript (2) denotes the image under the isomorphism Q(β1) →
Q(β2). The comparison of this lower bound with (15) completes the proof
in the first case.
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In the second case f has only rational roots. Hence, all the zeros of g

are integral. Let β1 and β2 be two distinct roots of g, of multiplicities k1

and k2, respectively. Repeating the argument used in the first case one
gets

ui(a0x− βi) = viy
w
i , i = 1, 2 (16)

where w = m
(m,k1k2) , ui, vi, yi ∈ Z, |yi| ≥ 2 and |ui| ≤ |∆(g)n|, |vi| ≤ |an−1

0 b|
(i = 1, 2). We may suppose that |y2| ≥ |y1|. Set Λ1 = log v1u2

v2u1
+w log

(y1

y2

)
.

From (16) we deduce
∣∣∣∣
u2(β2 − β1)

v2yw
2

∣∣∣∣ =
∣∣∣∣
v1u2

v2u1

(
y1

y2

)w

− 1
∣∣∣∣ ≥

1
2
|Λ1|.

Using Lemma 2 again we have
m

log m
< 241n5 log∗M(f) log∗ |b|,

and Theorem 1 is proved. ¤

Proof of Theorem 2. Let k = F (x)−bym. We apply Theorem 1 with
f(x) = F (x)− k. Combining

M(f) ≤
√

(n + 1)H(f)

with
H(f) ≤ H(F ) + |k| ≤ 2H(F )|k|

and expressing |k|, we obtain the lower bound for |F (x) − bym| stated in
the theorem. ¤

Proof of Theorem 3. Set k = F (x) − bym and let a0 be the leading
coefficient of F . By applying Lemma 3 to the equation

Q(a0x) = an−1
0 bym

with Q(x) = an−1
0 (F ( x

a0
)− k) and a = an−1

0 b, and using the inequalities

|a0| ≤ H(F − k) ≤ 2H(F )|k|,
we obtain a bound for |x|, hence for |F (x)|, in terms of H(F ), b, n, k and
m. Namely, we get

log∗ log∗ |F (x)| ≤ c8n
3m log∗m log∗H(F ) log∗ |b| log∗ |k|,
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where c8 is an effectively computable absolute constant. Further, from
Theorem 2 we have

m
1
3n ≤ 28+ 56

3n n
23
6

+ 17
3n H(F ) log

5
6n∗ |b| |k|.

Combining these estimates, Theorem 3 easily follows. ¤
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Győry, Ákos Pintér and Lajos Hajdu for their help and numerous
valuable remarks.

References
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