On the geometry of generalized metric spaces III. Spaces with special forms of curvature tensors

By MAMORU YOSHIDA (Fujisawa), HIDEO IZUMI (Fujisawa)
and TOSHIO SAKAGUCHI (Yokosuka)

Dedicated to Professor Lajos Tamássy on his 70th birthday

§0. Introduction

Let M be an n-dimensional differentiable manifold and $T(M)$ its tangent bundle. We consider the bundle M_{T} which does not contain zero vectors of $T(M)$, that is, $M_{T}:=T(M)-\{0\}$. A generalized metric space M_{n} is a pair $\left(M_{T}, g_{i j}(x, y)\right)$, where $g_{i j}(x, y)$ is a metric tensor satisfying the following assumptions:
(a) $g_{i j}(x, y)$ is positively homogeneous of degree 0 in y^{i},
(b) $g_{i j}$ is positive definite,
(c) $g^{*}{ }_{i j}:=\dot{\partial}_{i} \dot{\partial}_{j} F^{2} / 2$ is regular, where $\dot{\partial}_{i}:=\partial / \partial y^{i}$ and $F^{2}:=g_{i j} y^{i} y^{j}$.

In the previous papers $([1],[2])$, we introduced three types of connections in M_{n} : (a) metrical connection $C \Gamma(N)=\left(F_{j}{ }^{i}{ }_{k}, C_{j}{ }^{i}{ }_{k}\right)$, (b) hmetrical connection $R \Gamma(N)=\left(F_{j}{ }^{i}{ }_{k}, 0\right)$ and (c) non-metrical connection $B \Gamma(G)=\left(G_{j}{ }^{i}{ }_{k}, 0\right)($ see $[1])$.

Two metric tensors $g_{i j}, g^{*}{ }_{i j}$ are related as

$$
g^{*}{ }_{i j}=g_{i j}+C_{i j}, \quad C_{i j}:=y^{h} \dot{\partial}_{j} g_{i h} \quad([1],(2.8)),
$$

which satisfies $C_{i j}=C_{i}{ }^{0}{ }_{j}=C_{j i}$ and $C_{i 0}=0$, where the index 0 denotes transvection by y.

From the assumption that geodesics introduced from the Finsler metric $g^{*}{ }_{i j}$ are coincident with those from the generalized metric $g_{i j}$, that is,
$2 G^{i}=N_{0}^{i}$, we have

$$
\begin{aligned}
& N_{k}^{i}=G_{k}^{i}-P_{k}^{i}, \quad G_{k}^{i}:=\dot{\partial}_{k} G^{i} \\
& 2 G^{i}:=g^{* i h}\left(y^{j} \dot{\partial}_{h} \partial_{j} F^{2}-\partial_{h} F^{2}\right) / 2
\end{aligned}
$$

where $\partial_{j}:=\partial / \partial x^{j}$ and the tensor $P^{i}{ }_{j}$ is arbitrary but $P^{i}{ }_{0}=0$.
In [2], we defined the curvature tensors R, K, H and the generalized metric spaces of $R-K$ - and H-isotropic (sectional) curvature and obtained the following results.

Theorem A. ([2]) A generalized metric space of R-isotropic curvature is characterized by

$$
\begin{align*}
6\left\{R_{h i j k}-R\right. & \left.\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right)\right\} \\
= & \left\{\left(C_{i k r}+2 C_{k i r}\right) R^{r}{ }_{h j}+\left(C_{h j r}+2 C_{j h r}\right) R_{i k}^{r}-j \mid k\right\} \tag{0.1}\\
& +2\left(C_{h i r}-C_{i h r}\right) R_{j k}^{r}-\left(C_{j k r}-C_{k j r}\right) R_{h i}^{r}
\end{align*}
$$

where $j \mid k$ means the interchange of indices j, k in the foregoing terms.
Theorem B. ([2]) In a generalized metric space of R-isotropic curvature, if the relation

$$
\begin{equation*}
R^{i}{ }_{j k}=R\left(y_{j} \delta_{k}^{i}-y_{k} \delta_{j}^{i}\right) \tag{0.2}
\end{equation*}
$$

is satisfied, then the following equation holds:

$$
\begin{equation*}
R_{h}{ }^{i}{ }_{j k}=R\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) . \tag{0.3}
\end{equation*}
$$

Theorem C. ([2]) A generalized metric space of K-isotropic curvature is a Riemannian space of constant curvature, that is, $C_{i j k}=0$ and the following equation holds:

$$
\begin{equation*}
K_{h}{ }^{i}{ }_{j k}=K\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) . \tag{0.4}
\end{equation*}
$$

Theorem D. ([2]) A generalized metric space of H-isotropic curvature is a Finsler space of constant curvature, that is, $g^{*}{ }_{i j}=g_{i j}\left(C_{i j}=0\right)$ and the following equation holds:

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j k}=H\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) . \tag{0.5}
\end{equation*}
$$

The purpose of the present paper is to consider the inverse problems of the above results. That is, when a generalized metric space has the special forms of curvature tensors: (0.3), (0.4) and (0.5), respectively, we investigate the corresponding properties of the space. These are expressed in Theorems 1.2, 2.1 and 2.5.

We raise or lower the indices by means of $g_{i j}$ only.
Notations and terminologies are those of [1] and [2].

§1. Curvature tensor $H_{h}{ }^{i}{ }_{j k}$

First we shall show
Theorem 1.1. If a generalized metric space $M_{n}(n>2)$ satisfies the relation

$$
\begin{equation*}
H_{j k}^{i}=H y_{j} \delta_{k}^{i}-j \mid k \tag{1.1}
\end{equation*}
$$

then the scalar H is a constant, and (1.1) is equivalent to

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j k}=H\left(g_{h j}+C_{h j}\right) \delta_{k}^{i}-j \mid k \tag{1.2}
\end{equation*}
$$

Proof. From (1.1), we have

$$
\begin{equation*}
\text { (a) } \quad H^{i}{ }_{j k}=H y_{j} h_{k}^{i}-j \mid k, \quad \text { (b) } \quad H^{i}{ }_{k}=F^{2} H h_{k}^{i}, \tag{1.3}
\end{equation*}
$$

where $h_{k}^{i}:=\delta_{k}^{i}-l^{i} l_{k}, \quad l^{i}:=y^{i} / F$ and $H^{i}{ }_{k}:=H^{i}{ }_{0 k}$.
Substitution of $(1.3)(b)$ into the identity

$$
\begin{equation*}
3 H^{i}{ }_{j k}=H_{k(j)}^{i}-H_{j(k)}^{i} \tag{1.4}
\end{equation*}
$$

gives

$$
\begin{equation*}
\left.H_{j k}^{i}=\left(H y_{j}+\frac{1}{3} F^{2} H_{(j)}\right) h_{k}^{i}-j \right\rvert\, k . \tag{1.5}
\end{equation*}
$$

Comparing (1.5) with $(1.3)(a)$, we get $H_{(j)} h_{k}^{i}-j \mid k=0$, from which we have $(n-2) H_{(j)}=0$. Hence, H is independent of y^{i}.

Next, if we apply the Bianchi identity

$$
H_{j k / / l}^{i}+j|k| l=0 \quad([1],(3.10)(b))
$$

we have

$$
H_{/ / l}\left(y_{j} h_{k}^{i}-j \mid k\right)+H_{/ / j}\left(y_{k} h_{l}^{i}-k \mid l\right)+H_{/ / k}\left(y_{l} h_{j}^{i}-j \mid l\right)=0
$$

Contracting i with l, we get

$$
y_{j} H_{/ / i} h_{k}^{i}-y_{k} H_{/ / i} h_{j}^{i}=0
$$

Transvection of this equation by y^{j} yields $H_{/ / i} h_{k}^{i}=0$. Since H is independent of y^{i}, the last equation means

$$
\begin{equation*}
H_{, k}-\left(H_{, i} i^{i}\right) l_{k}=0, \quad H_{, k}:=\partial_{k} H \tag{1.6}
\end{equation*}
$$

Differentiating (1.6) by y^{j} and using $F l^{i}{ }_{(j)}=h_{j}^{i}, F l_{i(j)}=h_{i j}+C_{i j}$, we have

$$
\begin{equation*}
\left(H_{, i} l^{i}\right)\left(g_{j k}^{*}-l_{j} l_{k}\right)=0 \tag{1.7}
\end{equation*}
$$

Transvecting (1.7) by $g^{* j k}$ and noting $g^{* j k} l_{k}=l^{j}$, we obtain $(n-1)\left(H_{, i} l^{i}\right)=$ 0. Making use of this result, we see $H_{, k}=0$ from (1.6). Hence H is a constant. The last assertion of the theorem is easily derived from $y_{j(h)}=g_{h j}+C_{h j}$.
Q.E.D.

Theorem 1.2. If a generalized metric space $M_{n}(n>2)$ satisfies the relation

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j k}=H\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right), \tag{1.8}
\end{equation*}
$$

then the space is a Finsler space of constant curvature H.
Proof. It is sufficient to prove $C_{j k}=0$, which means that the space is a Finsler space. Transvecting (1.8) by y^{h} and using $H_{0}{ }^{i}{ }_{j k}=H^{i}{ }_{j k}$, we get (1.1). Hence, from Theorem 1.1, we have (1.2). Comparing (1.2) with (1.8), we have $C_{h j} \delta_{k}^{i}-j \mid k=0$, from which $(n-1) C_{j k}=0$ is derived.
Q.E.D.
§2. Curvature tensors $R_{h}{ }^{i}{ }_{j k}$ and $K_{h}{ }^{i}{ }_{j k}$
Theorem 2.1. In a generalized metric space $M_{n}(n>2)$, if the relation

$$
\begin{equation*}
R_{h}{ }^{i}{ }_{j k}=R\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) \tag{2.1}
\end{equation*}
$$

is satisfied, then the space is one of R-isotropic curvature.
Proof. (2.1) gives

$$
\begin{equation*}
R_{j k}^{i}=R\left(y_{j} \delta_{k}^{i}-y_{k} \delta_{j}^{i}\right) \tag{2.2}
\end{equation*}
$$

It is proved that (2.1) means vanishing of the left-hand side of (0.1) in Theorem A and using (2.2), the right-hand side of (0.1) vanishes. Q.E.D.

It is not yet proved that the scalar R of (2.1) is a constant. Now we shall prepare the following

Proposition 2.2. In a generalized metric space, the following relations are valid:

$$
\begin{array}{ll}
E^{i}{ }_{k(j)}-E_{j(k)}^{i}=3 E_{j k}^{i}-J_{j}{ }^{i}{ }_{k}, & E_{j}^{i}:=E^{i}{ }_{0 j} ; \\
R_{k(j)}^{i}-R_{j(k)}^{i}=3 R_{j k}^{i}+J_{j}{ }^{i}{ }_{k}, & R_{j}^{i}:=R_{0 j}^{i}, \tag{2.4}
\end{array}
$$

where

$$
\begin{equation*}
\text { (a) } J_{j}{ }^{i} k:=P_{j k / 0}^{i}+2\left(P_{j / k}^{i}+P_{k r}^{i} P_{j}^{r}+P_{r}^{i} P_{j k}^{r}\right)-j \mid k . \tag{2.5}
\end{equation*}
$$

Proof. After some calculations, (2.3) follows from

$$
\begin{align*}
& E_{j k(h)}^{i}= E_{h}{ }^{i}{ }_{j k}-\left(P^{i}{ }_{j h / k}+P^{r}{ }_{j h} P^{i}{ }_{k r}-j \mid k\right) \quad([1],(3.9)(c)), \\
& E_{h}{ }^{i}{ }_{j k}+E_{j}{ }^{i}{ }_{k h}+E_{k}{ }^{i}{ }_{h j}=0 \tag{2.6}\\
&([1],(3.10)(a)) .
\end{align*}
$$

Next, (2.4) follows from (2.3), (1.4) and

$$
\begin{equation*}
H_{j k}^{i}=R_{j k}^{i}+E_{j k}^{i}, \quad H^{i}{ }_{k}=R^{i}{ }_{k}+E^{i}{ }_{k} \quad([2],(1.9)(c),(d)) . \tag{2.7}
\end{equation*}
$$

Q.E.D.

Remark. Using the relation $D_{j}{ }^{i}{ }_{k}=P^{i}{ }_{j k}+P^{i}{ }_{j(k)}=D_{k}{ }^{i}{ }_{j}([1],(3.2)(a))$, we can rewrite (2.5) as

$$
\begin{equation*}
\text { (b) } \quad J_{j}{ }^{i}{ }_{k}=-P_{j(k) / 0}^{i}+2\left(P_{j / k}^{i}+P_{k r}^{i} P_{j}^{r}+P_{r}^{i} P_{j k}^{r}\right)-j \mid k . \tag{2.5}
\end{equation*}
$$

Theorem 2.3. In a generalized metric space $M_{n}(n>2)$ with (2.1), if the tensor $J_{j}{ }^{i}{ }_{k}$ vanishes, then the scalar R is independent of y^{i}.

Proof. Substituting (2.1) and (2.2) into the relation

$$
H_{h}{ }^{i}{ }_{j k}=R_{h}{ }^{i}{ }_{j k}-C_{h}{ }^{i}{ }_{r} R^{r}{ }_{j k}+E_{h}{ }^{i}{ }_{j k} \quad([2],(1.7)(a),(1.9)(b)),
$$

we have

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j k}=R\left(g_{h j} \delta_{k}^{i}-y_{j} C_{h}{ }^{i}{ }_{k}-j \mid k\right)+E_{h}{ }^{i}{ }_{j k} . \tag{2.8}
\end{equation*}
$$

Transvection of (2.8) by y^{h} gives

$$
H^{i}{ }_{j k}=R\left(y_{j} \delta_{k}^{i}-j \mid k\right)+E^{i}{ }_{j k} .
$$

Differentiating this equation by y^{h}, we have

$$
\begin{equation*}
H_{h}{ }^{i}{ }_{j k}=\left\{R_{(h)} y_{j} \delta_{k}^{i}+R\left(g_{j h}+C_{j h}\right) \delta_{k}^{i}-j \mid k\right\}+E_{j k(h)}^{i} . \tag{2.9}
\end{equation*}
$$

From (2.8), (2.9) and the identities (2.6), we have

$$
R\left(y_{j} C_{h}{ }^{i}{ }_{k}+C_{h j} \delta_{k}^{i}\right)+R_{(h)} y_{j} \delta_{k}^{i}-P_{j h / k}^{i}-P_{j h}^{r} P_{k r}^{i}-j \mid k=0 .
$$

Transvection of this equation by y^{j} yields

$$
\begin{aligned}
R\left(F^{2} C_{h}{ }^{i}{ }_{k}-C_{h k} y^{i}\right)+F^{2} R_{(h)} h_{k}^{i}-2 P^{i}{ }_{h / k}+ \\
P^{i}{ }_{k h / 0}-2 P^{r}{ }_{h} P^{i}{ }_{k r}+2 P^{r}{ }_{k h} P^{i}{ }_{r}=0 .
\end{aligned}
$$

Making $-h \mid k$ in the above equation, we obtain

$$
F^{2} R_{(j)} h_{k}^{i}-j \mid k=J_{j}{ }^{i}{ }_{k}
$$

Therefore, by our assumption, we get $R_{(j)} h_{k}^{i}-j \mid k=0$. Contracting i and k, we have $(n-2) R_{(j)}=0$. Hence R is independent of y^{i}.
Q.E.D.

396 M. Yoshida, Hideo Izumi and T. Sakaguchi : On the geometry of generalized ...
Theorem 2.4. In a generalized metric space $M_{n}(n>2)$ with (2.1), if the tensor $P^{i}{ }_{k}$ vanishes, then the scalar R is a constant.

Proof. From (2.5)(b), we see that if $P^{i}{ }_{k}=0$, then $J_{j}{ }^{i}{ }_{k}=0$ holds good. On the other hand, by the definition

$$
E^{i}{ }_{j k}=E_{0}{ }^{i}{ }_{j k}=P^{i}{ }_{j / k}+P^{r}{ }_{j} D_{r}{ }^{i}{ }_{k}-j \mid k \quad([1],(3.9)(a)),
$$

we see that if $P^{i}{ }_{k}=0$, then we have $E^{i}{ }_{j k}=0$. Hence, from (2.7), we have $H^{i}{ }_{j k}=R^{i}{ }_{j k}$, which means $H^{i}{ }_{j k}=R y_{j} \delta_{k}^{i}-j \mid k$ from (2.2). Consequently, noting Theorem 1.1, we have that R is a constant.
Q.E.D.

Theorem 2.5. A generalized metric space $M_{n}(n>2)$ with

$$
\begin{equation*}
K_{h}{ }^{i}{ }_{j k}=K\left(g_{h j} \delta_{k}^{i}-g_{h k} \delta_{j}^{i}\right) \tag{2.10}
\end{equation*}
$$

is a Riemannian space of constant curvature.
Proof. (2.10) is equivalent to $K_{h i j k}=K\left(g_{h j} g_{i k}-g_{h k} g_{i j}\right)$. Consequently, making use of the identity

$$
K_{h i j k}+K_{i h j k}=-g_{h i(r)} R_{j k}^{r} \quad([1],(3.14)(b)),
$$

we have

$$
\begin{equation*}
g_{h i(r)} R^{r}{ }_{j k}=0 \tag{2.11}
\end{equation*}
$$

On the other hand, from (2.10), we see

$$
K_{h}{ }^{i}{ }_{j k} y^{h}=R^{i}{ }_{j k}=K\left(y_{j} \delta_{k}^{i}-y_{k} \delta_{j}^{i}\right) .
$$

Substituting this equation into (2.11), we have $g_{h i(k)} y_{j}-j \mid k=0$. Hence, transvection of this equation by y^{j} gives $g_{h i(k)}=0$, which means that the space is a Riemannian space of constant curvature.
Q.E.D.

References

[1] H. Izumi, On the geometry of generalized metric spaces I. Connections and identities, Publ. Math., Debrecen 39 (1991), 113-134.
[2] H. Izumi and M.Yoshida, On the geometry of generalized metric spaces II. Spaces of isotropic curvature, Publ. Math., Debrecen 39 (1991), 185-197.

```
MAMORU YOSHIDA
DEPARTMENT OF MATHEMATICS
SHONAN INSTITUTE OF TECHNOLOGY
FUJISAWA 251, JAPAN
```

TOSHIO SAKAGUCHI
DEPARTMENT OF MATHEMATICS NATIONAL DEFENSE ACADEMY YOKOSUKA 239, JAPAN

