Publ. Math. Debrecen
63/4 (2003), 677-692

On some iterative roots on the circle

By PAWEŁ SOLARZ (Kraków)

Abstract

The aim of this paper is to investigate the problem of the existence of continuous iterative roots of a homeomorphism $F: S^{1} \longrightarrow S^{1}$ such that $F^{n}=\operatorname{id}_{S^{1}}$, where $n \geq 2$ is a fixed integer.

Let $S^{1}=\{z \in \mathbb{C}:|z|=1\}$ be the unit circle with the positive orientation. Let $u, w, z \in S^{1}$, then there exist unique $t_{1}, t_{2} \in[0,1)$ such that $w e^{2 \pi i t_{1}}=z, w e^{2 \pi i t_{2}}=u$. Define

$$
u \prec w \prec z \quad \text { if and only if } \quad 0<t_{1}<t_{2}
$$

(see [1]). Moreover, if $u, w \in S^{1}$ and $u \neq w$, then there exist $t_{w}, t_{u} \in \mathbb{R}$ such that $t_{u}<t_{w}<t_{u}+1$ and $e^{2 \pi i t_{u}}=u, e^{2 \pi i t_{w}}=w$. Put $\overrightarrow{(u, w)}:=$ $\left\{e^{2 \pi i t}: t \in\left(t_{u}, t_{w}\right)\right\}\left(\right.$ resp. $\left.\overrightarrow{\langle u, w\rangle}:=\left\{e^{2 \pi i t}: t \in\left\langle t_{u}, t_{w}\right\rangle\right\}\right)$. This set is said to be an open arc (resp. a closed arc). Let $F: S^{1} \longrightarrow S^{1}$ be a continuous mapping, then there exist a continuous function $f: \mathbb{R} \longrightarrow \mathbb{R}$ called a lift of F and an integer k such that $F\left(e^{2 \pi i x}\right)=e^{2 \pi i f(x)}$ and $f(x+1)=$ $f(x)+k$ for $x \in \mathbb{R}$. Moreover, if F is a homeomorphism, then so is f and $k=1$ if f increases, $k=-1$ if f decreases (see [4] Chapter 2). We say that a homeomorphism F preserves orientation if f is increasing (reverses orientation if f is decreasing) (see for example [7]). Let $u, w, z \in S^{1}$ and $w \in \overrightarrow{(u, z)}$, then if F preserves orientation $F(w) \in \overrightarrow{(F(u), F(z))}$. However, if F reverses orientation, then we have $F(w) \in \overrightarrow{(F(z), F(u))}$.

First we prove some properties of a homeomorphism $F: S^{1} \longrightarrow S^{1}$ such that

$$
\begin{equation*}
F^{n}=\operatorname{id}_{S^{1}}, \tag{1}
\end{equation*}
$$

where n is a positive integer number.
Theorem 1. Let $F: S^{1} \longrightarrow S^{1}$ be an orientation-preserving homeomorphism satisfying (1) for an integer $n>0$. If F has a fixed point, then $F(z)=z$ for all $z \in S^{1}$.

Proof. To obtain a contradiction, suppose that z_{0} is a fixed point of F and there exist $z \in S^{1}$ and an integer $r, 1<r \leq n$ such that $z \neq F(z) \neq$ $F^{2}(z) \neq \cdots \neq F^{r-1}(z)$ and $F^{r}(z)=z$. Define $a_{i} \in\left\{z, F(z), \ldots, F^{r-1}(z)\right\}$ for $i \in\{0,1, \ldots, r-1\}$ in the following manner $a_{0}=z$ and

$$
0<\operatorname{Arg} \frac{a_{1}}{a_{0}}<\operatorname{Arg} \frac{a_{2}}{a_{0}}<\cdots<\operatorname{Arg} \frac{a_{r-1}}{a_{0}} .
$$

Note that $F^{i}(z) \neq z_{0}$ for every $i \in\{0,1, \ldots, r-1\}$. Set $a_{r}:=a_{0}$, therefore $z_{0} \in \overrightarrow{\left(a_{i}, a_{i+1}\right)}$ for some $i \in\{0,1, \ldots, r-1\}$. Because F preserves orientation we have

$$
z_{0} \in \overrightarrow{\left(F\left(a_{i}\right), F\left(a_{i+1}\right)\right)} .
$$

Thus

$$
\overrightarrow{\left(a_{i}, a_{i+1}\right)} \cap \overrightarrow{\left(F\left(a_{i}\right), F\left(a_{i+1}\right)\right)} \neq \emptyset .
$$

As $F\left(a_{i}\right) \neq a_{i}$ we obtain

$$
\overrightarrow{\left(a_{i}, a_{i+1}\right)} \neq \overrightarrow{\left(F\left(a_{i}\right), F\left(a_{i+1}\right)\right)}
$$

and consequently by the definition of a_{i},

$$
\overrightarrow{\left(a_{i}, a_{i+1}\right)} \subset \overrightarrow{\left(F\left(a_{i+1}\right), F\left(a_{i}\right)\right)} .
$$

Hence $a_{i} \in \overrightarrow{\left(F\left(a_{i}\right), F\left(a_{i+1}\right)\right)}$, so $F^{-1}\left(a_{i}\right) \in \overrightarrow{\left(a_{i}, a_{i+1}\right)}$, but $F^{-1}\left(a_{i}\right)=a_{j}$ for an $j \in\{0,1, \ldots, r-1\}$ and we have the contradiction.

As an immediate consequence of above theorem we have
Corollary 1. If $F: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism such that (1) holds for an integer $n \geq 2$ and $F \neq \mathrm{id}_{S^{1}}$, then
for every integer $m \geq 2$ there is no orientation-reversing homeomorphisms $\Phi: S^{1} \longrightarrow S^{1}$ satisfying equation

$$
\begin{equation*}
\Phi^{m}=F . \tag{2}
\end{equation*}
$$

Proof. Suppose, contrary to our claim, that $\Phi^{m}(z)=F(z)$ for all $z \in S^{1}$. Hence $m=2 l$, where l is a positive integer. Let us observe that $\Phi^{2}: S^{1} \longrightarrow S^{1}$ preserves orientation and $\left(\Phi^{2}\right)^{l n}=\mathrm{id}_{S^{1}}$. Moreover, Φ has a fixed point since its lift $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ is a decreasing homeomorphism, thus Φ^{2} has a fixed point and by Theorem $1 \Phi^{2}=\operatorname{id}_{S^{1}}$, which is impossible.

Corollary 2. Let $F: S^{1} \longrightarrow S^{1}$ and $\Phi: S^{1} \longrightarrow S^{1}$ be orientationreversing homeomorphisms. Assume that (1) holds for some $n \geq 2$. If there exists $m \geq 2$ such that Φ satisfies (2), then $\Phi(z)=F(z)$ for all $z \in S^{1}$.

Proof. Since $\Phi^{m}=F$ and F, Φ reverse orientation we get $m=2 l+1$ for some integer l. On the other hand, there exists an integer k such that $n=2 k$. Thus

$$
\left(\Phi^{2}\right)^{k(2 l+1)}=\operatorname{id}_{S^{1}},
$$

so by Theorem $1 \Phi^{2}=\mathrm{id}_{S^{1}}$, since similary as in the previous proof Φ has a fixed point. Therefore, $F=\Phi^{2 l+1}=\Phi^{2 l} \circ \Phi=\Phi$.

We are left with the task of determining orientation-preserving solutions of the equation (2), where F is an orientation-preserving homeomorphism. The following remark is well known.

Remark 1. Let positive integers m, n fulfil $m<n$ and $\operatorname{gcd}(m, n)=1$. Then there exists a unique $k \in\{1, \ldots, n-1\}$ such that $1=k m(\bmod n)$.

Definition 1. Let integers q, n satisfy $1 \leq q<n$. By $\mathcal{M}_{q, n}$ define the set of all orientation-preserving homeomorphisms $F: S^{1} \longrightarrow S^{1}$ such that

$$
\begin{equation*}
F(z)=\Psi^{-1}\left(e^{2 \pi i \frac{g}{n}} \Psi(z)\right) \tag{3}
\end{equation*}
$$

where $z \in S^{1}$ and $\Psi: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism.

Remark 2. Suppose that $F \in \mathcal{M}_{q, n}$ and $F \in \mathcal{M}_{q^{\prime}, n}$, than $q=q^{\prime}$.

Proof. By Definition 1 we have

$$
F(z)=\Psi^{-1}\left(e^{2 \pi i \frac{q}{n}} \Psi(z)\right)=\Lambda^{-1}\left(e^{2 \pi i \frac{q^{\prime}}{n}} \Lambda(z)\right), \quad z \in S^{1}
$$

where $\Psi, \Lambda: S^{1} \longrightarrow S^{1}$ are orientation-preserving homeomorphisms. Thus $q=q^{\prime}+j n$ for some integer j. But $0<q<n$, so $q=q^{\prime}$.

Remark 3. Let $F \in \mathcal{M}_{q, n}$, then n is the minimal number such that $F^{n}=\mathrm{id}_{S^{1}}$ if and only if $\operatorname{gcd}(q, n)=1$.

Proof. Assume that $\operatorname{gcd}(q, n)=p>1$. By Definition 1 we have

$$
F(z)=\Psi^{-1}\left(e^{2 \pi i \frac{q_{1} p}{n_{1} p}} \Psi(z)\right)=\Psi^{-1}\left(e^{2 \pi i \frac{q_{1}}{n_{1}}} \Psi(z)\right), \quad z \in S^{1}
$$

where $\Psi: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism and $q=$ $q_{1} p, n=n_{1} p$. Thus $F^{n_{1}}=\mathrm{id}_{S^{1}}$ and $n_{1}<n$. Conversely, let $\operatorname{gcd}(q, n)=1$ and $F^{k}=\mathrm{id}_{S^{1}}$ for some positive integer $k<n$. Hence

$$
F^{k}(z)=\Psi^{-1}\left(e^{2 \pi i \frac{q k}{n}} \Psi(z)\right)=z, \quad z \in S^{1}
$$

so the factor $\frac{k q}{n}$ is integer, which is impossible.
Proposition 1 (see [3]). Assume that $n \geq 2$ is an integer. For every homeomorphism $F: S^{1} \longrightarrow S^{1}$ without fixed points satisfying (1) there exists an integer $q, 1 \leq q<n$ such that $F \in \mathcal{M}_{q, n}$.

Suppose that $F: S^{1} \longrightarrow S^{1}$ satisfies (1), where $n \geq 2$ is the minimal such a number. Then by Theorem 1 and Proposition $1 F \in \mathcal{M}_{q, n}$ for some integer q such that

$$
\begin{equation*}
\operatorname{gcd}(q, n)=1 \tag{4}
\end{equation*}
$$

Fix a $b_{0} \in S^{1}$, then from (3) $F^{i}\left(b_{0}\right) \neq F^{j}\left(b_{0}\right)$ for $i \neq j, i, j \in\{0,1, \ldots, n-1\}$. By (4) and Remark 1 we know that there exists a unique $d \in\{1, \ldots, n-1\}$ such that $1=q d(\bmod n)$. Define $b_{k}:=F^{k d}\left(b_{0}\right)$ for $k \in\{1, \ldots, n-1\}$. Using (3) we have

$$
b_{k}=F^{k d}\left(b_{0}\right)=\Psi^{-1}\left(e^{2 \pi i \frac{q k d}{n}} \Psi\left(b_{0}\right)\right)=\Psi^{-1}\left(e^{2 \pi i \frac{k}{n}} \Psi\left(b_{0}\right)\right)
$$

and, in consequence, since Ψ preserves orientation

$$
\begin{equation*}
\operatorname{Arg} \frac{b_{k}}{b_{0}}<\operatorname{Arg} \frac{b_{k+1}}{b_{0}}, \quad k \in\{0,1, \ldots, n-2\} \tag{5}
\end{equation*}
$$

Let $u:\{0,1, \ldots, n-1\} \longrightarrow\{0,1, \ldots, n-1\}$ be defined by

$$
u(k)=(k+q) \quad(\bmod n) .
$$

Function u is a bijection. Moreover, $u(k+1)=u(k)+1$ for $u(k) \neq n-1$ and $u(k+1)=0$ for $u(k)=n-1$. Now, note that

$$
\begin{equation*}
F\left(b_{k}\right)=\Psi^{-1}\left(e^{2 \pi i \frac{k+q}{n}} \Psi\left(b_{0}\right)\right)=b_{u(k)}, \quad k \in\{0,1, \ldots, n-1\} \tag{6}
\end{equation*}
$$

and since F preserves orientation

$$
\begin{equation*}
F\left[\overrightarrow{\left(b_{k}, b_{k+1}\right)}\right]=\overrightarrow{\left(F\left(b_{k}\right), F\left(b_{k+1}\right)\right)}=\overrightarrow{\left(b_{u(k)}, b_{u(k+1)}\right)} \tag{7}
\end{equation*}
$$

for $k \in\{0,1, \ldots, n-2\}$. Thus we have proved the following
Lemma 1. Let integers $1 \leq q<n$ be relatively prime and $F \in \mathcal{M}_{q, n}$. Then for every $b_{0} \in S^{1}$ there exist unique $b_{1}, \ldots, b_{n-1} \in S^{1}$ satisfying (5) and (6).

Now note a few simple facts about an orientation-preserving homeomorphism $\Phi: S^{1} \longrightarrow S^{1}$ satisfying (2), where $F \in \mathcal{M}_{q, n}$ and m is a positive integer.

Lemma 2. Assume that $F \in \mathcal{M}_{q, n}$, where $1 \leq q<n$ are relatively prime. If an orientation-preserving homeomorphism $\Phi: S^{1} \longrightarrow S^{1}$ satisfies (2) for some integer $m \geq 2$, then there exists a unique $j=j(\Phi) \in$ $\{0,1, \ldots, m-1\}$ such that

$$
\begin{equation*}
\Phi \in \mathcal{M}_{q+j n, m n} \tag{8}
\end{equation*}
$$

Moreover, m is the minimal number for which (2) holds if and only if $n>\operatorname{gcd}(q+j n, m)$.

Proof. Note that $\Phi^{m n}=\mathrm{id}_{S^{1}}$. Hence by Proposition 1 and Remark 2 $\Phi \in \mathcal{M}_{q^{\prime}, m n}$ for some unique $q^{\prime} \in\{1, \ldots, m n-1\}$. By Definition 1 and (2) we have

$$
\Phi^{m}(z)=\Gamma^{-1}\left(e^{2 \pi i \frac{q^{\prime}}{n}} \Gamma(z)\right), \quad z \in S^{1}
$$

and by (2) since $F \in \mathcal{M}_{q, n}$

$$
e^{2 \pi i \frac{q^{\prime}}{n}} z=\Gamma \circ \Psi^{-1}\left(e^{2 \pi i \frac{q}{n}} \Psi \circ \Gamma^{-1}(z)\right), \quad z \in S^{1}
$$

where $\Psi, \Gamma: S^{1} \longrightarrow S^{1}$ are orientation-preserving homeomorphisms. Thus $q^{\prime}=q+j n$, for some $j \in\{0, \ldots, m-1\}$. Hence, since q^{\prime} is unique, we get that j is also unique.

Since $\operatorname{gcd}(q, n)=1$ we have $\operatorname{gcd}(q+j n, n)=1$ taking

$$
\begin{equation*}
k_{\Phi}=\frac{m}{\operatorname{gcd}(q+j n, m)} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
q_{\Phi}=\frac{q+j n}{\operatorname{gcd}(q+j n, m)} \tag{10}
\end{equation*}
$$

we obtain

$$
\Phi \in \mathcal{M}_{q+j n, m n}=\mathcal{M}_{q_{\Phi}, k_{\Phi} n} \quad \text { and } \quad \operatorname{gcd}\left(q_{\Phi}, k_{\Phi} n\right)=1
$$

From this and Remark 3 we get that

$$
\begin{equation*}
\Phi^{k_{\Phi} n}=\mathrm{id}_{S^{1}} \tag{11}
\end{equation*}
$$

and $k_{\Phi} n$ is the minimal number such that (11) holds.
Note that q_{Φ}, k_{Φ} do not depend on j and m. Indeed, if $\Phi \in \mathcal{M}_{q+j^{\prime} n, m^{\prime} n}$ for some $j^{\prime} \in\left\{0, \ldots, m^{\prime}-1\right\}, j^{\prime} \neq j$ and $m^{\prime} \neq m$, then

$$
\Phi \in \mathcal{M}_{q_{\Phi}^{\prime}, k_{\Phi}^{\prime} n} \quad \text { and } \quad \operatorname{gcd}\left(q_{\Phi}^{\prime}, k_{\Phi}^{\prime} n\right)=1
$$

where

$$
q_{\Phi}^{\prime}=\frac{q+j^{\prime} n}{\operatorname{gcd}\left(q+j^{\prime} n, m^{\prime},\right)}, \quad k_{\Phi}^{\prime}=\frac{m^{\prime}}{\operatorname{gcd}\left(q+j^{\prime} n, m^{\prime}\right)}
$$

It follows that $k_{\Phi}^{\prime} n$ is the minimal number such that

$$
\Phi^{k_{\Phi}^{\prime} n}=\mathrm{id}_{S^{1}}
$$

thus $k_{\Phi}^{\prime}=k_{\Phi}$ and by Remark $2 q_{\Phi}^{\prime}=q_{\Phi}$.
Now we can prove the second assertion. Suppose that $n \leq \operatorname{gcd}(q+$ $j n, m)$. Of course, $n \neq \operatorname{gcd}(q+j n, m)$, since $\operatorname{gcd}(q+j n, n)=1$. Consequently, from (9) $k_{\Phi} n<m$. On the other hand, by (11) and (2) we obtain

$$
F(z)=\Phi^{m}(z)=\Phi^{k_{\Phi} n} \circ \Phi^{m-k_{\Phi} n}(z)=\Phi^{m-k_{\Phi} n}(z), \quad z \in S^{1}
$$

Conversely, suppose that there exists a positive integer $m^{\prime}<m$ such that $\Phi^{m^{\prime}}(z)=F(z)$ for $z \in S^{1}$. Consequently, by (2) we get

$$
\Phi^{m-m^{\prime}}=\mathrm{id}_{S^{1}}
$$

Since $k_{\Phi} n$ is the minimal number such that (11) holds we get $m-m^{\prime} \geq k_{\Phi} n$, so $m>k_{\Phi} n$. Hence by (9) $n<\operatorname{gcd}(q+j n, m)$.

Corollary 3. Let F, Φ satisfy the assumptions of Lemma 2 and k_{Φ} be defined by (9), then

$$
\begin{equation*}
m^{\prime}:=m-t k_{\Phi} n, \quad t=\left[\frac{m}{k_{\Phi} n}\right], \tag{12}
\end{equation*}
$$

where $[x]$ denotes the entire part of x, is the minimal number such that (2) holds.

Proof. From (8) and (9) we obtain that Φ satisfies (11). Thus

$$
F(z)=\Phi^{m}(z)=\Phi^{m^{\prime}+t k_{\Phi} n}(z)=\Phi^{m^{\prime}}(z), \quad z \in S^{1}
$$

Hence by Lemma 2 there exists $j^{\prime} \in\left\{0, \ldots, m^{\prime}-1\right\}$ such that $\Phi \in$ $\mathcal{M}_{q+j^{\prime} n, m^{\prime} n}$. Similary as in the previous proof we get $k_{\Phi}=\frac{m^{\prime}}{\operatorname{gcd}\left(q+j^{\prime} n, m^{\prime}\right)}$. Moreover, by (12) $k_{\Phi} n>m^{\prime}$, therefore $n>\operatorname{gcd}\left(q+j^{\prime} n, m^{\prime}\right)$ and by Lemma 2 we get our claim.

The factor $\operatorname{gcd}(q+j n, m)$ has another property, it determines the number of solutions of the equation (2). Indeed, when $\operatorname{gcd}(q+j n, m)=m$ for some $j \in\{0, \ldots, m-1\}$, then there is exactly one solution of (2). To show this fact we first prove the following

Lemma 3. Let $(G, *)$ be a group, $a, b \in G$ be elements of order n, $n \geq 2$. If $a^{m}=b$ for some positive integer m, then there exists a unique $l \in\{1, \ldots, n-1\}$ such that $b^{l}=a$.

Proof. Since b is an element of order n we have

$$
b^{i} \neq b^{j}, \quad 1 \leq i<j \leq n-1 .
$$

Thus

$$
a^{m i} \neq a^{m j}, \quad 1 \leq i<j \leq n-1,
$$

but the order of a is n, so there exists $l \in\{1, \ldots, n-1\}$ such that $a^{l m}=a$.

As a simple consequence of above lemma we have
Corollary 4. Let $F \in \mathcal{M}_{q, n}$ and $\Phi \in \mathcal{M}_{q^{\prime}, n}$, where $\operatorname{gcd}(q, n)=$ $\operatorname{gcd}\left(q^{\prime}, n\right)=1$. Let (2) holds for some integer $m>0$, then there exists an integer $l>0$ such that

$$
\Phi(z)=F^{l}(z), \quad z \in S^{1}
$$

To avoid solutions described in Corollary 4 from now on we define the following set. Let integer q, n be such that $0<q<n, \operatorname{gcd}(q, n)=1$. For every $m \geq 2$ put

$$
\begin{equation*}
A_{m}:=\{j \in\{0, \ldots, m-1\}: \operatorname{gcd}(q+j n, m) \neq m\} \tag{13}
\end{equation*}
$$

Since $\operatorname{gcd}(n, q)=1$, we get $\operatorname{gcd}(q+j n, m)<m$ for at least one $j \in$ $\{0, \ldots, m-1\}$, so $A_{m} \neq \emptyset$.

Let $F \in \mathcal{M}_{q, n}, \operatorname{gcd}(q, n)=1$ and $j \in A_{m}$. By Remark 1 there exists a unique $d \in\{1, \ldots, n-1\}$ such that $q d=1(\bmod n)$. Set

$$
\begin{equation*}
k_{j}=\frac{m}{\operatorname{gcd}(q+j n, m)} \tag{14}
\end{equation*}
$$

Define the following sequence $\left(c_{i}\right)_{i \in\left\{0, \ldots, k_{j} n-1\right\}}$ satisfying two conditions
$\left(\mathrm{G}_{1}\right) \quad c_{0}, c_{1}, \ldots, c_{k_{j}-1} \in S^{1}$ are arbitrary fixed and such that

$$
c_{0} \prec c_{1} \prec \cdots \prec c_{k_{j}-1} \text { and } c_{1}, \ldots, c_{k_{j}-1} \in \overline{\left(c_{0}, F^{d}\left(c_{0}\right)\right)},
$$

$\left(\mathrm{G}_{2}\right) \quad c_{i+k_{j}}=F^{d}\left(c_{i}\right)$ for $i \in\left\{0, \ldots, k_{j}(n-1)-1\right\}$.
Let $\left\{I_{i}\right\}_{i \in\left\{0, \ldots, k_{j} n-1\right\}}$ be a family of arcs such that

$$
\begin{equation*}
I_{i}:=\overrightarrow{\left\langle c_{v^{i}(0)}, c_{v^{i}(1)}\right\rangle} \tag{H}
\end{equation*}
$$

where $v(l)=\left(l+q_{j}\right)\left(\bmod k_{j} n\right), l \in\left\{0, \ldots, k_{j} n-1\right\}$ and

$$
\begin{equation*}
q_{j}=\frac{q+j n}{\operatorname{gcd}(q+j n, m)} \tag{15}
\end{equation*}
$$

Now we can prove our main result.
Theorem 2. Assume that $F \in \mathcal{M}_{q, n}, \operatorname{gcd}(q, n)=1, m \geq 2$ and $j \in$ A_{m}. Let $\left(c_{i}\right)_{i \in\left\{0, \ldots, k_{j} n-1\right\}}$ satisfies $\left(\mathrm{G}_{1}\right),\left(\mathrm{G}_{2}\right),\left\{I_{i}\right\}_{i \in\left\{0, \ldots, k_{j} n-1\right\}}$ fulfils (H)
and $\Phi_{i}: I_{i} \longrightarrow I_{i+1}$ for $i \in\left\{0, \ldots, k_{j}-2\right\}$ be orientation-preserving homeomorphisms. Then there exists a unique orientation-preserving homeomorphism $\Phi: S^{1} \longrightarrow S^{1}$ satisfying (2) and such that

$$
\Phi_{\mid I_{i}}=\Phi_{i} \quad \text { for } i \in\left\{0, \ldots, k_{j}-2\right\} .
$$

Moreover, $j=j(\Phi)$.
Proof. Since $j \in A_{m}$, we have $k_{j} \neq 1$. Of course, by (14) and (15) $\operatorname{gcd}\left(k_{j} n, q_{j}\right)=1$. It follows by (14) and (15) that

$$
\frac{q_{j}}{q+j n}=\frac{k_{j}}{m},
$$

thus

$$
\begin{equation*}
k_{j} q=m q_{j} \quad\left(\bmod k_{j} n\right) . \tag{16}
\end{equation*}
$$

Let

$$
\begin{equation*}
m^{\prime}:=m-t_{j} k_{j} n, \quad t_{j}=\left[\frac{m}{k_{j} n}\right], \tag{17}
\end{equation*}
$$

than $k_{j} n>m^{\prime}$. By (17) and (16) we conclude that

$$
\begin{equation*}
k_{j} q=m^{\prime} q_{j} \quad\left(\bmod k_{j} n\right) \tag{18}
\end{equation*}
$$

Let $d \in\{1, \ldots, n-1\}$ and $q d=1(\bmod n)$. From $\left(\mathrm{G}_{2}\right)$ and (1) we have

$$
F^{d}\left(c_{i+k_{j}(n-1)}\right)=F^{d} \circ F^{d(n-1)}\left(c_{i}\right)=F^{d n}\left(c_{i}\right)=c_{i}
$$

for $i \in\left\{0, \ldots, k_{j}-1\right\}$. From this and $\left(\mathrm{G}_{2}\right)$ it follows that

$$
\begin{equation*}
F^{d}\left(c_{i}\right)=c_{\left(i+k_{j}\right)} \quad\left(\bmod k_{j} n\right), \quad i \in\left\{0, \ldots, k_{j} n-1\right\} \tag{19}
\end{equation*}
$$

Hence since $q d=1(\bmod n)$ and $F^{n}=\mathrm{id}_{S^{1}}$

$$
\begin{equation*}
F\left(c_{i}\right)=\left(F^{d}\right)^{q}\left(c_{i}\right)=c_{\left(i+k_{j} q\right)}\left(\bmod k_{j} n\right), \quad i \in\left\{0, \ldots, k_{j} n-1\right\} . \tag{20}
\end{equation*}
$$

Moreover, by (19), (G_{1}) and $\left(\mathrm{G}_{2}\right)$, since F^{d} preserves orientation, we get

$$
\begin{aligned}
& c_{0} \prec c_{1} \prec \cdots \prec c_{k_{j}-1} \prec F^{d}\left(c_{0}\right)=c_{k_{j}} \prec F^{d}\left(c_{1}\right)=c_{k_{j}+1} \\
& \prec \cdots \prec F^{d}\left(c_{k_{j}(n-1)-1}\right)=c_{k_{j} n-1} \prec F^{d}\left(c_{k_{j}(n-1)}\right)=c_{0},
\end{aligned}
$$

thus

$$
\operatorname{Arg} \frac{c_{i}}{c_{0}}<\operatorname{Arg} \frac{c_{i+1}}{c_{0}}, \quad i \in\left\{0,1, \ldots, k_{j} n-2\right\} .
$$

From (14) and (17) follows that there exists an integer h such that

$$
\begin{equation*}
m^{\prime}=h k_{j} . \tag{21}
\end{equation*}
$$

Since $k_{j} n>m^{\prime}$ we conclude that $h k_{j} n>h m^{\prime}$ and $n>h$. Put $h^{\prime}:=$ $\operatorname{gcd}(m, q+j n)$. As $\operatorname{gcd}(n, q+j n)=1$ we must have $\operatorname{gcd}\left(n, h^{\prime}\right)=1$. On the other hand, by (17) $h=h^{\prime}-t_{j} n$, so we see that $\operatorname{gcd}(h, n)=1$. Thus from Remark 1 there exists a unique pair of integers a, a^{\prime} such that

$$
\begin{equation*}
a h=a^{\prime} n+1 \tag{22}
\end{equation*}
$$

Define

$$
\begin{equation*}
\Phi_{i}:=F^{a} \circ \Phi_{i-k_{j}+1}^{-1} \circ \cdots \circ \Phi_{i-2}^{-1} \circ \Phi_{i-1}^{-1} \tag{23}
\end{equation*}
$$

for $i \in\left\{k_{j}-1, k_{j}, \ldots, k_{j} n-1\right\}$. It is easy to see that Φ_{i}, defined above, preserve orientation. Next observe that, by (23) for $i \in\left\{k_{j}-1, \ldots, k_{j} n-2\right\}$

$$
\begin{aligned}
\Phi_{i}\left[I_{i}\right] & =F^{a}\left[I_{i-k_{j}+1}\right]=F^{a}\left[\overrightarrow{\left\langle c_{v^{i-k_{j}+1}(0)}, c_{v^{i-k_{j}+1}(1)}\right\rangle}\right] \\
& =\overrightarrow{\left\langle F^{a}\left(c_{v^{i-k_{j}+1}(0)}\right), F^{a}\left(c_{v^{i-k_{j}+1}(1)}\right)\right\rangle},
\end{aligned}
$$

but from the definition of v and (20) we get

$$
F^{a}\left(c_{v^{i-k_{j}+1}(0)}\right)=c_{\left(\left(i-k_{j}+1\right) q_{j}+a k_{j} q\right)}\left(\bmod k_{j} n\right)
$$

Applying (18) we see that
$\left(\left(i-k_{j}+1\right) q_{j}+a k_{j} q\right)\left(\bmod k_{j} n\right)=\left(\left(i-k_{j}+1\right) q_{j}+a m^{\prime} q_{j}\right)\left(\bmod k_{j} n\right)$.
Hence by (21) and (22)

$$
\begin{gathered}
\left(\left(i-k_{j}+1\right) q_{j}+a m^{\prime} q_{j}\right)\left(\bmod k_{j} n\right) \\
=\left(\left(i-k_{j}+1\right) q_{j}+k_{j} q_{j}+a^{\prime} q_{j} k_{j} n\right)\left(\bmod k_{j} n\right)=\left((i+1) q_{j}\right)\left(\bmod k_{j} n\right)
\end{gathered}
$$

Thus

$$
F^{a}\left(c_{v^{i-k_{j}+1}(0)}\right)=c_{v^{i+1}(0)} .
$$

Similary $F^{a}\left(c_{v^{i-k_{j}+1}(1)}\right)=c_{v^{i+1}(1)}$, so

$$
\begin{equation*}
\Phi_{i}\left[I_{i}\right]=I_{i+1}, \quad i \in\left\{k_{j}-1, \ldots, k_{j} n-2\right\} \tag{24}
\end{equation*}
$$

In the same manner we can show that, if $i=k_{j} n-1$ we get

$$
\begin{equation*}
\Phi_{k_{j} n-1}\left[I_{k_{j} n-1}\right]=I_{0} \tag{25}
\end{equation*}
$$

From (23) we have

$$
\begin{equation*}
F_{\mid I_{i+1}}^{-a}=\Phi_{i-k_{j}+1}^{-1} \circ \cdots \circ \Phi_{i-2}^{-1} \circ \Phi_{i-1}^{-1} \circ \Phi_{i}^{-1} \tag{26}
\end{equation*}
$$

for $i \in\left\{k_{j}-1, \ldots, k_{j} n-1\right\}$. Fix an $i \in\left\{k_{j}, \ldots, k_{j} n-1\right\}$, thus combining (23) with (26) we obtain

$$
\begin{align*}
\Phi_{i} & =F^{a} \circ \Phi_{i-k_{j}} \circ \Phi_{i-k_{j}}^{-1} \circ \Phi_{i-k_{j}+1}^{-1} \circ \cdots \circ \Phi_{i-2}^{-1} \circ \Phi_{i-1}^{-1} \\
& =F^{a} \circ \Phi_{i-k_{j}} \circ F_{\mid I_{i}}^{-a} \tag{27}
\end{align*}
$$

We may write the index i in the form $i=p k_{j}+r$, where $p \geq 1$ is an integer and $r \in\left\{0,1, \ldots, k_{j}-1\right\}$. Using (27) p times we get

$$
\begin{equation*}
\Phi_{i}=F^{p a} \circ \Phi_{r} \circ F_{\mid I_{i}}^{-p a} \tag{28}
\end{equation*}
$$

for $i \in\left\{k_{j}, \ldots, k_{j} n-1\right\}$.
Define

$$
\begin{equation*}
\Phi(z):=\Phi_{i}(z) \quad z \in I_{i}, \quad i \in\left\{0, \ldots, k_{j} n-1\right\} \tag{29}
\end{equation*}
$$

It follows from the properties of $\Phi_{i}, i \in\left\{0, \ldots, k_{j} n-1\right\}$ and the definition of I_{i} for $i \in\left\{0, \ldots, k_{j} n-1\right\}$ that Φ is an orientation-preserving homeomorphism. We next prove that $\Phi^{m}=F$. For this purpose note that from (26) we get

$$
\begin{equation*}
F_{\mid I_{i}}^{a}=\Phi_{i+k_{j}-1} \circ \cdots \circ \Phi_{i+2} \circ \Phi_{i+1} \circ \Phi_{i} \tag{30}
\end{equation*}
$$

for $i \in\left\{0, \ldots, k_{j}(n-1)\right\}$. Now fix a $z \in I_{l}, l \in\left\{0, \ldots, n k_{j}-m^{\prime}\right\}$, then by $(29),(30),(22)$ and (21) we obtain

$$
\begin{aligned}
\Phi^{m^{\prime}}(z)= & \left(\Phi_{l+m^{\prime}-1} \circ \cdots \circ \Phi_{l+m^{\prime}-k_{j}}\right) \circ\left(\Phi_{l+m^{\prime}-k_{j}-1} \circ \cdots \circ \Phi_{l+m^{\prime}-2 k_{j}}\right) \\
& \circ \cdots \circ\left(\Phi_{l+k_{j}-1} \circ \cdots \circ \Phi_{l+1} \circ \Phi_{l}\right)(z)=F^{a h}(z)=F^{a^{\prime} n+1}(z) \\
= & F(z)
\end{aligned}
$$

Let $l \in\left\{n k_{j}-m^{\prime}+1, \ldots, k_{j} n-1\right\}$ and $z \in I_{l}$, then by (24) and (25) we can get

$$
\begin{aligned}
\Phi^{m^{\prime}}(z)= & \left(\Phi_{m^{\prime}-k_{j} n+l-1} \circ \cdots \circ \Phi_{m^{\prime}-k_{j}(n+1)+l}\right) \circ \cdots \circ\left(\Phi_{k_{j}-1} \circ \cdots \circ \Phi_{0}\right) \\
& \circ\left(\Phi_{k_{j} n-1} \circ \cdots \circ \Phi_{k_{j}(n-1)}\right) \circ \cdots \circ\left(\Phi_{l+k_{j}-1} \circ \cdots \circ \Phi_{l}\right)(z)
\end{aligned}
$$

or

$$
\begin{align*}
\Phi^{m^{\prime}}(z)= & \left(\Phi_{m^{\prime}-k_{j} n+l-1} \circ \cdots \circ \Phi_{m^{\prime}-k_{j}(n+1)+l}\right) \\
& \circ \cdots \circ\left(\Phi_{r-1} \circ \cdots \circ \Phi_{0} \circ \Phi_{k_{j} n-1} \circ \cdots \circ \Phi_{k_{j}(n-1)+r}\right) \tag{31}\\
& \circ \cdots \circ\left(\Phi_{l+k_{j}-1} \circ \cdots \circ \Phi_{l}\right)(z)
\end{align*}
$$

where $r \in\left\{1,2, \ldots, k_{j}-1\right\}$. In the first case, similary as above, we have $\Phi^{m^{\prime}}(z)=F(z), z \in I_{l}$, straight from (30), (22) and (21). In the second case it suffices to show that $\Phi^{k_{j}}(z)=F^{a}(z)$, where $z \in I_{(n-1) k_{j}+r}$ for $r \in\left\{1, \ldots, k_{j}-1\right\}$, thus

$$
\begin{gathered}
\Phi^{k_{j}}(z)=\Phi_{r-1} \circ \Phi_{r-2} \circ \cdots \circ \Phi_{1} \circ \Phi_{0} \circ \Phi_{k_{j} n-1} \circ \cdots \circ \Phi_{k_{j}(n-1)+r}(z) \\
z \in I_{k_{j}(n-1)+r}
\end{gathered}
$$

Replacing all Φ_{i} for $i \in\left\{k_{j}(n-1)+r, \ldots, k_{j} n-1\right\}$ by (28) with $p=n-1$ we obtain

$$
\begin{aligned}
\Phi^{k_{j}}(z)= & \Phi_{r-1} \circ \Phi_{r-2} \circ \ldots \Phi_{1} \circ \Phi_{0} \circ F^{(n-1) a} \circ \Phi_{k_{j}-1} \circ F^{-(n-1) a} \\
& \circ F^{(n-1) a} \circ \Phi_{k_{j}-2} \circ F^{-(n-1) a} \circ \cdots \circ F^{(n-1) a} \circ \Phi_{r} \circ F^{-(n-1) a}(z) \\
= & \Phi_{r-1} \circ \Phi_{r-2} \circ \cdots \circ \Phi_{1} \circ \Phi_{0} \circ F^{n a} \circ F^{-a} \circ \Phi_{k_{j}-1} \circ \Phi_{k_{j}-2} \\
& \circ \cdots \circ \Phi_{r-1} \circ \Phi_{r} \circ F^{-(n-1) a}(z), \quad z \in I_{k_{j}(n-1)+r}
\end{aligned}
$$

Now using (1) and (26) for $i=k_{j}-1$ we get

$$
\begin{aligned}
\Phi^{k_{j}}(z)= & \left(\Phi_{r-1} \circ \Phi_{r-2} \circ \ldots \Phi_{1} \circ \Phi_{0} \circ \Phi_{0}^{-1} \circ \Phi_{1}^{-1} \circ \cdots \circ \Phi_{r-1}^{-1}\right) \\
& \circ\left(\Phi_{r}^{-1} \circ \cdots \circ \Phi_{k_{j}-1}^{-1} \circ \Phi_{k_{j}-1} \circ \Phi_{k_{j}-2} \circ \cdots \circ \Phi_{r}\right) \circ F^{-(n-1) a}(z) \\
= & F^{-(n-1) a}(z)=F^{-n a} \circ F^{a}(z)=F^{a}(z), \quad z \in I_{k_{j}(n-1)+r} .
\end{aligned}
$$

Applying this and (30) to (31) in view of (21) and (22) we get $\Phi^{m^{\prime}}=F$. From (30) and (29) we see that $F^{a}=\Phi^{k_{j}}$. Hence by (1)

$$
\begin{equation*}
\Phi^{k_{j} n}=F^{a n}=\operatorname{id}_{S^{1}} \tag{32}
\end{equation*}
$$

Finally, using (17) we have $\Phi^{m}=\Phi^{m^{\prime}+k_{j} t_{j} n}=F$.
The proof is completed by showing that $j=j(\Phi)$. To do this note that (H), the definition of the function v and (31) give $\Phi \in \mathcal{M}_{q_{j}, k_{j} n}$ but according to (14) and (15) we obtain $\mathcal{M}_{q_{j}, k_{j} n}=\mathcal{M}_{q+j n, m n}$, so $j=j(\Phi)$.

Theorem 3. Let $F \in \mathcal{M}_{q, n}, \operatorname{gcd}(q, n)=1, d \in\{1, \ldots, n-1\}$ be such that $q d=1(\bmod n)$ and $\Phi: S^{1} \longrightarrow S^{1}$ be an orientation-preserving homeomorphism satisfying (2), where integer $m \geq 2$ is the minimal such a number and such that $\Phi^{n} \neq \mathrm{id}_{S^{1}}$ or $\Phi^{k}=\mathrm{id}_{S^{1}}$ for an integer $k<n$. Then for every $c_{0} \in S^{1}$ there exists a sequence $c_{1}, \ldots, c_{k_{\Phi} n-1} \in S^{1}$ fulfils $c_{0} \prec c_{1} \prec \cdots \prec c_{k_{\Phi} n-1}$ and $\left(\mathrm{G}_{2}\right)$, where $k_{j}=k_{\Phi}$ and k_{Φ} is given by (9) for some $j=j(\Phi) \notin A_{m}$. Moreover, if $\left\{I_{i}\right\}_{i \in\left\{0, \ldots, k_{\Phi} n-1\right\}}$ fulfils (H) with $q_{j}=q_{\Phi}$, then $\Phi\left[I_{i}\right]=I_{(i+1)}, i \in\left\{0, \ldots, k_{\Phi} n-2\right\}, \Phi\left[I_{k_{\Phi} n-1}\right]=I_{0}$, and taking $\Phi_{i}:=\Phi_{\mid I_{i}}$ we get

$$
\Phi_{i}=F^{a} \circ \Phi_{i-k_{\Phi}+1}^{-1} \circ \cdots \circ \Phi_{i-1}^{-1}
$$

for $i \in\left\{k_{\Phi}-1, \ldots, k_{\Phi} n-1\right\}$ and some integer a.
Proof. From Lemma 2 we get $\Phi \in \mathcal{M}_{q+j n, m n}$ for some $j \in\{0, \ldots, m-1\}$. Thus $\Phi \in \mathcal{M}_{q_{\Phi}, k_{\Phi} n}$, where $\operatorname{gcd}\left(q_{\Phi}, k_{\Phi} n\right)=1$ and k_{Φ}, q_{Φ} are defined in (9) and (10). Fix a $c_{0} \in S^{1}$. From Lemma 1 we get $c_{0} \prec c_{1} \prec \cdots \prec c_{k_{\Phi} n-1} \prec c_{0}$ and

$$
\Phi\left(c_{i}\right)=c_{\left(i+q_{\Phi}\right)}\left(\bmod k_{\Phi} n\right) \quad i \in\left\{0, \ldots, k_{\Phi} n-1\right\} .
$$

It follows from (9) and (10) that $\left(m q_{\Phi}=k_{\Phi} q\right)\left(\bmod k_{\Phi} n\right)$, thus

$$
F\left(c_{i}\right)=\Phi^{m}\left(c_{i}\right)=c_{\left(i+m q_{\Phi}\right)}\left(\bmod k_{\Phi} n\right)=c_{\left(i+k_{\Phi} q\right)}\left(\bmod k_{\Phi} n\right)
$$

for $i \in\left\{0, \ldots, k_{\Phi} n-1\right\}$. Hence

$$
F^{d}\left(c_{i}\right)=c_{\left(i+k_{\Phi} d q\right)\left(\bmod k_{\Phi} n\right)}=c_{\left(i+k_{\Phi}\right)}\left(\bmod k_{\Phi} n\right), \quad i \in\left\{0, \ldots, k_{\Phi} n-1\right\}
$$

as $k_{\Phi} d q=k_{\Phi}\left(\bmod k_{\Phi} n\right)$, so $\left(\mathrm{G}_{2}\right)$ holds. Moreover, by (7)

$$
\begin{aligned}
\Phi\left[I_{i}\right] & =\overrightarrow{\left\langle\Phi\left(c_{v^{i}(0)}\right), \Phi\left(c_{v^{i}(1)}\right)\right\rangle}=\overrightarrow{\left\langle\Phi\left(c_{v^{i+1}(0)}\right), \Phi\left(c_{v^{i+1}(1)}\right)\right\rangle} \\
& =I_{(i+1)} \quad\left(\bmod k_{\Phi} n\right), \quad i \in\left\{0, \ldots, k_{\Phi} n-1\right\} .
\end{aligned}
$$

Now let us observe that, since $\Phi^{n} \neq \mathrm{id}_{S^{1}}$ we get $k_{\Phi}>1$. On the other hand, from Lemma 2, as m is the minimal number such that (2) holds we have $k_{\Phi} n>m$. Thus, symilary as in the proof of Theorem 2, we know that $a h=a^{\prime} n+1$ for some unique integer a, a^{\prime} and $h=\frac{m}{k_{\Phi}}$. It follows from (2) that

$$
\Phi^{k_{\Phi} h}(z)=F(z), \quad z \in S^{1}
$$

But $\Phi^{k_{\Phi} a^{\prime} n}=\operatorname{id}_{S^{1}}$ since $\Phi \in \mathcal{M}_{q_{\Phi}, k_{\Phi} n}$, thus

$$
F^{a}(z)=\Phi^{k_{\Phi} h a}(z)=\Phi^{k_{\Phi} a^{\prime} n+k_{\Phi}}(z)=\Phi^{k_{\Phi}}(z), \quad z \in S^{1} .
$$

Using the definition of Φ_{i} we get

$$
F^{a}(z)=\Phi_{i+k_{\Phi}-1} \circ \Phi_{i+k_{\Phi}-2} \circ \cdots \circ \Phi_{i}(z),
$$

where $z \in I_{i}, i \in\left\{0, \ldots,(n-1) k_{\Phi}\right\}$. Put $l:=i+k_{\Phi}-1$, then

$$
\Phi_{l}(z)=F^{a} \circ \Phi_{l-k_{\Phi}+1}^{-1} \circ \cdots \circ \Phi_{l-2}^{-1} \circ \Phi_{l-1}^{-1}(z)
$$

for $z \in I_{l}$ and $l \in\left\{k_{\Phi}-1, \ldots, k_{\Phi} n-1\right\}$. This ends the proof.
Corollary 5. Every orientation-preserving homeomorphic solution of (2) may be obtained in the manner described in proof of Theorem 2 or by Corollary 4.

Theorem 4. Let $F \in \mathcal{M}_{q, n}$ and $\operatorname{gcd}(q, n)=1$. A homeomorphism $\Phi: S^{1} \longrightarrow S^{1}$ satisfies (2) for some integer $m \geq 2$ if and only if there exist $j \in\{0, \ldots, m-1\}$ and an orientation-preserving homeomorphism $\gamma: \mathbb{R} \longrightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\Phi\left(e^{2 \pi i x}\right)=e^{2 \pi i \gamma^{-1}\left(\frac{q+j n}{m}+\gamma(x)\right)}, \quad x \in \mathbb{R} \tag{33}
\end{equation*}
$$

and γ is an increasing solution of

$$
\begin{equation*}
\gamma\left(f^{p}(x)-\frac{p q-1}{n}\right)=\gamma(x)+1, \quad x \in \mathbb{R}, \tag{34}
\end{equation*}
$$

where f is the lift of F such that $0 \leq f(0)<1, p<n$ and $p q=1(\bmod n)$.
Proof. Since Φ fulfils (2), then by Lemma 2 there exists a unique $j \in\{0, \ldots, m-1\}$ such that $\Phi \in \mathcal{M}_{q+j n, m n}$. Hence and from Definition 1

$$
\begin{equation*}
\Phi(z)=\Psi^{-1}\left(e^{2 \pi i \frac{q+j n}{m n}} \Psi(z)\right), \quad z \in S^{1} \tag{35}
\end{equation*}
$$

where $\Psi: S^{1} \longrightarrow S^{1}$ is an orientation-preserving homeomorphism. Using (2) once more we get

$$
\begin{equation*}
F(z)=\Psi^{-1}\left(e^{2 \pi i \frac{q}{n}} \Psi(z)\right), \quad z \in S^{1} \tag{36}
\end{equation*}
$$

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be the lift of F such that $0 \leq f(0)<1$, than by (36) we have

$$
\begin{equation*}
e^{2 \pi i \psi(f(x))}=e^{2 \pi i \psi(x)+\frac{q}{n}}, \quad x \in \mathbb{R} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\psi(f(x))=\psi(x)+\frac{q}{n}+k, \quad x \in \mathbb{R} \tag{38}
\end{equation*}
$$

where k is an integer and $\psi: \mathbb{R} \longrightarrow \mathbb{R}$ is an increasing lift of Ψ such that

$$
\begin{equation*}
\psi(x+1)=\psi(x)+1, \quad x \in \mathbb{R} . \tag{39}
\end{equation*}
$$

Since $0 \leq f(0)<1$ from the properties of ψ follows that $\psi(0) \leq \psi(f(0))<$ $\psi(1)=\psi(0)+1$, thus

$$
0 \leq \psi(f(0))-\psi(0)<1
$$

We conclude from this and (38) that $k=0$. Therefore (38) gives

$$
\begin{equation*}
\psi(f(x))=\psi(x)+\frac{q}{n}, \quad x \in \mathbb{R} \tag{40}
\end{equation*}
$$

Put

$$
\begin{equation*}
\gamma:=n \psi, \tag{41}
\end{equation*}
$$

then by (39) and (40) we have

$$
\begin{align*}
& \gamma(x+1)=\gamma(x)+n, \quad x \in \mathbb{R}, \\
& \gamma(f(x))=\gamma(x)+q, \quad x \in \mathbb{R} \tag{42}
\end{align*}
$$

According to Lemma 7 in [8] the above system of equations is equivalent to the equation (34), where $p<n$ is such that $p q=1(\bmod n)$. It follows from (35) and (41) that Φ satisfies (33). Let us note that if $j \notin A_{m}$ i.e. $\operatorname{gcd}(q+j n, m)=m$, than $q+j n=m h$ for some integer h and (33) gives

$$
\Phi\left(e^{2 \pi i x}\right)=e^{2 \pi i \gamma^{-1}(h+\gamma(x))}, \quad x \in \mathbb{R}
$$

Now suppose that Φ satisfies (33) and γ fulfils (34). Thus

$$
\Phi^{m}\left(e^{2 \pi i x}\right)=e^{2 \pi i \gamma^{-1}(q+j n+\gamma(x))}, \quad x \in \mathbb{R} .
$$

But (34) and (42) are equivalent, so using (42) we get

$$
\Phi^{m}\left(e^{2 \pi i x}\right)=e^{2 \pi i \gamma^{-1}(q+\gamma(x))}=e^{2 \pi i f(x)}=F\left(e^{2 \pi i x}\right), \quad x \in \mathbb{R}
$$

which proves the thorem.
Acknowledgement. The author wishes to express his thanks to Professor M. C. Zdun for suggesting the problem and for stimulating conversations.

References

[1] M. Bajger, On the structure of some flows on the unit circle, Aequationes Math. 55 (1998), 106-121.
[2] K. Ciepliński, On the embeddability of a homeomorphism of the unit circle in disjoint iteration groups, Publ. Math. Debrecen 55 (1999), 363-383.
[3] K. Ciepliński and M. C. Zdun, On a system of Schröder equations on the circle (to appear).
[4] I. P. Cornfeld, S. V. Fomin and Y. G. Sinai, Ergodic theory, Grundlehren 245, Springer Verlag, Berlin, Heidelberg, New York, 1982.
[5] M. Kuczma, On the functional equation $\varphi^{n}(x)=g(x)$, Ann. Polon. Math. 11 (1961), 161-175.
[6] M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, Encyclopaedia of Mathematics and its Applications 32, Cambridge Univ. Press, Cambridge, New York, Port Chester, Melbourne, Sydney, 1990.
[7] P. Walters, An Introduction to Ergodic Theory, Graduate Text in Mathematics, Springer-Verlag, New York-Heidelberg-Berlin, 1982.
[8] M. C. Zdun, On embedding of homeomorphisms of the circle in continuous flow, Iteration theory and its functional equations, (Proceedings, Schloss Hofen, 1984), Lecture Notes in Mathematics 1163, Springer-Verlag, Heidelberg, New York, 1985, 218-231.

PAWEE SOLARZ
PEDAGOGICAL UNIVERSITY
INSTITUTE OF MATHEMATICS
UL. PODCHORA̧ŻYCH 2
PL-30-084 KRAKÓW
POLAND
E-mail: psolarz@wsp.krakow.pl
(Received July 4, 2002; revised January 3, 2003)

