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On some iterative roots on the circle

By PAWEÃL SOLARZ (Kraków)

Abstract. The aim of this paper is to investigate the problem of the exis-
tence of continuous iterative roots of a homeomorphism F : S1 −→ S1 such that
Fn = idS1 , where n ≥ 2 is a fixed integer.

Let S1 = {z ∈ C : |z| = 1} be the unit circle with the positive
orientation. Let u,w, z ∈ S1, then there exist unique t1, t2 ∈ [0, 1) such
that we2πit1 = z, we2πit2 = u. Define

u ≺ w ≺ z if and only if 0 < t1 < t2

(see [1]). Moreover, if u,w ∈ S1 and u 6= w, then there exist tw, tu ∈ R
such that tu < tw < tu + 1 and e2πitu = u, e2πitw = w. Put

−−−→
(u,w) :={

e2πit : t ∈ (tu, tw)
}

(resp.
−−−→〈u,w〉 :=

{
e2πit : t ∈ 〈tu, tw〉

}
). This set is said

to be an open arc (resp. a closed arc). Let F : S1 −→ S1 be a continuous
mapping, then there exist a continuous function f : R −→ R called a
lift of F and an integer k such that F

(
e2πix

)
= e2πif(x) and f(x + 1) =

f(x) + k for x ∈ R. Moreover, if F is a homeomorphism, then so is f and
k = 1 if f increases, k = −1 if f decreases (see [4] Chapter 2). We say
that a homeomorphism F preserves orientation if f is increasing (reverses
orientation if f is decreasing) (see for example [7]). Let u,w, z ∈ S1 and
w ∈ −−−→(u, z), then if F preserves orientation F (w) ∈ −−−−−−−−→(F (u), F (z)). However,
if F reverses orientation, then we have F (w) ∈ −−−−−−−−→(F (z), F (u)).

Mathematics Subject Classification: Primary 39B12; Secondary 26A18.
Key words and phrases: lift, iterative root.
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First we prove some properties of a homeomorphism F : S1 −→ S1

such that
Fn = idS1 , (1)

where n is a positive integer number.

Theorem 1. Let F : S1 −→ S1 be an orientation-preserving homeo-

morphism satisfying (1) for an integer n > 0. If F has a fixed point, then

F (z) = z for all z ∈ S1.

Proof. To obtain a contradiction, suppose that z0 is a fixed point of
F and there exist z ∈ S1 and an integer r, 1 < r ≤ n such that z 6= F (z) 6=
F 2(z) 6= · · · 6= F r−1(z) and F r(z) = z. Define ai ∈ {z, F (z), . . . , F r−1(z)}
for i ∈ {0, 1, . . . , r − 1} in the following manner a0 = z and

0 < Arg
a1

a0
< Arg

a2

a0
< · · · < Arg

ar−1

a0
.

Note that F i(z) 6= z0 for every i ∈ {0, 1, . . . , r − 1}. Set ar := a0, there-
fore z0 ∈

−−−−−−→
(ai, ai+1) for some i ∈ {0, 1, . . . , r − 1}. Because F preserves

orientation we have
z0 ∈

−−−−−−−−−−−→
(F (ai), F (ai+1)).

Thus −−−−−−→
(ai, ai+1) ∩

−−−−−−−−−−−→
(F (ai), F (ai+1)) 6= ∅.

As F (ai) 6= ai we obtain

−−−−−−→
(ai, ai+1) 6=

−−−−−−−−−−−→
(F (ai), F (ai+1))

and consequently by the definition of ai,

−−−−−−→
(ai, ai+1) ⊂

−−−−−−−−−−−→
(F (ai+1), F (ai)).

Hence ai ∈
−−−−−−−−−−−→
(F (ai), F (ai+1)), so F−1(ai) ∈

−−−−−−→
(ai, ai+1), but F−1(ai) = aj for

an j ∈ {0, 1, . . . , r − 1} and we have the contradiction. ¤

As an immediate consequence of above theorem we have

Corollary 1. If F : S1 −→ S1is an orientation-preserving homeo-

morphism such that (1) holds for an integer n ≥ 2 and F 6= idS1 , then
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for every integer m ≥ 2 there is no orientation-reversing homeomorphisms

Φ : S1 −→ S1 satisfying equation

Φm = F. (2)

Proof. Suppose, contrary to our claim, that Φm(z) = F (z) for all
z ∈ S1. Hence m = 2l, where l is a positive integer. Let us observe that
Φ2 : S1 −→ S1 preserves orientation and

(
Φ2

)ln = idS1 . Moreover, Φ has a
fixed point since its lift ϕ : R −→ R is a decreasing homeomorphism, thus
Φ2 has a fixed point and by Theorem 1 Φ2 = idS1 , which is impossible. ¤

Corollary 2. Let F : S1 −→ S1and Φ : S1 −→ S1 be orientation-

reversing homeomorphisms. Assume that (1) holds for some n ≥ 2. If

there exists m ≥ 2 such that Φ satisfies (2), then Φ(z) = F (z) for all

z ∈ S1.

Proof. Since Φm = F and F , Φ reverse orientation we get m = 2l+1
for some integer l. On the other hand, there exists an integer k such that
n = 2k. Thus (

Φ2
)k(2l+1) = idS1 ,

so by Theorem 1 Φ2 = idS1 , since similary as in the previous proof Φ has
a fixed point. Therefore, F = Φ2l+1 = Φ2l ◦ Φ = Φ. ¤

We are left with the task of determining orientation-preserving solu-
tions of the equation (2), where F is an orientation-preserving homeomor-
phism. The following remark is well known.

Remark 1. Let positive integers m, n fulfil m < n and gcd(m, n) = 1.
Then there exists a unique k ∈ {1, . . . , n− 1} such that 1 = km (mod n).

Definition 1. Let integers q, n satisfy 1 ≤ q < n. By Mq,n define the
set of all orientation-preserving homeomorphisms F : S1 −→ S1 such that

F (z) = Ψ−1
(
e2πi q

n Ψ(z)
)

, (3)

where z ∈ S1 and Ψ : S1 −→ S1 is an orientation-preserving homeomor-
phism.

Remark 2. Suppose that F ∈Mq,n and F ∈Mq′,n, than q = q′.
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Proof. By Definition 1 we have

F (z) = Ψ−1
(
e2πi q

n Ψ(z)
)

= Λ−1
(
e2πi q′

n Λ(z)
)
, z ∈ S1,

where Ψ, Λ : S1 −→ S1 are orientation-preserving homeomorphisms. Thus
q = q′ + jn for some integer j. But 0 < q < n, so q = q′. ¤

Remark 3. Let F ∈ Mq,n, then n is the minimal number such that
Fn = idS1 if and only if gcd(q, n) = 1.

Proof. Assume that gcd(q, n) = p > 1. By Definition 1 we have

F (z) = Ψ−1
(
e
2πi

q1p
n1p Ψ(z)

)
= Ψ−1

(
e
2πi

q1
n1 Ψ(z)

)
, z ∈ S1,

where Ψ : S1 −→ S1 is an orientation-preserving homeomorphism and q =
q1p, n = n1p. Thus Fn1 = idS1 and n1 < n. Conversely, let gcd(q, n) = 1
and F k = idS1 for some positive integer k < n. Hence

F k(z) = Ψ−1
(
e2πi qk

n Ψ(z)
)

= z, z ∈ S1,

so the factor kq
n is integer, which is impossible. ¤

Proposition 1 (see [3]). Assume that n ≥ 2 is an integer. For every

homeomorphism F : S1 −→ S1 without fixed points satisfying (1) there

exists an integer q, 1 ≤ q < n such that F ∈Mq,n.

Suppose that F : S1 −→ S1 satisfies (1), where n ≥ 2 is the minimal
such a number. Then by Theorem 1 and Proposition 1 F ∈Mq,n for some
integer q such that

gcd(q, n) = 1. (4)

Fix a b0 ∈S1, then from (3) F i(b0) 6=F j(b0) for i 6= j, i, j ∈{0, 1, . . . , n−1}.
By (4) and Remark 1 we know that there exists a unique d ∈ {1, . . . , n−1}
such that 1 = qd (mod n). Define bk := F kd(b0) for k ∈ {1, . . . , n − 1}.
Using (3) we have

bk = F kd(b0) = Ψ−1
(
e2πi qkd

n Ψ(b0)
)

= Ψ−1
(
e2πi k

n Ψ(b0)
)

and, in consequence, since Ψ preserves orientation

Arg
bk

b0
< Arg

bk+1

b0
, k ∈ {0, 1, . . . , n− 2}. (5)
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Let u : {0, 1, . . . , n− 1} −→ {0, 1, . . . , n− 1} be defined by

u(k) = (k + q) (mod n).

Function u is a bijection. Moreover, u(k + 1) = u(k) + 1 for u(k) 6= n− 1
and u(k + 1) = 0 for u(k) = n− 1. Now, note that

F (bk) = Ψ−1
(
e2πi k+q

n Ψ(b0)
)

= bu(k), k ∈ {0, 1, . . . , n− 1} (6)

and since F preserves orientation

F
[−−−−−−→
(bk, bk+1)

]
=
−−−−−−−−−−−−→
(F (bk), F (bk+1)) =

−−−−−−−−−−→(
bu(k), bu(k+1)

)
(7)

for k ∈ {0, 1, . . . , n− 2}. Thus we have proved the following

Lemma 1. Let integers 1 ≤ q < n be relatively prime and F ∈Mq,n.

Then for every b0 ∈ S1 there exist unique b1, . . . , bn−1 ∈ S1 satisfying (5)
and (6).

Now note a few simple facts about an orientation-preserving home-
omorphism Φ : S1 −→ S1 satisfying (2), where F ∈ Mq,n and m is a
positive integer.

Lemma 2. Assume that F ∈ Mq,n, where 1 ≤ q < n are relatively

prime. If an orientation-preserving homeomorphism Φ : S1 −→ S1 sat-

isfies (2) for some integer m ≥ 2, then there exists a unique j = j(Φ) ∈
{0, 1, . . . , m− 1} such that

Φ ∈Mq+jn,mn. (8)

Moreover, m is the minimal number for which (2) holds if and only if

n > gcd(q + jn,m).

Proof. Note that Φmn = idS1 . Hence by Proposition 1 and Remark 2
Φ ∈Mq′,mn for some unique q′ ∈ {1, . . . , mn−1}. By Definition 1 and (2)
we have

Φm(z) = Γ−1
(
e2πi q′

n Γ(z)
)
, z ∈ S1

and by (2) since F ∈Mq,n

e2πi q′
n z = Γ ◦Ψ−1

(
e2πi q

n Ψ ◦ Γ−1(z)
)

, z ∈ S1,
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where Ψ,Γ : S1 −→ S1 are orientation-preserving homeomorphisms. Thus
q′ = q + jn, for some j ∈ {0, . . . ,m− 1}. Hence, since q′ is unique, we get
that j is also unique.

Since gcd(q, n) = 1 we have gcd(q + jn, n) = 1 taking

kΦ =
m

gcd(q + jn, m)
(9)

and

qΦ =
q + jn

gcd(q + jn,m)
(10)

we obtain

Φ ∈Mq+jn,mn = MqΦ,kΦn and gcd(qΦ, kΦn) = 1.

From this and Remark 3 we get that

ΦkΦn = idS1 (11)

and kΦn is the minimal number such that (11) holds.
Note that qΦ, kΦ do not depend on j and m. Indeed, if Φ ∈Mq+j′n,m′n

for some j′ ∈ {0, . . . ,m′ − 1}, j′ 6= j and m′ 6= m, then

Φ ∈Mq′Φ,k′Φn and gcd(q′Φ, k′Φn) = 1,

where

q′Φ =
q + j′n

gcd(q + j′n,m′, )
, k′Φ =

m′

gcd(q + j′n,m′)
.

It follows that k′Φn is the minimal number such that

Φk′Φn = idS1 ,

thus k′Φ = kΦ and by Remark 2 q′Φ = qΦ.
Now we can prove the second assertion. Suppose that n ≤ gcd(q +

jn, m). Of course, n 6= gcd(q + jn, m), since gcd(q + jn, n) = 1. Con-
sequently, from (9) kΦn < m. On the other hand, by (11) and (2) we
obtain

F (z) = Φm(z) = ΦkΦn ◦ Φm−kΦn(z) = Φm−kΦn(z), z ∈ S1.
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Conversely, suppose that there exists a positive integer m′ < m such that
Φm′

(z) = F (z) for z ∈ S1. Consequently, by (2) we get

Φm−m′
= idS1 .

Since kΦn is the minimal number such that (11) holds we get m−m′ ≥ kΦn,
so m > kΦn. Hence by (9) n < gcd(q + jn, m). ¤

Corollary 3. Let F , Φ satisfy the assumptions of Lemma 2 and kΦ

be defined by (9), then

m′ := m− tkΦn, t =
[

m

kΦn

]
, (12)

where [x] denotes the entire part of x, is the minimal number such that

(2) holds.

Proof. From (8) and (9) we obtain that Φ satisfies (11). Thus

F (z) = Φm(z) = Φm′+tkΦn(z) = Φm′
(z), z ∈ S1.

Hence by Lemma 2 there exists j′ ∈ {0, . . . , m′ − 1} such that Φ ∈
Mq+j′n,m′n. Similary as in the previous proof we get kΦ = m′

gcd(q+j′n,m′) .
Moreover, by (12) kΦn > m′, therefore n > gcd(q + j′n, m′) and by
Lemma 2 we get our claim. ¤

The factor gcd(q + jn,m) has another property, it determines the
number of solutions of the equation (2). Indeed, when gcd(q + jn, m) = m

for some j ∈ {0, . . . , m − 1}, then there is exactly one solution of (2). To
show this fact we first prove the following

Lemma 3. Let (G, ∗) be a group, a, b ∈G be elements of order n,

n ≥ 2. If am = b for some positive integer m, then there exists a unique

l ∈ {1, . . . , n− 1} such that bl = a.

Proof. Since b is an element of order n we have

bi 6= bj , 1 ≤ i < j ≤ n− 1.

Thus
ami 6= amj , 1 ≤ i < j ≤ n− 1,

but the order of a is n, so there exists l∈{1, . . . , n− 1} such that alm = a.
¤
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As a simple consequence of above lemma we have

Corollary 4. Let F ∈ Mq,n and Φ ∈ Mq′,n, where gcd(q, n) =
gcd(q′, n) = 1. Let (2) holds for some integer m > 0, then there exists an

integer l > 0 such that

Φ(z) = F l(z), z ∈ S1.

To avoid solutions described in Corollary 4 from now on we define the
following set. Let integer q, n be such that 0 < q < n, gcd(q, n) = 1. For
every m ≥ 2 put

Am := {j ∈ {0, . . . , m− 1} : gcd(q + jn, m) 6= m} . (13)

Since gcd(n, q) = 1, we get gcd(q + jn, m) < m for at least one j ∈
{0, . . . , m− 1}, so Am 6= ∅.

Let F ∈Mq,n, gcd(q, n) = 1 and j ∈ Am. By Remark 1 there exists a
unique d ∈ {1, . . . , n− 1} such that qd = 1 (mod n). Set

kj =
m

gcd(q + jn, m)
. (14)

Define the following sequence (ci)i∈{0,...,kjn−1} satisfying two conditions

(G1) c0, c1, . . . , ckj−1 ∈ S1 are arbitrary fixed and such that

c0 ≺ c1 ≺ · · · ≺ ckj−1 and c1, . . . , ckj−1 ∈
−−−−−−−−→(
c0, F

d(c0)
)
,

(G2) ci+kj = F d(ci) for i ∈ {0, . . . , kj(n− 1)− 1}.

Let {Ii}i∈{0,...,kjn−1} be a family of arcs such that

(H) Ii :=
−−−−−−−−−→〈
cvi(0), cvi(1)

〉
,

where v(l) = (l + qj) (mod kjn), l ∈ {0, . . . , kjn− 1} and

qj =
q + jn

gcd(q + jn,m)
. (15)

Now we can prove our main result.

Theorem 2. Assume that F ∈ Mq,n, gcd(q, n) = 1, m ≥ 2 and j ∈
Am. Let (ci)i∈{0,...,kjn−1} satisfies (G1), (G2), {Ii}i∈{0,...,kjn−1} fulfils (H)



On some iterative roots on the circle 685

and Φi : Ii −→ Ii+1 for i ∈ {0, . . . , kj −2} be orientation-preserving home-

omorphisms. Then there exists a unique orientation-preserving homeo-

morphism Φ : S1 −→ S1 satisfying (2) and such that

Φ|Ii
= Φi for i ∈ {0, . . . , kj − 2}.

Moreover, j = j(Φ).

Proof. Since j ∈ Am, we have kj 6= 1. Of course, by (14) and (15)
gcd(kjn, qj) = 1. It follows by (14) and (15) that

qj

q + jn
=

kj

m
,

thus
kjq = mqj (mod kjn). (16)

Let

m′ := m− tjkjn, tj =
[

m

kjn

]
, (17)

than kjn > m′. By (17) and (16) we conclude that

kjq = m′qj (mod kjn). (18)

Let d ∈ {1, . . . , n− 1} and qd = 1 (mod n). From (G2) and (1) we have

F d
(
ci+kj(n−1)

)
= F d ◦ F d(n−1)(ci) = F dn(ci) = ci

for i ∈ {0, . . . , kj − 1}. From this and (G2) it follows that

F d(ci) = c(i+kj) (mod kjn), i ∈ {0, . . . , kjn− 1} . (19)

Hence since qd = 1 (mod n) and Fn = idS1

F (ci) = (F d)q(ci) = c(i+kjq) (mod kjn), i ∈ {0, . . . , kjn− 1} . (20)

Moreover, by (19), (G1) and (G2), since F d preserves orientation, we get

c0 ≺ c1 ≺ · · · ≺ ckj−1 ≺ F d(c0) = ckj
≺ F d(c1) = ckj+1

≺ · · · ≺ F d(ckj(n−1)−1) = ckjn−1 ≺ F d(ckj(n−1)) = c0,
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thus
Arg

ci

c0
< Arg

ci+1

c0
, i ∈ {0, 1, . . . , kjn− 2}.

From (14) and (17) follows that there exists an integer h such that

m′ = hkj . (21)

Since kjn > m′ we conclude that hkjn > hm′ and n > h. Put h′ :=
gcd(m, q + jn). As gcd(n, q + jn) = 1 we must have gcd(n, h′) = 1. On
the other hand, by (17) h = h′ − tjn, so we see that gcd(h, n) = 1. Thus
from Remark 1 there exists a unique pair of integers a, a′ such that

ah = a′n + 1. (22)

Define
Φi := F a ◦ Φ−1

i−kj+1 ◦ · · · ◦ Φ−1
i−2 ◦ Φ−1

i−1 (23)

for i ∈ {kj − 1, kj , . . . , kjn − 1}. It is easy to see that Φi, defined above,
preserve orientation. Next observe that, by (23) for i ∈ {kj−1, . . . , kjn−2}

Φi[Ii] = F a
[
Ii−kj+1

]
= F a

[−−−−−−−−−−−−−−−−−→〈
c
vi−kj+1(0)

, c
vi−kj+1(1)

〉 ]

=
−−−−−−−−−−−−−−−−−−−−−−−−−→〈
F a

(
c
vi−kj+1(0)

)
, F a

(
c
vi−kj+1(1)

)〉
,

but from the definition of v and (20) we get

F a
(
c
vi−kj+1(0)

)
= c((i−kj+1)qj+akjq) (mod kjn).

Applying (18) we see that

((i− kj + 1)qj + akjq) (mod kjn) = ((i− kj + 1)qj + am′qj) (mod kjn).

Hence by (21) and (22)

((i− kj + 1)qj + am′qj) (mod kjn)

= ((i− kj + 1)qj + kjqj + a′qjkjn) (mod kjn) = ((i + 1)qj) (mod kjn).

Thus
F a

(
c
vi−kj+1(0)

)
= cvi+1(0).
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Similary F a(c
vi−kj+1(1)

) = cvi+1(1), so

Φi[Ii] = Ii+1, i ∈ {kj − 1, . . . , kjn− 2}. (24)

In the same manner we can show that, if i = kjn− 1 we get

Φkjn−1[Ikjn−1] = I0. (25)

From (23) we have

F−a
|Ii+1

= Φ−1
i−kj+1 ◦ · · · ◦ Φ−1

i−2 ◦ Φ−1
i−1 ◦ Φ−1

i (26)

for i ∈ {kj − 1, . . . , kjn− 1}. Fix an i ∈ {kj , . . . , kjn− 1}, thus combining
(23) with (26) we obtain

Φi = F a ◦ Φi−kj ◦ Φ−1
i−kj

◦ Φ−1
i−kj+1 ◦ · · · ◦ Φ−1

i−2 ◦ Φ−1
i−1

= F a ◦ Φi−kj
◦ F−a

|Ii
.

(27)

We may write the index i in the form i = pkj +r, where p ≥ 1 is an integer
and r ∈ {0, 1, . . . , kj − 1}. Using (27) p times we get

Φi = F pa ◦ Φr ◦ F−pa
|Ii

(28)

for i ∈ {kj , . . . , kjn− 1}.
Define

Φ(z) := Φi(z) z ∈ Ii, i ∈ {0, . . . , kjn− 1}. (29)

It follows from the properties of Φi, i ∈ {0, . . . , kjn− 1} and the definition
of Ii for i ∈ {0, . . . , kjn − 1} that Φ is an orientation-preserving homeo-
morphism. We next prove that Φm = F . For this purpose note that from
(26) we get

F a
|Ii

= Φi+kj−1 ◦ · · · ◦ Φi+2 ◦ Φi+1 ◦ Φi (30)

for i ∈ {0, . . . , kj(n− 1)}. Now fix a z ∈ Il, l ∈ {0, . . . , nkj −m′}, then by
(29), (30), (22) and (21) we obtain

Φm′
(z) =

(
Φl+m′−1 ◦ · · · ◦ Φl+m′−kj

) ◦ (
Φl+m′−kj−1 ◦ · · · ◦ Φl+m′−2kj

)

◦ · · · ◦ (
Φl+kj−1 ◦ · · · ◦ Φl+1 ◦ Φl

)
(z) = F ah(z) = F a′n+1(z)

= F (z).
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Let l ∈ {nkj −m′ + 1, . . . , kjn − 1} and z ∈ Il, then by (24) and (25) we
can get

Φm′
(z) =

(
Φm′−kjn+l−1 ◦ · · · ◦ Φm′−kj(n+1)+l

)
◦ · · · ◦ (

Φkj−1 ◦ · · · ◦ Φ0

)

◦
(
Φkjn−1 ◦ · · · ◦ Φkj(n−1)

)
◦ · · · ◦ (

Φl+kj−1 ◦ · · · ◦ Φl

)
(z)

or

Φm′
(z) =

(
Φm′−kjn+l−1 ◦ · · · ◦ Φm′−kj(n+1)+l

)

◦ · · · ◦ (
Φr−1 ◦ · · · ◦ Φ0 ◦ Φkjn−1 ◦ · · · ◦ Φkj(n−1)+r

)
(31)

◦ · · · ◦ (
Φl+kj−1 ◦ · · · ◦ Φl

)
(z),

where r ∈ {1, 2, . . . , kj − 1}. In the first case, similary as above, we have
Φm′

(z) = F (z), z ∈ Il, straight from (30), (22) and (21). In the second
case it suffices to show that Φkj (z) = F a(z), where z ∈ I(n−1)kj+r for
r ∈ {1, . . . , kj − 1}, thus

Φkj (z) = Φr−1 ◦ Φr−2 ◦ · · · ◦ Φ1 ◦ Φ0 ◦ Φkjn−1 ◦ · · · ◦ Φkj(n−1)+r(z),

z ∈ Ikj(n−1)+r.

Replacing all Φi for i ∈ {kj(n− 1)+ r, . . . , kjn− 1} by (28) with p = n− 1
we obtain

Φkj (z) = Φr−1 ◦ Φr−2 ◦ . . . Φ1 ◦ Φ0 ◦ F (n−1)a ◦ Φkj−1 ◦ F−(n−1)a

◦ F (n−1)a ◦ Φkj−2 ◦ F−(n−1)a ◦ · · · ◦ F (n−1)a ◦ Φr ◦ F−(n−1)a(z)

= Φr−1 ◦ Φr−2 ◦ · · · ◦ Φ1 ◦ Φ0 ◦ Fna ◦ F−a ◦ Φkj−1 ◦ Φkj−2

◦ · · · ◦ Φr−1 ◦ Φr ◦ F−(n−1)a(z), z ∈ Ikj(n−1)+r.

Now using (1) and (26) for i = kj − 1 we get

Φkj (z) =
(
Φr−1 ◦ Φr−2 ◦ . . . Φ1 ◦ Φ0 ◦ Φ−1

0 ◦ Φ−1
1 ◦ · · · ◦ Φ−1

r−1

)

◦
(
Φ−1

r ◦ · · · ◦ Φ−1
kj−1 ◦ Φkj−1 ◦ Φkj−2 ◦ · · · ◦ Φr

)
◦ F−(n−1)a(z)

= F−(n−1)a(z) = F−na ◦ F a(z) = F a(z), z ∈ Ikj(n−1)+r.

Applying this and (30) to (31) in view of (21) and (22) we get Φm′
= F .

From (30) and (29) we see that F a = Φkj . Hence by (1)

Φkjn = F an = idS1 . (32)
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Finally, using (17) we have Φm = Φm′+kjtjn = F .
The proof is completed by showing that j = j(Φ). To do this note

that (H), the definition of the function v and (31) give Φ ∈ Mqj ,kjn but
according to (14) and (15) we obtain Mqj ,kjn = Mq+jn,mn, so j = j(Φ).

¤

Theorem 3. Let F ∈ Mq,n, gcd(q, n) = 1, d ∈ {1, . . . , n − 1} be

such that qd = 1 (mod n) and Φ : S1 −→ S1 be an orientation-preserving

homeomorphism satisfying (2), where integer m ≥ 2 is the minimal such

a number and such that Φn 6= idS1 or Φk = idS1 for an integer k < n.

Then for every c0 ∈ S1 there exists a sequence c1, . . . , ckΦn−1 ∈ S1 fulfils

c0 ≺ c1 ≺ · · · ≺ ckΦn−1 and (G2), where kj = kΦ and kΦ is given by (9)
for some j = j(Φ) /∈ Am. Moreover, if {Ii}i∈{0,...,kΦn−1} fulfils (H) with

qj = qΦ, then Φ [Ii] = I(i+1), i ∈ {0, . . . , kΦn − 2}, Φ
[
IkΦn−1

]
= I0, and

taking Φi := Φ|Ii
we get

Φi = F a ◦ Φ−1
i−kΦ+1 ◦ · · · ◦ Φ−1

i−1

for i ∈ {kΦ − 1, . . . , kΦn− 1} and some integer a.

Proof. From Lemma 2 we get Φ∈Mq+jn,mn for some j∈{0, . . . , m−1}.
Thus Φ ∈ MqΦ,kΦn, where gcd(qΦ, kΦn) = 1 and kΦ, qΦ are defined in (9)
and (10). Fix a c0 ∈ S1. From Lemma 1 we get c0 ≺ c1 ≺ · · · ≺ ckΦn−1 ≺ c0

and
Φ(ci) = c(i+qΦ) (mod kΦn) i ∈ {0, . . . , kΦn− 1}.

It follows from (9) and (10) that (mqΦ = kΦq) (mod kΦn), thus

F (ci) = Φm(ci) = c(i+mqΦ) (mod kΦn) = c(i+kΦq) (mod kΦn)

for i ∈ {0, . . . , kΦn− 1}. Hence

F d(ci) = c(i+kΦdq) (mod kΦn) = c(i+kΦ) (mod kΦn), i ∈ {0, . . . , kΦn− 1},

as kΦdq = kΦ (mod kΦn), so (G2) holds. Moreover, by (7)

Φ [Ii] =
−−−−−−−−−−−−−−→〈
Φ(cvi(0)),Φ(cvi(1))

〉
=
−−−−−−−−−−−−−−−−−→〈
Φ(cvi+1(0)), Φ(cvi+1(1))

〉

= I(i+1) (mod kΦn), i ∈ {0, . . . , kΦn− 1}.
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Now let us observe that, since Φn 6= idS1 we get kΦ > 1. On the other
hand, from Lemma 2, as m is the minimal number such that (2) holds we
have kΦn > m. Thus, symilary as in the proof of Theorem 2, we know
that ah = a′n + 1 for some unique integer a, a′ and h = m

kΦ
. It follows

from (2) that
ΦkΦh(z) = F (z), z ∈ S1.

But ΦkΦa′n = idS1 since Φ ∈MqΦ,kΦn, thus

F a(z) = ΦkΦha(z) = ΦkΦa′n+kΦ(z) = ΦkΦ(z), z ∈ S1.

Using the definition of Φi we get

F a(z) = Φi+kΦ−1 ◦ Φi+kΦ−2 ◦ · · · ◦ Φi(z),

where z ∈ Ii, i ∈ {0, . . . , (n− 1)kΦ}. Put l := i + kΦ − 1, then

Φl(z) = F a ◦ Φ−1
l−kΦ+1 ◦ · · · ◦ Φ−1

l−2 ◦ Φ−1
l−1(z)

for z ∈ Il and l ∈ {kΦ − 1, . . . , kΦn− 1}. This ends the proof. ¤

Corollary 5. Every orientation-preserving homeomorphic solution

of (2) may be obtained in the manner described in proof of Theorem 2

or by Corollary 4.

Theorem 4. Let F ∈ Mq,n and gcd(q, n) = 1. A homeomorphism

Φ : S1 −→ S1 satisfies (2) for some integer m ≥ 2 if and only if there

exist j ∈ {0, . . . ,m − 1} and an orientation-preserving homeomorphism

γ : R −→ R such that

Φ
(
e2πix

)
= e2πiγ−1( q+jn

m
+γ(x)), x ∈ R (33)

and γ is an increasing solution of

γ

(
fp(x)− pq − 1

n

)
= γ(x) + 1, x ∈ R, (34)

where f is the lift of F such that 0 ≤ f(0) < 1, p < n and pq = 1 (mod n).

Proof. Since Φ fulfils (2), then by Lemma 2 there exists a unique
j ∈ {0, . . . , m− 1} such that Φ ∈Mq+jn,mn. Hence and from Definition 1

Φ(z) = Ψ−1
(
e2πi q+jn

mn Ψ(z)
)

, z ∈ S1, (35)
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where Ψ : S1 −→ S1 is an orientation-preserving homeomorphism. Using
(2) once more we get

F (z) = Ψ−1
(
e2πi q

n Ψ(z)
)

, z ∈ S1. (36)

Let f : R −→ R be the lift of F such that 0 ≤ f(0) < 1, than by (36) we
have

e2πiψ(f(x)) = e2πiψ(x)+ q
n , x ∈ R (37)

and
ψ(f(x)) = ψ(x) +

q

n
+ k, x ∈ R, (38)

where k is an integer and ψ : R −→ R is an increasing lift of Ψ such that

ψ(x + 1) = ψ(x) + 1, x ∈ R. (39)

Since 0 ≤ f(0) < 1 from the properties of ψ follows that ψ(0) ≤ ψ(f(0)) <

ψ(1) = ψ(0) + 1, thus

0 ≤ ψ(f(0))− ψ(0) < 1.

We conclude from this and (38) that k = 0. Therefore (38) gives

ψ(f(x)) = ψ(x) +
q

n
, x ∈ R. (40)

Put
γ := nψ, (41)

then by (39) and (40) we have

γ(x + 1) = γ(x) + n, x ∈ R,

γ(f(x)) = γ(x) + q, x ∈ R.
(42)

According to Lemma 7 in [8] the above system of equations is equivalent
to the equation (34), where p < n is such that pq = 1 (mod n). It follows
from (35) and (41) that Φ satisfies (33). Let us note that if j /∈ Am i.e.
gcd(q + jn, m) = m, than q + jn = mh for some integer h and (33) gives

Φ
(
e2πix

)
= e2πiγ−1(h+γ(x)), x ∈ R.

Now suppose that Φ satisfies (33) and γ fulfils (34). Thus

Φm
(
e2πix

)
= e2πiγ−1(q+jn+γ(x)), x ∈ R.
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But (34) and (42) are equivalent, so using (42) we get

Φm
(
e2πix

)
= e2πiγ−1(q+γ(x)) = e2πif(x) = F

(
e2πix

)
, x ∈ R,

which proves the thorem. ¤
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