Publ. Math. Debrecen **63/4** (2003), 693–702

On solutions of a conditional generalization of the Gołąb–Schinzel equation

By ANNA MUREŃKO (Rzeszów)

Abstract. We determine the functions $f : \mathbb{R}_+ \to \mathbb{R}$ satisfying equation (1), continuous at a point $a \in \mathbb{R}_+$ such that $f(a) \neq 0$. As a consequence we obtain a solution of a problem of P. Kahlig and J. Matkowski and a partial solution of a problem of J. Brzdęk.

Let \mathbb{N} and \mathbb{R} denote, as usual, the sets of positive integers and reals. Motivated by a problem of P. KAHLIG, arising from meteorology and fluid mechanics (cf. [14]), J. ACZÉL and J. SCHWAIGER [3] have determined the continuous solutions $f : \mathbb{R} \to \mathbb{R}$ of the following conditional version of the well known Gołąb–Schinzel functional equation

$$f(x+f(x)y) = f(x)f(y) \quad \text{for } x \ge 0, \ y \ge 0.$$

Some further conditional generalizations of the Gołąb–Schinzel equation have been considered in [9], [17] and [18].

In connection with those results, at the 38th International Symposium on Functional Equations (Noszvaj, Hungary, June 11–17, 2000), J. BRZDĘK (see [8]) raised, among others, the problem of solving the conditional equation

$$f(x+f(x)y) = f(x)f(y) \quad \text{whenever } x, y, x+f(x)y \in \mathbb{R}_+, \qquad (1)$$

Mathematics Subject Classification: 39B22.

Key words and phrases: Gołąb–Schinzel functional equation, solution continuous at a point.

in the class of functions $f : \mathbb{R}_+ \to \mathbb{R}$ that are continuous at a point, where $\mathbb{R}_+ = (0, \infty)$. A first partial answer to the problem has been given in [15], where equation (1) has been solved in the class of functions $f : \mathbb{R}_+ \to [0, \infty)$, continuous at a point $a \in \mathbb{R}_+$ such that f(a) > 0. In this paper we improve that outcome by solving equation (1) in the class of functions $f : \mathbb{R}_+ \to \mathbb{R}$ that are continuous at a point $a \in \mathbb{R}_+$ such that $f(a) \neq 0$. Thus we also give an answer to Problem 1 in [14] (see Remark 2) and generalize the results in [3], [9], [17] and (to some extent) [18]. Let us mention that our result is closely related to that of [17], where L. REICH has determined the continuous solutions $f : \mathbb{R} \to \mathbb{R}$ of the conditional equation

$$f(x+f(x)y) = f(x)f(y) \quad \text{whenever } x, y, x+f(x)y \ge 0.$$
(2)

For more information on the Gołąb–Schinzel functional equation, some recent results, applications, generalizations and further references see also [1], [2], [4]–[7], [10]–[13] and [16].

From now on we assume that $f : \mathbb{R}_+ \to \mathbb{R}$ is a solution of equation (1) and $\lim_{x\to 0^+} f(x) = 1$, unless explicitly stated otherwise.

Let us start with some lemmas.

Lemma 1. Suppose that $f(y_2) = f(y_1) \neq 0$ for some $y_2 > y_1 > 0$. Then there exists $x_0 > 0$ such that $f(x_0) = 1$ and $f(t + x_0) = f(t)$ for t > 0.

PROOF. First assume that $f(y_2) = f(y_1) < 0$. Then there exists a point $x_0 > 0$ such that $y_1 = y_2 + x_0 f(y_2)$. Thus

$$f(y_1) = f(y_2 + x_0 f(y_2)) = f(y_2) f(x_0) = f(y_1) f(x_0),$$

whence $f(x_0) = 1$.

Further, in the case $f(y_1) = f(y_2) > 0$, there exists a point $x_0 > 0$ such that $y_2 = y_1 + x_0 f(y_1)$. Since

$$f(y_2) = f(y_1 + x_0 f(y_1)) = f(y_1) f(x_0) = f(y_2) f(x_0),$$

again we have $f(x_0) = 1$.

Consequently, in either of the cases, by (1) we have

$$f(t+x_0) = f(x_0+t) = f(x_0+f(x_0)t) = f(x_0)f(t) = f(t)$$
 for $t > 0$.

Lemma 2. Let $y_1, y_2 \in \mathbb{R}$, $y_2 > y_1 > 0$ and $f(y_1) = f(y_2) > 0$. Then $f(t + (y_2 - y_1)) = f(t)$ for t > 0.

PROOF. On account of (1) we have

$$f(t + (y_2 - y_1)) = f\left(y_2 + \frac{t - y_1}{f(y_1)}f(y_1)\right)$$

= $f\left(y_2 + \frac{t - y_1}{f(y_1)}f(y_2)\right) = f(y_2)f\left(\frac{t - y_1}{f(y_1)}\right)$
= $f(y_1)f\left(\frac{t - y_1}{f(y_1)}\right) = f\left(y_1 + \frac{t - y_1}{f(y_1)}f(y_1)\right) = f(t)$ (3)

for $t > y_1$.

Fix $t_0 > 0$. According to Lemma 1 there exists $x_0 \in \mathbb{R}_+$ with $f(x_0) = 1$. Take $n \in \mathbb{N}$ such that $t_0 + nx_0 > y_1$. Then, in view of (3), $f(t_0 + nx_0) = f(t_0 + nx_0 + (y_2 - y_1))$. This and Lemma 1 imply

$$f(t_0) = f(t_0 + nx_0) = f(t_0 + (y_2 - y_1) + nx_0) = f(t_0 + (y_2 - y_1)). \quad \Box$$

Lemma 3. Suppose that there exists $y_1, y_2 \in \mathbb{R}$ with $y_2 > y_1 > 0$ and $f(y_1) = f(y_2) > 0$. Then there exists $x_0 > 0$ such that

(a)
$$f(t + f(z)x_0) = f(t)$$
 for $t > 0$, $z > 0$ with $f(z) > 0$,

(b) if $z_1, z_2 > 0$ and $f(z_2) > f(z_1) > 0$, then

$$f(t + (f(z_2) - f(z_1))x_0) = f(t)$$
 for $t > 0$.

PROOF. (a) According to Lemma 1 there exists $x_0 > 0$ with $f(x_0) = 1$. Since $f(z + f(z)x_0) = f(z)f(x_0) = f(z) > 0$, Lemma 2 yields

$$f(t) = f(t + z + x_0 f(z) - z) = f(t + x_0 f(z))$$
 for $t > 0$.

(b) Note that $t + (f(z_2) - f(z_1))x_0 > 0$ for t > 0. Thus using (a) twice, for $z = z_1$ and $z = z_2$, for every t > 0 we have

$$f(t + (f(z_2) - f(z_1))x_0) = f(t + (f(z_2) - f(z_1))x_0 + f(z_1)x_0)$$

= $f(t + f(z_2)x_0) = f(t).$

Lemma 4. Suppose that there exist $y_1, y_2 \in \mathbb{R}$ with $y_2 > y_1 > 0$ and $f(y_1) = f(y_2) \neq 0$. Then, for every d > 0, there exists $c \in (0, d)$ with f(t+c) = f(t) for t > 0.

PROOF. First suppose that there exists $\delta > 0$ such that f(x) = const for $x \in U := (0, \delta]$. Since $\lim_{x\to 0^+} f(x) = 1$, f(x) > 0 for $x \in U$. Hence, in view of Lemma 2, we have

$$f(t + (\delta - x)) = f(t) \quad \text{for } t > 0, x \in U.$$

Now assume that there does not exist any $\delta > 0$ such that f(x) = constfor $x \in U := (0, \delta]$. Take $\varepsilon \in (0, 1)$. Since $\lim_{x \to 0^+} f(x) = 1$, there exists $\delta > 0$ such that $f(x) \in (1 - \varepsilon, 1 + \varepsilon)$ for $x \in U_1 := (0, \delta)$. Take $x_1, x_2 \in U_1$ with $f(x_1) < f(x_2)$. Then $f(x_2) - f(x_1) < 2\varepsilon$ and $f(x_1) > 0$. Moreover, according to Lemma 3(b), there is $x_0 > 0$ with

$$f(t + (f(x_2) - f(x_1))x_0) = f(t)$$
 for $t > 0$.

To complete the proof it is enough to observe that the point x_0 may chosen independently of the values of x_1 and x_2 and therefore, by a suitable choice of ε , the value $c := (f(x_2) - f(x_1))x_0$ can be made arbitrarily small.

Lemma 5. If there exist $y_1, y_2 \in \mathbb{R}$ such that $y_2 > y_1 > 0$ and $f(y_2) = f(y_1) \neq 0$, then $f \equiv 1$.

PROOF. For the proof by contradiction suppose that there exists t > 0with $f(t) \neq 1$. Put $\varepsilon := |f(t) - 1|$. Since $\lim_{x \to 0^+} f(x) = 1$, there exists $\delta > 0$ such that $|f(x) - 1| < \varepsilon$ for $x \in (0, \delta)$. From Lemma 4 we infer that there is $x_1 \in (0, \delta)$ with $f(x_1) = f(t)$, which means that $|f(t) - 1| < \varepsilon$, contrary to the definition of ε .

Lemma 6. There is $c \in \mathbb{R}$ such that $f(x) \in \{cx+1, 0\}$ for all x > 0.

PROOF. The case where $f \equiv 1$ is trivial. Therefore assume that $f(x) \neq 1$ for some x > 0. First we show that there exists $c \in \mathbb{R}$ with

$$\frac{f(x)-1}{x} = c \quad \text{for } x > 0 \quad \text{with } f(x) > 0.$$
(4)

For the proof by contradiction suppose that x > y > 0, f(x), f(y) > 0and

$$\frac{f(x)-1}{x} \neq \frac{f(y)-1}{y}.$$

Then

$$x + yf(x) \neq y + xf(y),$$

and

$$f(x + yf(x)) = f(x)f(y) = f(y + xf(y)) \neq 0.$$

Thus, by Lemma 5, $f \equiv 1$, a contradiction.

Now suppose that there exists x > 0 with f(x) < 0 and

$$\frac{f(x)-1}{x} \neq c. \tag{5}$$

Since $\lim_{x\to 0^+} f(x) = 1$, there exists d > 0 with f(d) > 0 and x + df(x) > 0. Next, by (4) $\frac{f(d)-1}{d} = c$. This and (5) imply that

$$\frac{f(x)-1}{x} \neq \frac{f(d)-1}{d}$$

Thus

$$x + df(x) \neq d + xf(d),$$

and

$$f(x + df(x)) = f(x)f(d) = f(d + xf(d)) \neq 0.$$

Hence on account of Lemma 5, $f \equiv 1$, a contradiction.

In this way we have shown that there is $c \in \mathbb{R}$ such that $\frac{f(x)-1}{x} = c$ for x > 0 with $f(x) \neq 0$, which implies the statement. \Box

Lemma 7. Suppose that there exists y > 0 with $f(y) \neq 0$ and $c := \frac{f(y)-1}{y} \neq 0$. Then the following statements are valid:

- I) (a) In the case c < 0, f(x) = cx + 1 for $x \in (0, -\frac{1}{c})$. (b) In the case c > 0, f(x) = cx + 1 for x > 0.
- II) In the case c < 0, either f(x) = cx + 1 for $x \ge -\frac{1}{c}$ or f(x) = 0 for $x \ge -\frac{1}{c}$.

PROOF. I) Since $\lim_{x\to 0^+} f(x) = 1$, there exists $h_1 > 0$ such that

$$f(x) > 0 \quad \text{for } x \in (0, h_1].$$
 (6)

Define a sequence $\{h_n\}$ by

$$h_{n+1} = h_1 + f(h_1)h_n \quad \text{for } n \in \mathbb{N}$$

and let $U_n := (0, h_n]$. Note that $f(h_{n+1}) = f(h_1 + f(h_1)h_n) = f(h_1)f(h_n)$ for $n \in \mathbb{N}$. Thus, by induction, we get

$$f(h_n) = (f(h_1))^n \quad \text{for } n \in \mathbb{N}.$$
(7)

Next we prove that

$$f(x) > 0 \quad \text{for } x \in U_n. \tag{8}$$

So fix $n \in \mathbb{N}$ and assume (8). Define a function $g: U_n \to U_{n+1}$ by

$$g(x) = h_1 + f(h_1)x \quad \text{for } x \in U_n.$$

Then $g(U_n) = g((0, h_n]) = (h_1, h_{n+1}] =: V_{n+1}$ and

$$f(V_{n+1}) = f(g(U_n)) = f(h_1)f(U_n) \subset \mathbb{R}_+.$$

Since $U_{n+1} = U_1 \cup V_{n+1}$, $f(U_{n+1}) \subset \mathbb{R}_+$. Consequently, in view of (6), (8) holds for every $n \in \mathbb{N}$.

Observe that (6) and Lemma 6 imply $f(h_1) = ch_1 + 1$. Moreover $c \neq 0$ and $h_1 \neq 0$; whence $f(h_1) \neq 1$. Two cases may occur:

- 1) $f(h_1) < 1$ (then c < 0);
- 2) $f(h_1) > 1$ (then c > 0).

In the first case, by (7), we have

$$\lim_{n \to \infty} f(h_n) = \lim_{n \to \infty} (f(h_1))^n = 0.$$
(9)

Further, on account of (8), $f(h_n) > 0$ for $n \in \mathbb{N}$. Thus, according to Lemma 6, $f(h_n) = ch_n + 1$. This and (9) imply $\lim_{n\to\infty} ch_n + 1 = 0$. Therefore $\lim_{n\to\infty} h_n = -\frac{1}{c}$ and consequently from (8) and Lemma 6 we infer that f(x) = cx + 1 for $x \in (0, -\frac{1}{c})$.

Now consider case 2). Then, by (7), we get

$$\lim_{n \to \infty} f(h_n) = \lim_{n \to \infty} (f(h_1))^n = \infty.$$
(10)

On the other hand $f(h_n) = ch_n + 1$. Hence from (10) we derive $\lim_{n\to\infty} ch_n + 1 = \infty$, which means that $\lim_{n\to\infty} h_n = \infty$. Consequently (8) and Lemma 6 yield f(x) = cx + 1 for x > 0.

II) According to I) f is continuous on the interval $(0, -\frac{1}{c})$ and, by Lemma 6, $f(-\frac{1}{c}) = 0$. Suppose that there is a point $b_2 > -\frac{1}{c}$ with $f(b_2) = 0$. Take $b_1 > -\frac{1}{c}$ and consider first the case where $b_1 < b_2$. Let

$$g(x) = x + b_2 f(x)$$
 for $x \in \left(0, -\frac{1}{c}\right)$.

Since f(x) = cx + 1 for $x \in (0, -\frac{1}{c})$, we get

$$\lim_{x \to 0^+} g(x) = b_2 \quad \text{and} \quad \lim_{x \to -\frac{1}{c}} g(x) = -\frac{1}{c}.$$
 (11)

Moreover by the continuity of f on $(0, -\frac{1}{c})$, g is continuous. This and (11) imply that there exists $x_1 \in (0, -\frac{1}{c})$ with $g(x_1) = b_1$. Consequently

$$f(b_1) = f(g(x_1)) = f(x_1 + b_2 f(x_1)) = f(x_1)f(b_2) = 0.$$

If $b_1 > b_2$ we put $g(x) = x + b_1 f(x)$ for $x \in (0, -\frac{1}{c})$ and obtain, in a similar way, $g(x_2) = b_2$ for some $x_2 \in (0, -\frac{1}{c})$. Hence $0 = f(b_2) = f(x_2)f(b_1)$, which implies $f(b_1) = 0$.

Thus we have shown that either f(x) = 0 for $x > -\frac{1}{c}$ or $f(x) \neq 0$ for $x > -\frac{1}{c}$. In the latter case, in view of Lemma 6, we get f(x) = cx + 1 for $x > -\frac{1}{c}$. This completes the proof.

Lemma 8. Suppose that $f(x) \in \{0,1\}$ for x > 0. Then f(x) = 1 for x > 0.

PROOF. Since $\lim_{x\to 0^+} f(x) = 1$, there exists $\delta > 0$ such that $f(x) \neq 0$ for $x \in (0, \delta)$, which means that f(x) = 1 for $x \in (0, \delta)$. Hence, according to Lemma 5, we get f(x) = 1 for x > 0.

Finally we have the following.

Theorem 1. Suppose that a function $f : \mathbb{R}_+ \to \mathbb{R}$ satisfies (1) and one of the subsequent three conditions holds.

- (a) $\lim_{x\to a^+} f(x) = f(a)$ for some $a \in \mathbb{R}_+$ with f(a) > 0
- (b) $\lim_{x\to a^-} f(x) = f(a)$ for some $a \in \mathbb{R}_+$ with f(a) < 0
- (c) $\lim_{x \to 0^+} f(x) = 1$.

Then

$$f(x) = \max\{cx+1, 0\}$$
 for every $x \in \mathbb{R}_+$,

or

$$f(x) = cx + 1$$
 for every $x \in \mathbb{R}_+$.

PROOF. Assume (a) ((b), respectively) and fix $\varepsilon > 0$. Then there exists $\delta \in (0, a)$ such that $|f(t) - f(a)| < \varepsilon |f(a)|$ for $t \in (a, a + \delta)$ ($t \in (a - \delta, a)$, respectively). Let $\delta_1 := \frac{\delta}{|f(a)|}$ and take $x_1 \in (0, \delta_1)$. Notice that $x_1|f(a)| < \delta < a$, which means $-a < f(a)x_1$ and consequently $x := a + f(a)x_1 > 0$. Since

$$|x-a| = |a+f(a)x_1 - a| = |f(a)x_1| = |f(a)|x_1 < |f(a)|\delta_1 = \delta,$$

 \mathbf{SO}

$$|f(x) - f(a)| < \varepsilon |f(a)|. \tag{12}$$

From (1) and (12) we have

$$|f(a)f(x_1) - f(a)| = |f(a + f(a)x_1) - f(a)| = |f(x) - f(a)| < \varepsilon |f(a)|.$$

Hence

$$|f(x_1) - 1| < \varepsilon.$$

Thus we have proved that, for every $\varepsilon > 0$, there exists $\delta_1 > 0$ such that $|f(x_1) - 1| < \varepsilon$ for $x_1 \in (0, \delta_1)$. This means that $\lim_{x \to 0^+} f(x) = 1$. Now from Lemmas 6, 7 and 8 we get the statement.

Remark 1. Let $f : \mathbb{R}_+ \to \mathbb{R}$ be given by: f(x) = 1 for $x \in \mathbb{N}$ and f(x) = 0 for $x \in \mathbb{R}_+ \setminus \mathbb{N}$. Then it is easily seen that f satisfies (1). This example shows that continuity at a point $a \in \mathbb{R}_+$ does not need to imply continuity of a solution $f : \mathbb{R}_+ \to \mathbb{R}$ of (1), unless $f(a) \neq 0$.

Remark 2. P. KAHLING and J. MATKOWSKI (see [14], Problem 1) have raised the problem to determine all functions $f : [0, \infty) \to [0, \infty)$, satisfying the following conditional Golab–Schinzel functional equation

$$f(x+f(x)y) = f(x)f(y) \quad \text{for } x, y \ge 0, \tag{13}$$

that are differentiable at some point $y_0 \ge 0$ with $f(y_0) \ne 0$. A solution to the problem can be easily derived from Theorem 1. Namely let f:

 $[0,\infty) \to [0,\infty)$ satisfy (13) and be differentiable at a point $y_0 \ge 0$ with $f(y_0) \ne 0$. Then f is continuous at y_0 . Next, with x = y = 0, from (13) we get $f(0) = (f(0))^2$, which means that $f(0) \in \{0,1\}$. Now it is easily seen that in the case $y_0 = 0$ we have $\lim_{x\to 0^+} f(x) = 1$. Therefore one of conditions (a)–(c) of Theorem (1) are fulfilled, whence we obtain the form of f.

References

- J. ACZÉL and J. DHOMBRES, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, Vol. 31, Cambridge University Press, 1989.
- [2] J. ACZÉL and S. GOLAB, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, *Aequationes Math.* 4 (1970), 1–10.
- [3] J. ACZÉL and J. SCHWAIGER, Continuous solutions of the Gołąb–Schinzel equation on the nonnegative reals and on related domains, *Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt.* II **208** (1999), 171–177.
- [4] K. BARON, On the continuous solutions of the Gołąb–Schinzel equation, Aequationes Math. 38 (1989), 155–162.
- [5] N. BRILLOUËT and J. DHOMBRES, Équations fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), 253–293.
- [6] J. BRZDĘK, On solutions of the Gołąb–Schinzel functional equation, Publ. Math. Debrecen 44 (1994), 235–241.
- [7] J. BRZDĘK, Bounded solutions of the Gołąb–Schinzel equation, Aequationes Math. 59 (2000), 248–254.
- [8] J. BRZDĘK, 28. Problem, In: Report of Meeting, The Thirty-eighth International Symposium on Functional Equations, June 11–17, 2000, Noszvaj, Hungary, Aequationes Math. 61 (2001), 313.
- J. BRZDĘK, On continuous solutions of a conditional Gołąb–Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 138 (2001), 3–6.
- [10] J. CHUDZIAK, Continuous solutions of a generalization of the Gołąb–Schinzel equation, Aequationes Math. 61 (2001), 63–78.
- [11] S. GOLAB and A. SCHINZEL, Sur l'équation fonctionnelle f(x+yf(x)) = f(x)f(y), Publ. Math. Debrecen **6** (1959), 113–125.
- [12] P. JAVOR, Continuous solutions of the functional equation f(x+yf(x)) = f(x)f(y), Proc. Internat. Sympos. on Topology and its Applications (Herceg-Novi, 1968), Savez Drŭstava Mat. Fiz. i Astronom., Belgrade, 1969, 206–209.
- [13] P. KAHLIG and J. MATKOWSKI, On some extensions of the Gołąb–Schinzel functional equation, Ann. Math. Siles. 8 (1994), 13–31.

- 702 A. Mureńko : On solutions of a conditional generalization...
- [14] P. KAHLIG and J. MATKOWSKI, A modified Gołąb-Schinzel equation on a restricted domain (with applications to meteorology and fluid mechanics), Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II (in print).
- [15] A. MUREŃKO, On solutions of the Gołąb–Schinzel equation, Internat. J. Math. Math. Sci. 27:9 (2001), 541–546.
- [16] P. PLAUMANN and S. STRAMBACH, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249–264.
- [17] L. REICH, Über die stetigen Lösungen der Gołąb-Schinzel-Gleichung auf ℝ_{≥0}, Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 208 (1999), 165–170.
- [18] M. SABLIK, A conditional Gołąb–Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 137 (2000), 11–15.

ANNA MUREŃKO DEPARTMENT OF MATHEMATICS UNIVERSITY OF RZESZÓW REJTANA 16 A 35-310 RZESZÓW POLAND

(Received August 27, 2002; revised March 5, 2003)