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Univoque sequences

By ZOLTÁN DARÓCZY (Debrecen) and IMRE KÁTAI (Budapest)

Dedicated to Professor Lajos Tamássy on his 70th birthday

1. Introduction

Let 1 < q ≤ 2. For ε = (ε1, ε2, . . . ) ∈ {0, 1}N put

(1.1) 〈ε, q〉 :=
∞∑

n=1

εn

qn
.

We call the sequence ε univoque with respect to q if the equality

(1.2) 〈ε, q〉 = 〈δ, q〉 (
δ ∈ {0, 1}N)

holds only for δ = ε (i.e., δn = εn for all n ∈ N).
If 1 < q ≤ 2, then

L(q) :=
∞∑

n=1

1
qn

=
1

q − 1
.

As it is known, for any x ∈ [0, L(q)] there exists an ε ∈ {0, 1}N such that
x = 〈ε, q〉. For x ∈ [0, L(q)], we define, by induction on n, the sequence

(1.3) εn(x) =





1 if
n−1∑
i=1

εi(x)
qi + 1

qn ≤ x ,

0 if
n−1∑
i=1

εi(x)
qi + 1

qn > x.
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Then, for the sequence ε(x) := (ε1(x), ε2(x), . . . ), we have

(1.4) x = 〈ε(x), q〉,
and we call the equality (1.4) the regular expansion of x with respect to q
([1], [2]).

Let R(q) denote the set of all those sequences ε(x) which consist of
the digits 0, 1 occurring in the regular expansion of some x ∈ [0, L(q)], i.e.,
let

(1.5) R(q) = {ε(x)| x ∈ [0, L(q)]} .

Moreover, let us denote by U(q) the set of sequences univoque with respect
to q, i.e., let

(1.6) U(q) =
{
ε| ε ∈ {0, 1}N, ε is univoque with respect to q

}
.

In this paper, we investigate the set U(q) of univoque sequences for q ∈
]1, 2].

2. Characterization of univoque sequences

By definition, the sequences 0 := (0, 0, . . . ) and 1 := (1, 1, . . . ) are
univoque with respect to any q ∈]1, 2]. If ε ∈ {0, 1}N, then 1 − ε =
= (1− ε1, 1− ε2, . . . ) ∈ {0, 1}N.

Theorem 2.1. The sequence ε ∈ {0, 1}N is univoque with respect to
q if and only if ε ∈ R(q) and (1− ε) ∈ R(q).

Proof. (1) Let the sequence ε be univoque with respect to q, i.e.,
ε ∈ U(q). Then, with the notation x := 〈ε, q〉, we necessarily have ε =
ε(x), i.e. , ε ∈ R(q). On the other hand, if 〈1 − ε, q〉 = 〈δ, q〉 for some
δ ∈ {0, 1}N, and 1− ε 6= δ, then

〈1− δ, q〉 = 〈ε, q〉
would hold with 1 − δ 6= ε, a contradiction, because ε is a univoque se-
quence. Hence, (1− ε) ∈ U(q), and this implies (1− ε) ∈ R(q).

(2) Let us suppose that ε ∈ R(q) and (1− ε) ∈ R(q). Then, putting

x := 〈ε, q〉,
we have ε = ε(x), and by

L(q)− x = 〈1− ε, q〉,
we get 1− ε = ε(L(q)− x), i.e. ,

(2.1) ε = ε(x) = 1− ε(L(q)− x).
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Suppose now that, contrarily to our assertion, there exists a δ ∈ {0, 1}N
such that δ 6= ε and

(2.2) x = 〈ε, q〉 = 〈δ, q〉.
Then, there exists a smallest N ∈ N such that δi = εi(x) = 1−εi(L(q)−x)
for i = 1, 2, . . . , N−1 and δN 6= εN (x) = 1−εN (L(q)−x). By the ‘greedy’
property of the regular expansion, δN = 0 and εN (x) = 1−εN (L(q)−x) = 1
necessarily hold. Hence,

(2.3) x−
N−1∑

i=1

εi(x)
qi

=
1

qN
+

∞∑

i=N+1

εi(x)
qi

=
0

qN
+

∞∑

i=N+1

δi

qi
,

with εi(x) = 1 − εi(L(q) − x) for i ≥ N + 1. On the other hand, from
1− εN (L(q)− x) = 1, we get εN (L(q)− x) = 0, i.e.,

N−1∑

i=1

εi(L(q)− x)
qi

+
1

qN
> L(q)− x.

This implies

x−
N−1∑

i=1

εi(x)
qi

>

∞∑

i=N+1

1
qi

.

Hence, by (2.3),
∞∑

i=N+1

δi

qi
>

∞∑

i=N+1

1
qi

,

a contradiction. Thus, (2.2) can be valid only if ε = δ, i.e. ε ∈ U(q).

Lemma 2.2. Let ε ∈ {0, 1}N be such that ε 6= 0 and ε 6= 1. Then the
sequence ε is an element of R(q) if and only if the inequalities

(2.4)
1
q

+
∞∑

j=2

εp+j

qj
< 1 if εp = 0 and εp+1 = 1

are satisfied.

Proof. (1) If ε ∈ R(q) such that ε 6= 0 and ε 6= 1, and moreover
εp = 0 and εp+1 = 1, then putting

(2.5) x = 〈ε, q〉,
we have ε = ε(x). Hence, by the algorithm (1.3) ,

(2.6)
p−1∑

i=1

εi

qi
+

1
qp

> x =
p−1∑

i=1

εi

qi
+

0
qp

+
1

qp+1
+

∞∑

i=p+2

εi

qi
,
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and from this, (2.4) immediately follows.
(2) If (2.4) holds for the sequence ε 6= 0 and ε 6= 1, then for x as

defined by (2.5), we have (2.6), and using the algorithm (1.3), we infer
from this, by some computation, that ε = ε(x), i.e., ε ∈ R(q).

Theorem 2.3. Let ε ∈ {0, 1}N be such that ε 6= 0 and ε 6= 1. Then
the sequence ε is univoque with respect to q if and only if the inequalities

(2.7)
1
q

+
∞∑

j=2

εp+j

qj
< 1 if εp = 0 and εp+1 = 1

and

(2.8)
1
q

+
∞∑

j=2

1− εr+j

qj
< 1 if εr = 1 and εr+1 = 0

hold.

Proof. By Theorem 2.1, the relation ε ∈ U(q) holds if and only
if ε ∈ R(q) and (1 − ε) ∈ R(q). Applying Lemma 2.2, we obtain the
inequalities (2.7) and (2.8).

Theorem 2.4. Let 1 < q < q′ ≤ 2. Then

(2.9) U(q) ⊂ U(q′).

Proof. If ε = 0 or ε = 1, then ε belongs to both U(q) and U(q′).
If ε 6= 0, ε 6= 1 and ε ∈ U(q), then the inequalities (2.7) and (2.8) are
satisfied. In view of 1/q′ < 1/q, the inequalities (2.7) and (2.8) remain
valid if we replace q by q′. Hence by Theorem 2.3, ε ∈ U(q′).

3. Stable numbers

By Theorem 2.4, the set U(q) of univoque sequences can only become
larger as q increases. We shall need the following

Definition 3.1. We call the number q ∈]1, 2[ stable if there exists d > 0
such that q + d < 2 and

(3.1) U(q) = U(q + d).

Let k ≥ 0 be a natural number and

(3.2) Pk(t) =
1
t1

+
1
t2

+ · · ·+ 1
tk

if t ∈ [1, 2]. Moreover, let

(3.3) Qk(t) = Pk(t) +
1

t2k
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if t ∈ [1, 2].
The functions Pk, Qk : [1, 2] → R are strictly monotone decreasing

and continuous in [1, 2], and satisfy

Pk(1) = k, Qk(1) = k + 1 and 0 < Pk(2) < 1, 0 < Qk(2) < 1.

Moreover, Pk(t) < Qk(t) holds for all t ∈ [1, 2].
Hence, there exist the uniquely determined values q∗(k) and q(k) in

[1, 2] for which
Pk(q∗(k)) = Qk(q(k)) = 1,

and for these
q(k − 1) < q∗(k) < q(k) (k ≥ 3)

holds.
On the other hand,

1 = q∗(1) < q∗(2) < q∗(3) < . . .

and
1 +

√
5

2
= q∗(2) = q(1) < q(2) < q(3) < . . . ,

moreover lim
k→∞

q∗(k) = lim
k→∞

q(k) = 2.

Theorem 3.2. If 1 < q < q(1) = 1+
√

5
2 , then q is a stable number and

U(q) =
{
0, 1} = U(q(1)).

Moreover, the number q(1) is not stable.

Proof. By Theorem 2.4, it suffices to prove that U(q(1)) = {0, 1} ,
and q(1) is not stable. Then

1 =
1

q(1)
+

1
q(1)2

.

Hence, if ε 6= 0 and ε 6= 1, moreover ε is a univoque sequence with respect
to q(1), then by Theorem 2.3 the inequalities (2.7) and (2.8) are valid for
q := q(1). Now, there are two possibilities:

(1) ε1 = 0 and there exists a smallest natural number p such that
εp = 0 and εp+1 = 1 ; or else

(2) ε1 = 1 and there exists a smallest natural number r such that
εr = 1 and εr+1 = 0.

In case (1), the inequality (2.7) yields

1
q(1)

+
∞∑

j=2

εp+j

q(1)j
< 1 =

1
q(1)

+
1

q(1)2
,
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i.e., necessarily εp+2 = 0. Hence, putting r := p + 1, we get εr = 1 and
εr+1 = 0, and by (2.8) this implies

1
q(1)

+
∞∑

j=2

1− εr+j

q(1)j
< 1 =

1
q(1)

+
1

q(1)2
,

whence 1 − εr+2 = 0, i.e., εp+3 = εr+2 = 1 follows. Continuing this
procedure, we see that in case (1) the sequence univoque with respect to
q(1) is of the form

(3.4) (ε1, ε2, . . . ) = (0, 0, . . . ,

p
^
0 ,

p+1
^
0 , 0, 1, 0, 1, . . . ).

Similarly, we obtain that, in case (2), the sequence univoque with
respect to q(1) is of the form

(3.5) (ε1, ε2, . . . ) = (1, 1, . . . ,
r
^
1 ,

r+1
^
0 , 1, 0, 1, 0, . . . ).

The considerations, effected so far, show that if, contrarily to our
assertion, there exists a sequence ε 6= 0 and ε 6= 1 univoque with respect
to q(1), then this sequence is necessarily of the form (3.4) or (3.5). Let
us now show that this is impossible, at the same time the sequences of
the form (3.4) or (3.5) are, for any q ∈]q(1), 2], univoque sequences with
respect to q, i.e., q(1) is not stable. As a matter of fact, by Theorem 2.3,
(3.4) or (3.5) is univoque with respect to q if and only if

1
q

+
1
q3

+
1
q5

+ · · · < 1,

i.e., q/(q2 − 1) < 1, whence q2 − q − 1 > 0. However, this latter condition
is satisfied if and only if 1/q + 1/q2 < 1, i.e., q > q(1) = (1 +

√
5)/2.

Remark. In another form, Theorem 3.2 has been stated and proved
in our paper [3] too. The method of proof given here will, however, be
applicable also in a more general situation.

4. Properties of the set U(q)

In the course of further investigations concerning the set U(q), a
useful role will be played by the following

Lemma 4.1. If 1 < q ≤ 2, then U(q) has the following properties :
(1) 0, 1 ∈ U(q) ;
(2) If ε ∈ U(q), then (1− ε) ∈ U(q) ;
(3) If ε ∈ U(q), then Tε ∈ U(q), where T is the shift operator defined

by the equations (Tε)i := εi+1 (i ∈ N) ;
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(4) If ε ∈ U(q) such that ε 6= 0 and ε 6= 1, then the sets
1ε := {n| εn = 1} and 0ε := {n| εn = 0} are infinite.

Proof. Properties (1) and (2) are clear. If ε ∈ U(q) and x := 〈ε, q〉 =∑∞
n=1

εn

qn , then let y := 〈Tε, q〉 =
∑∞

n=1
εn+1
qn . Suppose that, contrarily to

our assertion, there exists δ ∈ {0, 1}N such that Tε 6= δ and y = 〈δ, q〉 =
=

∑∞
n=1

δn

qn . Then the sequence δ′ := (ε1, δ1, δ2, . . . ) ∈ {0, 1}N satisfies
δ′ 6= ε, and we have

x = 〈ε, q〉 =
∞∑

n=1

εn

qn
=

ε1

q
+

ε2

q2
+

ε3

q3
+ · · · =

=
ε1

q
+

1
q

(
ε2

q
+

ε3

q2
+ · · ·

)
=

ε1

q
+

1
q

(
δ1

q
+

δ2

q2
+ · · ·

)
=

=
ε1

q
+

δ1

q2
+

δ2

q3
+ · · · = 〈δ′, q〉,

a contradiction. This proves property (3).
Finally, (4) follows from the fact that if ε is a univoque sequence

such that ε 6= 0 and ε 6= 1, then for the digits εn = εn(x) occurring in
the regular expansion of the number x := 〈ε, q〉 the stated property is
satisfied.

Remark. Let H ⊂ {0, 1}N denote the set of all those sequences ε for
which the sets 1ε = {n| εn = 1} and 0ε = {n| εn = 0} are infinite,
moreover let 0, 1 ∈ H. Then H satisfies the properties (1) – (4) , and one
can easily see that that H = U(2).

5. Definition and properties of the set Hk

Let k ≥ 2 be a natural number. Let Hk denote the set of those
sequences ε ∈ {0, 1}N for which the following property is satisfied:

If εp = 0, then εp+1 + εp+2 + · · ·+ εp+k ≤ k − 1, and if εp = 1, then
εp+1 + εp+2 + · · ·+ εp+k ≥ 1.

This means that the sequence ε = (ε1, ε2, . . . ) ∈ {0, 1}N will be an
element of Hk if and only if it has the following property:

If some coordinate in ε is 0, then it cannot be followed by k consecutive
coordinates 1, and conversely if some coordinate in ε is 1, then it cannot
be followed by k consecutive coordinates 0.

Lemma 5.1. The set Hk satisfies the following properties :
(1) 0, 1 ∈ Hk ;
(2) If ε ∈ Hk, then (1− ε) ∈ Hk ;
(3) If ε ∈ Hk, then Tε ∈ Hk ;
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(4) If ε ∈ Hk such that ε 6= 0 and ε 6= 1, then the sets 1ε and 0ε are
infinite.

Proof. Properties (1) – (3) follow immediately from the definition
of Hk. If ε ∈ Hk such that ε 6= 0 and ε 6= 1, then there exists p ∈ N such
that εp = 0 and εp+1 = 1. Now, by the definition of Hk, any section of
length k of the sequence ε contains both digits 0 and 1, and from this the
validity of property (4) immediately follows.

Lemma 5.2. If q∗(k) < q ≤ 2 for some k ≥ 2, then

(5.1) Hk ⊂ U(q).

Proof. Let ε ∈ Hk. It will be sufficient to show that q∗(k) < q ≤ 2
implies ε ∈ R(q). Indeed, by (1 − ε) ∈ Hk, in this case, we also have
(1− ε) ∈ R(q), and from this, in view of Theorem 2.1, ε ∈ U(q) follows.

By Lemma 2.2, an ε ∈ Hk with ε 6= 0 and ε 6= 1 is an element of R(q)
if and only if

1
q

+
∞∑

j=2

εp+j

qj
< 1 if εp = 0 and εp+1 = 1.

Now, by ε ∈ Hk, for εp = 0 and εp+1 = 1 we have

(5.2)
1
q

+
∞∑

j=2

εp+j

qj
≤

(
1
q

+
1
q2

+ · · ·+ 1
qk−1

)(
1 +

1
qk

+
1

q2k
+ · · ·

)
=

=
(

1
q

+
1
q2

+ · · ·+ 1
qk−1

)
qk

qk − 1
,

and for
T p−1ε = (εp, εp+1, . . . ) = (0, 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . ) ∈ Hk

the equality sign holds in (5.2). On the other hand, one easily verifies that
(

1
q

+
1
q2

+ · · ·+ 1
qk−1

)
qk

qk − 1
< 1

is valid if and only if q∗(k) < q ≤ 2.
Lemma 5.3. The number q∗(k), for k ≥ 2, is not stable.

Proof. We have

1 =
1

q∗(k)
+

1
q∗(k)2

+ · · ·+ 1

q∗(k)k
=

=

(
1

q∗(k)
+

1
q∗(k)2

+ · · ·+ 1

q∗(k)k−1

)(
1 +

1
q∗(k)

+
1

q∗(k)2
+ · · ·

)
.



Univoque sequences 405

From this, we infer that the sequence

α := (1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . )

is not univoque with respect to q∗(k). At the same time α ∈ Hk, and
by Lemma 5.2 this implies that α ∈ U(q) for q ∈]q∗(k), 2]. This will say,
however, that q∗(k) is not stable.

Theorem 5.4. If q∗ < q < q(k) for some k ≥ 2, then q is a stable
number and

(5.3) U(q) = U(q(k)) = Hk.

Moreover, the number q(k) is not stable.

Proof. By Lemma 5.2, Hk ⊂ U(q(k)). Suppose that, contrarily to
our assertion, there exists ε ∈ U(q(k)) satisfying ε /∈ Hk. Then, there are
two possibilities :

(1) there exists a smallest natural number p such that εp = 0 and
εp+1 + εp+2 + · · ·+ εp+k = k, or else

(2) there exists a smallest natural number r such that εr = 1 and
εr+1 + εr+2 + · · ·+ εr+k = 0.
The two cases can be dealt with in an analogous manner. Let us therefore
suppose that the first case materializes ( in the contrary case, we simply
replace ε by (1− ε)).

In case (1), εp+1 + εp+2 + · · ·+ εp+k = 1 necessarily holds. Hence, by
the inequality (2.7), we have

1
q(k)

+
1

q(k)2
+ · · ·+ 1

q(k)k
+

∞∑

j=k+1

εp+j

q(k)j
< 1 =

=
1

q(k)
+

1
q(k)2

+ · · ·+ 1
q(k)k

+
1

q(k)2k
.

This implies that necessarily εp+k+1 = εp+k+2 = · · · = εp+2k. Now, let
r := p + k, then by εr = 1 and εr+1 = 0 the inequality (2.8) yields

1
q(k)

+
1

q(k)2
+ · · ·+ 1

q(k)k
+

∞∑

j=k+1

1− εr+j

q(k)j
< 1 =

=
1

q(k)
+

1
q(k)2

+ · · ·+ 1
q(k)k

+
1

q(k)2k
.

From this, we infer that 1 − εr+k+1 = 1 − εr+k+2 = · · · = 1 − εr+2k = 0,
i.e., εr+k+1 = εr+k+2 = · · · = εr+2k = 1. Hence, by r = p + k, we get



406 Z. Daróczy and I. Kátai

εp+2k+1 = εp+2k+2 = · · · = εp+3k = 1. Continuing this process, we see
that in this case our sequence is of the form

ε = (ε1, ε2, . . . , εp−1,

p
^
0 , 1, 1, . . . , 1︸ ︷︷ ︸

k

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . ).

In view of ε ∈ U(q(k)), the sequence

T pε = (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . )

is also univoque with respect to q(k). However, this is impossible since

1 = 〈T pε, q(k)〉 = 〈δ, q(k)〉,
where

δ := (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, 0, . . . , 0︸ ︷︷ ︸
k−1

,
2k
^
1 , 0, 0, . . . ),

i.e., T pε is not univoque with respect to q(k). At the same time T pε ∈ U(q)
for any q ∈]q(k), 2], and this means that q(k) is not stable.

Remark. From this theorem it follows that, in case q(1) = q∗(2) <
q ≤ q(2), one has

U(q) = U(q(2)) = H2.

Here any element ε of H2 with ε 6= 0 and ε 6= 1 has the property that
there exists an integer p ≥ 0 such that

T pε = (1, 0, 1, 0, . . . ).

We have already remarked this fact in our paper [3]. The set H2 is clearly
countable, while the sets Hk, for k ≥ 3, have already the power of the
continuum.

Our investigations carried out so far can be summarized as follows :
The elements of the set

S :=
∞⋃

k=1

]q∗(k), q(k)[⊂ ]1, 2[

are stable numbers, while the numbers q(k), for k = 1, 2, . . . , and the
numbers q∗(k), for k = 2, 3, . . . , are not stable.

If q ∈ S, then there exists k ∈ N such that q∗(k) < q < q(k), and
moreover

U(q) = Hk if k = 2, 3, . . . ,

and U(q) = H1 := {0, 1}.
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Our investigations do not exactly clarify the stability behaviour of the
elements of the open interval

]q(k), q∗(k + 1)[ for k = 2, 3, . . . .

We shall return to this question in a subsequent paper.
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