Publ. Math. Debrecen
63/4 (2003), 693-702

On solutions of a conditional generalization of the Goła̧b-Schinzel equation

By ANNA MUREŃKO (Rzeszów)

Abstract

We determine the functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfying equation (1), continuous at a point $a \in \mathbb{R}_{+}$such that $f(a) \neq 0$. As a consequence we obtain a solution of a problem of P. Kahlig and J. Matkowski and a partial solution of a problem of J. Brzdȩk.

Let \mathbb{N} and \mathbb{R} denote, as usual, the sets of positive integers and reals. Motivated by a problem of P. KAHLIG, arising from meteorology and fluid mechanics (cf. [14]), J. AczÉl and J. Schwaiger [3] have determined the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the following conditional version of the well known Goła̧b-Schinzel functional equation

$$
f(x+f(x) y)=f(x) f(y) \quad \text { for } x \geq 0, y \geq 0
$$

Some further conditional generalizations of the Goła̧b-Schinzel equation have been considered in [9], [17] and [18].

In connection with those results, at the 38 th International Symposium on Functional Equations (Noszvaj, Hungary, June 11-17, 2000), J. BRZDȨK (see [8]) raised, among others, the problem of solving the conditional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \quad \text { whenever } x, y, x+f(x) y \in \mathbb{R}_{+} \tag{1}
\end{equation*}
$$

Mathematics Subject Classification: 39B22.

Key words and phrases: Goła̧b-Schinzel functional equation, solution continuous at a point.
in the class of functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ that are continuous at a point, where $\mathbb{R}_{+}=(0, \infty)$. A first partial answer to the problem has been given in [15], where equation (1) has been solved in the class of functions $f: \mathbb{R}_{+} \rightarrow$ $[0, \infty)$, continuous at a point $a \in \mathbb{R}_{+}$such that $f(a)>0$. In this paper we improve that outcome by solving equation (1) in the class of functions $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ that are continuous at a point $a \in \mathbb{R}_{+}$such that $f(a) \neq 0$. Thus we also give an answer to Problem 1 in [14] (see Remark 2) and generalize the results in [3], [9], [17] and (to some extent) [18]. Let us mention that our result is closely related to that of [17], where L. REICH has determined the continuous solutions $f: \mathbb{R} \rightarrow \mathbb{R}$ of the conditional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \quad \text { whenever } x, y, x+f(x) y \geq 0 \tag{2}
\end{equation*}
$$

For more information on the Goła̧b-Schinzel functional equation, some recent results, applications, generalizations and further references see also [1], [2], [4]-[7], [10]-[13] and [16].

From now on we assume that $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ is a solution of equation (1) and $\lim _{x \rightarrow 0^{+}} f(x)=1$, unless explicitly stated otherwise.

Let us start with some lemmas.
Lemma 1. Suppose that $f\left(y_{2}\right)=f\left(y_{1}\right) \neq 0$ for some $y_{2}>y_{1}>0$. Then there exists $x_{0}>0$ such that $f\left(x_{0}\right)=1$ and $f\left(t+x_{0}\right)=f(t)$ for $t>0$.

Proof. First assume that $f\left(y_{2}\right)=f\left(y_{1}\right)<0$. Then there exists a point $x_{0}>0$ such that $y_{1}=y_{2}+x_{0} f\left(y_{2}\right)$. Thus

$$
f\left(y_{1}\right)=f\left(y_{2}+x_{0} f\left(y_{2}\right)\right)=f\left(y_{2}\right) f\left(x_{0}\right)=f\left(y_{1}\right) f\left(x_{0}\right),
$$

whence $f\left(x_{0}\right)=1$.
Further, in the case $f\left(y_{1}\right)=f\left(y_{2}\right)>0$, there exists a point $x_{0}>0$ such that $y_{2}=y_{1}+x_{0} f\left(y_{1}\right)$. Since

$$
f\left(y_{2}\right)=f\left(y_{1}+x_{0} f\left(y_{1}\right)\right)=f\left(y_{1}\right) f\left(x_{0}\right)=f\left(y_{2}\right) f\left(x_{0}\right)
$$

again we have $f\left(x_{0}\right)=1$.
Consequently, in either of the cases, by (1) we have

$$
f\left(t+x_{0}\right)=f\left(x_{0}+t\right)=f\left(x_{0}+f\left(x_{0}\right) t\right)=f\left(x_{0}\right) f(t)=f(t) \quad \text { for } t>0
$$

Lemma 2. Let $y_{1}, y_{2} \in \mathbb{R}, y_{2}>y_{1}>0$ and $f\left(y_{1}\right)=f\left(y_{2}\right)>0$. Then $f\left(t+\left(y_{2}-y_{1}\right)\right)=f(t)$ for $t>0$.

Proof. On account of (1) we have

$$
\begin{align*}
f\left(t+\left(y_{2}-y_{1}\right)\right) & =f\left(y_{2}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{1}\right)\right) \\
& =f\left(y_{2}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{2}\right)\right)=f\left(y_{2}\right) f\left(\frac{t-y_{1}}{f\left(y_{1}\right)}\right) \tag{3}\\
& =f\left(y_{1}\right) f\left(\frac{t-y_{1}}{f\left(y_{1}\right)}\right)=f\left(y_{1}+\frac{t-y_{1}}{f\left(y_{1}\right)} f\left(y_{1}\right)\right)=f(t)
\end{align*}
$$

$$
\text { for } t>y_{1} \text {. }
$$

Fix $t_{0}>0$. According to Lemma 1 there exists $x_{0} \in \mathbb{R}_{+}$with $f\left(x_{0}\right)=1$. Take $n \in \mathbb{N}$ such that $t_{0}+n x_{0}>y_{1}$. Then, in view of (3), $f\left(t_{0}+n x_{0}\right)=$ $f\left(t_{0}+n x_{0}+\left(y_{2}-y_{1}\right)\right)$. This and Lemma 1 imply

$$
f\left(t_{0}\right)=f\left(t_{0}+n x_{0}\right)=f\left(t_{0}+\left(y_{2}-y_{1}\right)+n x_{0}\right)=f\left(t_{0}+\left(y_{2}-y_{1}\right)\right) .
$$

Lemma 3. Suppose that there exists $y_{1}, y_{2} \in \mathbb{R}$ with $y_{2}>y_{1}>0$ and $f\left(y_{1}\right)=f\left(y_{2}\right)>0$. Then there exists $x_{0}>0$ such that
(a) $f\left(t+f(z) x_{0}\right)=f(t)$ for $t>0, z>0$ with $f(z)>0$;
(b) if $z_{1}, z_{2}>0$ and $f\left(z_{2}\right)>f\left(z_{1}\right)>0$, then

$$
f\left(t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right) x_{0}\right)=f(t) \quad \text { for } t>0 .
$$

Proof. (a) According to Lemma 1 there exists $x_{0}>0$ with $f\left(x_{0}\right)=1$. Since $f\left(z+f(z) x_{0}\right)=f(z) f\left(x_{0}\right)=f(z)>0$, Lemma 2 yields

$$
f(t)=f\left(t+z+x_{0} f(z)-z\right)=f\left(t+x_{0} f(z)\right) \quad \text { for } t>0 .
$$

(b) Note that $t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right) x_{0}>0$ for $t>0$. Thus using (a) twice, for $z=z_{1}$ and $z=z_{2}$, for every $t>0$ we have

$$
\begin{aligned}
f\left(t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right) x_{0}\right) & =f\left(t+\left(f\left(z_{2}\right)-f\left(z_{1}\right)\right) x_{0}+f\left(z_{1}\right) x_{0}\right) \\
& =f\left(t+f\left(z_{2}\right) x_{0}\right)=f(t) .
\end{aligned}
$$

Lemma 4. Suppose that there exist $y_{1}, y_{2} \in \mathbb{R}$ with $y_{2}>y_{1}>0$ and $f\left(y_{1}\right)=f\left(y_{2}\right) \neq 0$. Then, for every $d>0$, there exists $c \in(0, d)$ with $f(t+c)=f(t)$ for $t>0$.

Proof. First suppose that there exists $\delta>0$ such that $f(x)=$ const for $x \in U:=(0, \delta]$. Since $\lim _{x \rightarrow 0^{+}} f(x)=1, f(x)>0$ for $x \in U$. Hence, in view of Lemma 2, we have

$$
f(t+(\delta-x))=f(t) \quad \text { for } t>0, x \in U
$$

Now assume that there does not exist any $\delta>0$ such that $f(x)=$ const for $x \in U:=(0, \delta]$. Take $\varepsilon \in(0,1)$. Since $\lim _{x \rightarrow 0^{+}} f(x)=1$, there exists $\delta>0$ such that $f(x) \in(1-\varepsilon, 1+\varepsilon)$ for $x \in U_{1}:=(0, \delta)$. Take $x_{1}, x_{2} \in U_{1}$ with $f\left(x_{1}\right)<f\left(x_{2}\right)$. Then $f\left(x_{2}\right)-f\left(x_{1}\right)<2 \varepsilon$ and $f\left(x_{1}\right)>0$. Moreover, according to Lemma $3(\mathrm{~b})$, there is $x_{0}>0$ with

$$
f\left(t+\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) x_{0}\right)=f(t) \quad \text { for } t>0
$$

To complete the proof it is enough to observe that the point x_{0} may chosen independently of the values of x_{1} and x_{2} and therefore, by a suitable choice of ε, the value $c:=\left(f\left(x_{2}\right)-f\left(x_{1}\right)\right) x_{0}$ can be made arbitrarily small.

Lemma 5. If there exist $y_{1}, y_{2} \in \mathbb{R}$ such that $y_{2}>y_{1}>0$ and $f\left(y_{2}\right)=f\left(y_{1}\right) \neq 0$, then $f \equiv 1$.

Proof. For the proof by contradiction suppose that there exists $t>0$ with $f(t) \neq 1$. Put $\varepsilon:=|f(t)-1|$. Since $\lim _{x \rightarrow 0^{+}} f(x)=1$, there exists $\delta>0$ such that $|f(x)-1|<\varepsilon$ for $x \in(0, \delta)$. From Lemma 4 we infer that there is $x_{1} \in(0, \delta)$ with $f\left(x_{1}\right)=f(t)$, which means that $|f(t)-1|<\varepsilon$, contrary to the definition of ε.

Lemma 6. There is $c \in \mathbb{R}$ such that $f(x) \in\{c x+1,0\}$ for all $x>0$.
Proof. The case where $f \equiv 1$ is trivial. Therefore assume that $f(x) \neq 1$ for some $x>0$. First we show that there exists $c \in \mathbb{R}$ with

$$
\begin{equation*}
\frac{f(x)-1}{x}=c \quad \text { for } x>0 \quad \text { with } f(x)>0 \tag{4}
\end{equation*}
$$

For the proof by contradiction suppose that $x>y>0, f(x), f(y)>0$ and

$$
\frac{f(x)-1}{x} \neq \frac{f(y)-1}{y} .
$$

Then

$$
x+y f(x) \neq y+x f(y),
$$

and

$$
f(x+y f(x))=f(x) f(y)=f(y+x f(y)) \neq 0 .
$$

Thus, by Lemma $5, f \equiv 1$, a contradiction.
Now suppose that there exists $x>0$ with $f(x)<0$ and

$$
\begin{equation*}
\frac{f(x)-1}{x} \neq c . \tag{5}
\end{equation*}
$$

Since $\lim _{x \rightarrow 0^{+}} f(x)=1$, there exists $d>0$ with $f(d)>0$ and $x+d f(x)>0$. Next, by (4) $\frac{f(d)-1}{d}=c$. This and (5) imply that

$$
\frac{f(x)-1}{x} \neq \frac{f(d)-1}{d} .
$$

Thus

$$
x+d f(x) \neq d+x f(d),
$$

and

$$
f(x+d f(x))=f(x) f(d)=f(d+x f(d)) \neq 0 .
$$

Hence on account of Lemma $5, f \equiv 1$, a contradiction.
In this way we have shown that there is $c \in \mathbb{R}$ such that $\frac{f(x)-1}{x}=c$ for $x>0$ with $f(x) \neq 0$, which implies the statement.

Lemma 7. Suppose that there exists $y>0$ with $f(y) \neq 0$ and $c:=$ $\frac{f(y)-1}{y} \neq 0$. Then the following statements are valid:
I) (a) In the case $c<0, f(x)=c x+1$ for $x \in\left(0,-\frac{1}{c}\right)$.
(b) In the case $c>0, f(x)=c x+1$ for $x>0$.
II) In the case $c<0$, either $f(x)=c x+1$ for $x \geq-\frac{1}{c}$ or $f(x)=0$ for $x \geq-\frac{1}{c}$.

Proof. I) Since $\lim _{x \rightarrow 0^{+}} f(x)=1$, there exists $h_{1}>0$ such that

$$
\begin{equation*}
f(x)>0 \quad \text { for } x \in\left(0, h_{1}\right] . \tag{6}
\end{equation*}
$$

Define a sequence $\left\{h_{n}\right\}$ by

$$
h_{n+1}=h_{1}+f\left(h_{1}\right) h_{n} \quad \text { for } n \in \mathbb{N}
$$

and let $U_{n}:=\left(0, h_{n}\right]$. Note that $f\left(h_{n+1}\right)=f\left(h_{1}+f\left(h_{1}\right) h_{n}\right)=f\left(h_{1}\right) f\left(h_{n}\right)$ for $n \in \mathbb{N}$. Thus, by induction, we get

$$
\begin{equation*}
f\left(h_{n}\right)=\left(f\left(h_{1}\right)\right)^{n} \quad \text { for } n \in \mathbb{N} \tag{7}
\end{equation*}
$$

Next we prove that

$$
\begin{equation*}
f(x)>0 \quad \text { for } x \in U_{n} \tag{8}
\end{equation*}
$$

So fix $n \in \mathbb{N}$ and assume (8). Define a function $g: U_{n} \rightarrow U_{n+1}$ by

$$
g(x)=h_{1}+f\left(h_{1}\right) x \quad \text { for } x \in U_{n}
$$

Then $g\left(U_{n}\right)=g\left(\left(0, h_{n}\right]\right)=\left(h_{1}, h_{n+1}\right]=: V_{n+1}$ and

$$
f\left(V_{n+1}\right)=f\left(g\left(U_{n}\right)\right)=f\left(h_{1}\right) f\left(U_{n}\right) \subset \mathbb{R}_{+}
$$

Since $U_{n+1}=U_{1} \cup V_{n+1}, f\left(U_{n+1}\right) \subset \mathbb{R}_{+}$. Consequently, in view of (6), (8) holds for every $n \in \mathbb{N}$.

Observe that (6) and Lemma 6 imply $f\left(h_{1}\right)=c h_{1}+1$. Moreover $c \neq 0$ and $h_{1} \neq 0$; whence $f\left(h_{1}\right) \neq 1$. Two cases may occur:

1) $f\left(h_{1}\right)<1($ then $c<0)$;
2) $f\left(h_{1}\right)>1($ then $c>0)$.

In the first case, by (7), we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(h_{n}\right)=\lim _{n \rightarrow \infty}\left(f\left(h_{1}\right)\right)^{n}=0 \tag{9}
\end{equation*}
$$

Further, on account of (8), $f\left(h_{n}\right)>0$ for $n \in \mathbb{N}$. Thus, according to Lemma 6, $f\left(h_{n}\right)=c h_{n}+1$. This and (9) imply $\lim _{n \rightarrow \infty} c h_{n}+1=0$. Therefore $\lim _{n \rightarrow \infty} h_{n}=-\frac{1}{c}$ and consequently from (8) and Lemma 6 we infer that $f(x)=c x+1$ for $x \in\left(0,-\frac{1}{c}\right)$.

Now consider case 2). Then, by (7), we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f\left(h_{n}\right)=\lim _{n \rightarrow \infty}\left(f\left(h_{1}\right)\right)^{n}=\infty \tag{10}
\end{equation*}
$$

On the other hand $f\left(h_{n}\right)=c h_{n}+1$. Hence from (10) we derive $\lim _{n \rightarrow \infty} c h_{n}+1=\infty$, which means that $\lim _{n \rightarrow \infty} h_{n}=\infty$. Consequently (8) and Lemma 6 yield $f(x)=c x+1$ for $x>0$.
II) According to I) f is continuous on the interval $\left(0,-\frac{1}{c}\right)$ and, by Lemma 6, $f\left(-\frac{1}{c}\right)=0$. Suppose that there is a point $b_{2}>-\frac{1}{c}$ with $f\left(b_{2}\right)=0$. Take $b_{1}>-\frac{1}{c}$ and consider first the case where $b_{1}<b_{2}$. Let

$$
g(x)=x+b_{2} f(x) \quad \text { for } x \in\left(0,-\frac{1}{c}\right)
$$

Since $f(x)=c x+1$ for $x \in\left(0,-\frac{1}{c}\right)$, we get

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}} g(x)=b_{2} \quad \text { and } \quad \lim _{x \rightarrow-\frac{1}{c}} g(x)=-\frac{1}{c} . \tag{11}
\end{equation*}
$$

Moreover by the continuity of f on $\left(0,-\frac{1}{c}\right), g$ is continuous. This and (11) imply that there exists $x_{1} \in\left(0,-\frac{1}{c}\right)$ with $g\left(x_{1}\right)=b_{1}$. Consequently

$$
f\left(b_{1}\right)=f\left(g\left(x_{1}\right)\right)=f\left(x_{1}+b_{2} f\left(x_{1}\right)\right)=f\left(x_{1}\right) f\left(b_{2}\right)=0
$$

If $b_{1}>b_{2}$ we put $g(x)=x+b_{1} f(x)$ for $x \in\left(0,-\frac{1}{c}\right)$ and obtain, in a similar way, $g\left(x_{2}\right)=b_{2}$ for some $x_{2} \in\left(0,-\frac{1}{c}\right)$. Hence $0=f\left(b_{2}\right)=$ $f\left(x_{2}\right) f\left(b_{1}\right)$, which implies $f\left(b_{1}\right)=0$.

Thus we have shown that either $f(x)=0$ for $x>-\frac{1}{c}$ or $f(x) \neq 0$ for $x>-\frac{1}{c}$. In the latter case, in view of Lemma 6, we get $f(x)=c x+1$ for $x>-\frac{1}{c}$. This completes the proof.

Lemma 8. Suppose that $f(x) \in\{0,1\}$ for $x>0$. Then $f(x)=1$ for $x>0$.

Proof. Since $\lim _{x \rightarrow 0^{+}} f(x)=1$, there exists $\delta>0$ such that $f(x) \neq 0$ for $x \in(0, \delta)$, which means that $f(x)=1$ for $x \in(0, \delta)$. Hence, according to Lemma 5 , we get $f(x)=1$ for $x>0$.

Finally we have the following.
Theorem 1. Suppose that a function $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ satisfies (1) and one of the subsequent three conditions holds.
(a) $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ for some $a \in \mathbb{R}_{+}$with $f(a)>0$
(b) $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ for some $a \in \mathbb{R}_{+}$with $f(a)<0$
(c) $\lim _{x \rightarrow 0^{+}} f(x)=1$.

Then

$$
f(x)=\max \{c x+1,0\} \quad \text { for every } x \in \mathbb{R}_{+},
$$

or

$$
f(x)=c x+1 \quad \text { for every } x \in \mathbb{R}_{+} .
$$

Proof. Assume (a) ((b), respectively) and fix $\varepsilon>0$. Then there exists $\delta \in(0, a)$ such that $|f(t)-f(a)|<\varepsilon|f(a)|$ for $t \in(a, a+\delta)(t \in$ $(a-\delta, a)$, respectively). Let $\delta_{1}:=\frac{\delta}{|f(a)|}$ and take $x_{1} \in\left(0, \delta_{1}\right)$. Notice that $x_{1}|f(a)|<\delta<a$, which means $-a<f(a) x_{1}$ and consequently $x:=$ $a+f(a) x_{1}>0$. Since

$$
|x-a|=\left|a+f(a) x_{1}-a\right|=\left|f(a) x_{1}\right|=|f(a)| x_{1}<|f(a)| \delta_{1}=\delta,
$$

so

$$
\begin{equation*}
|f(x)-f(a)|<\varepsilon|f(a)| . \tag{12}
\end{equation*}
$$

From (1) and (12) we have

$$
\left|f(a) f\left(x_{1}\right)-f(a)\right|=\left|f\left(a+f(a) x_{1}\right)-f(a)\right|=|f(x)-f(a)|<\varepsilon|f(a)| .
$$

Hence

$$
\left|f\left(x_{1}\right)-1\right|<\varepsilon .
$$

Thus we have proved that, for every $\varepsilon>0$, there exists $\delta_{1}>0$ such that $\left|f\left(x_{1}\right)-1\right|<\varepsilon$ for $x_{1} \in\left(0, \delta_{1}\right)$. This means that $\lim _{x \rightarrow 0^{+}} f(x)=1$. Now from Lemmas 6, 7 and 8 we get the statement.

Remark 1. Let $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ be given by: $f(x)=1$ for $x \in \mathbb{N}$ and $f(x)=0$ for $x \in \mathbb{R}_{+} \backslash \mathbb{N}$. Then it is easily seen that f satisfies (1). This example shows that continuity at a point $a \in \mathbb{R}_{+}$does not need to imply continuity of a solution $f: \mathbb{R}_{+} \rightarrow \mathbb{R}$ of (1), unless $f(a) \neq 0$.

Remark 2. P. Kahling and J. Matkowski (see [14], Problem 1) have raised the problem to determine all functions $f:[0, \infty) \rightarrow[0, \infty)$, satisfying the following conditional Goła̧b-Schinzel functional equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \quad \text { for } x, y \geq 0, \tag{13}
\end{equation*}
$$

that are differentiable at some point $y_{0} \geq 0$ with $f\left(y_{0}\right) \neq 0$. A solution to the problem can be easily derived from Theorem 1 . Namely let f :
$[0, \infty) \rightarrow[0, \infty)$ satisfy (13) and be differentiable at a point $y_{0} \geq 0$ with $f\left(y_{0}\right) \neq 0$. Then f is continuous at y_{0}. Next, with $x=y=0$, from (13) we get $f(0)=(f(0))^{2}$, which means that $f(0) \in\{0,1\}$. Now it is easily seen that in the case $y_{0}=0$ we have $\lim _{x \rightarrow 0^{+}} f(x)=1$. Therefore one of conditions (a)-(c) of Theorem (1) are fulfilled, whence we obtain the form of f.

References

[1] J. Aczél and J. Dhombres, Functional equations in several variables, Encyclopedia of Mathematics and its Applications, Vol. 31, Cambridge University Press, 1989.
[2] J. AczÉL and S. GOॄA̧B, Remarks on one-parameter subsemigroups of the affine group and their homo- and isomorphisms, Aequationes Math. 4 (1970), 1-10.
[3] J. Aczél and J. Schwaiger, Continuous solutions of the Gołąb-Schinzel equation on the nonnegative reals and on related domains, Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 208 (1999), 171-177.
[4] K. Baron, On the continuous solutions of the Gołạb-Schinzel equation, Aequationes Math. 38 (1989), 155-162.
[5] N. Brillouët and J. Dhombres, Équations fonctionnelles et recherche de sous-groupes, Aequationes Math. 31 (1986), 253-293.
[6] J. Brzdȩk, On solutions of the Goła̧b-Schinzel functional equation, Publ. Math. Debrecen 44 (1994), 235-241.
[7] J. Brzdȩk, Bounded solutions of the Goła̧b-Schinzel equation, Aequationes Math. 59 (2000), 248-254.
[8] J. Brzdȩk, 28. Problem, In: Report of Meeting, The Thirty-eighth International Symposium on Functional Equations, June 11-17, 2000, Noszvaj, Hungary, Aequationes Math. 61 (2001), 313.
[9] J. BrZdȩk, On continuous solutions of a conditional Gołạb-Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 138 (2001), 3-6.
[10] J. Chudziak, Continuous solutions of a generalization of the Gołąb-Schinzel equation, Aequationes Math. 61 (2001), 63-78.
[11] S. Go乇A̧B and A. Schinzel, Sur l'équation fonctionnelle $f(x+y f(x))=f(x) f(y)$, Publ. Math. Debrecen 6 (1959), 113-125.
[12] P. Javor, Continuous solutions of the functional equation $f(x+y f(x))=f(x) f(y)$, Proc. Internat. Sympos. on Topology and its Applications (Herceg-Novi, 1968), Savez Drŭstava Mat. Fiz. i Astronom., Belgrade, 1969, 206-209.
[13] P. Kahlig and J. Matkowski, On some extensions of the Goła̧b-Schinzel functional equation, Ann. Math. Siles. 8 (1994), 13-31.
[14] P. Kahlig and J. Matkowski, A modified Goła̧b-Schinzel equation on a restricted domain (with applications to meteorology and fluid mechanics), Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II (in print).
[15] A. Mureńko, On solutions of the Goła̧b-Schinzel equation, Internat. J. Math. Math. Sci. 27:9 (2001), 541-546.
[16] P. Plaumann and S. Strambach, Zweidimensionale Quasialgebren mit Nullteilern, Aequationes Math. 15 (1977), 249-264.
[17] L. Reich, Über die stetigen Lösungen der Gołạb-Schinzel-Gleichung auf $\mathbb{R}_{\geq 0}$, Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 208 (1999), 165-170.
[18] M. Sablik, A conditional Gołąb-Schinzel equation, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. Abt. II 137 (2000), 11-15.

```
ANNA MUREŃKO
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF RZESZÓW
REJTANA 16 A
35-310 RZESZÓW
POLAND
```

