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On solutions of a conditional generalization of the
GoÃla̧b–Schinzel equation

By ANNA MUREŃKO (Rzeszów)

Abstract. We determine the functions f : R+ → R satisfying equation (1),
continuous at a point a ∈ R+ such that f(a) 6= 0. As a consequence we obtain a
solution of a problem of P. Kahlig and J. Matkowski and a partial solution of a
problem of J. Brzdȩk.

Let N and R denote, as usual, the sets of positive integers and reals.
Motivated by a problem of P. Kahlig, arising from meteorology and fluid
mechanics (cf. [14]), J. Aczél and J. Schwaiger [3] have determined the
continuous solutions f : R→ R of the following conditional version of the
well known GoÃla̧b–Schinzel functional equation

f(x + f(x)y) = f(x)f(y) for x ≥ 0, y ≥ 0.

Some further conditional generalizations of the GoÃla̧b–Schinzel equation
have been considered in [9], [17] and [18].

In connection with those results, at the 38th International Sympo-
sium on Functional Equations (Noszvaj, Hungary, June 11–17, 2000), J.

Brzdȩk (see [8]) raised, among others, the problem of solving the condi-
tional equation

f(x + f(x)y) = f(x)f(y) whenever x, y, x + f(x)y ∈ R+, (1)
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in the class of functions f : R+ → R that are continuous at a point, where
R+ = (0,∞). A first partial answer to the problem has been given in [15],
where equation (1) has been solved in the class of functions f : R+ →
[0,∞), continuous at a point a ∈ R+ such that f(a) > 0. In this paper
we improve that outcome by solving equation (1) in the class of functions
f : R+ → R that are continuous at a point a ∈ R+ such that f(a) 6= 0.
Thus we also give an answer to Problem 1 in [14] (see Remark 2) and
generalize the results in [3], [9], [17] and (to some extent) [18]. Let us
mention that our result is closely related to that of [17], where L. Reich

has determined the continuous solutions f : R → R of the conditional
equation

f(x + f(x)y) = f(x)f(y) whenever x, y, x + f(x)y ≥ 0. (2)

For more information on the GoÃla̧b–Schinzel functional equation, some
recent results, applications, generalizations and further references see also
[1], [2], [4]–[7], [10]–[13] and [16].

From now on we assume that f : R+ → R is a solution of equation (1)
and limx→0+ f(x) = 1, unless explicitly stated otherwise.

Let us start with some lemmas.

Lemma 1. Suppose that f(y2) = f(y1) 6= 0 for some y2 > y1 > 0.

Then there exists x0 > 0 such that f(x0) = 1 and f(t + x0) = f(t) for

t > 0.

Proof. First assume that f(y2) = f(y1) < 0. Then there exists a
point x0 > 0 such that y1 = y2 + x0f(y2). Thus

f(y1) = f(y2 + x0f(y2)) = f(y2)f(x0) = f(y1)f(x0),

whence f(x0) = 1.
Further, in the case f(y1) = f(y2) > 0, there exists a point x0 > 0

such that y2 = y1 + x0f(y1). Since

f(y2) = f(y1 + x0f(y1)) = f(y1)f(x0) = f(y2)f(x0),

again we have f(x0) = 1.
Consequently, in either of the cases, by (1) we have

f(t + x0) = f(x0 + t) = f(x0 + f(x0)t) = f(x0)f(t) = f(t) for t > 0. ¤
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Lemma 2. Let y1, y2 ∈ R, y2 > y1 > 0 and f(y1) = f(y2) > 0. Then

f(t + (y2 − y1)) = f(t) for t > 0.

Proof. On account of (1) we have

f(t + (y2 − y1)) = f

(
y2 +

t− y1

f(y1)
f(y1)

)

= f

(
y2 +

t− y1

f(y1)
f(y2)

)
= f(y2)f

(
t− y1

f(y1)

)

= f(y1)f
(

t− y1

f(y1)

)
= f

(
y1 +

t− y1

f(y1)
f(y1)

)
= f(t)

for t > y1.

(3)

Fix t0 > 0. According to Lemma 1 there exists x0 ∈R+ with f(x0)= 1.
Take n ∈ N such that t0 + nx0 > y1. Then, in view of (3), f(t0 + nx0) =
f(t0 + nx0 + (y2 − y1)). This and Lemma 1 imply

f(t0) = f(t0 + nx0) = f(t0 + (y2 − y1) + nx0) = f(t0 + (y2 − y1)). ¤

Lemma 3. Suppose that there exists y1, y2 ∈ R with y2 > y1 > 0 and

f(y1) = f(y2) > 0. Then there exists x0 > 0 such that

(a) f(t + f(z)x0) = f(t) for t > 0, z > 0 with f(z) > 0;

(b) if z1, z2 > 0 and f(z2) > f(z1) > 0, then

f(t + (f(z2)− f(z1))x0) = f(t) for t > 0.

Proof. (a) According to Lemma 1 there exists x0 > 0 with f(x0) = 1.
Since f(z + f(z)x0) = f(z)f(x0) = f(z) > 0, Lemma 2 yields

f(t) = f(t + z + x0f(z)− z) = f(t + x0f(z)) for t > 0.

(b) Note that t+(f(z2)−f(z1))x0 > 0 for t > 0. Thus using (a) twice,
for z = z1 and z = z2, for every t > 0 we have

f(t + (f(z2)− f(z1))x0) = f(t + (f(z2)− f(z1))x0 + f(z1)x0)

= f(t + f(z2)x0) = f(t). ¤

Lemma 4. Suppose that there exist y1, y2 ∈ R with y2 > y1 > 0 and

f(y1) = f(y2) 6= 0. Then, for every d > 0, there exists c ∈ (0, d) with

f(t + c) = f(t) for t > 0.
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Proof. First suppose that there exists δ > 0 such that f(x) = const
for x ∈ U := (0, δ]. Since limx→0+ f(x) = 1, f(x) > 0 for x ∈ U . Hence,
in view of Lemma 2, we have

f(t + (δ − x)) = f(t) for t > 0, x ∈ U.

Now assume that there does not exist any δ > 0 such that f(x) = const
for x ∈ U := (0, δ]. Take ε ∈ (0, 1). Since limx→0+ f(x) = 1, there exists
δ > 0 such that f(x) ∈ (1− ε, 1 + ε) for x ∈ U1 := (0, δ). Take x1, x2 ∈ U1

with f(x1) < f(x2). Then f(x2) − f(x1) < 2ε and f(x1) > 0. Moreover,
according to Lemma 3(b), there is x0 > 0 with

f(t + (f(x2)− f(x1))x0) = f(t) for t > 0.

To complete the proof it is enough to observe that the point x0 may
chosen independently of the values of x1 and x2 and therefore, by a suitable
choice of ε, the value c := (f(x2) − f(x1))x0 can be made arbitrarily
small. ¤

Lemma 5. If there exist y1, y2 ∈ R such that y2 > y1 > 0 and

f(y2) = f(y1) 6= 0, then f ≡ 1.

Proof. For the proof by contradiction suppose that there exists t > 0
with f(t) 6= 1. Put ε := |f(t) − 1|. Since limx→0+ f(x) = 1, there exists
δ > 0 such that |f(x)− 1| < ε for x ∈ (0, δ). From Lemma 4 we infer that
there is x1 ∈ (0, δ) with f(x1) = f(t), which means that |f(t) − 1| < ε,
contrary to the definition of ε. ¤

Lemma 6. There is c ∈ R such that f(x) ∈ {cx + 1, 0} for all x > 0.

Proof. The case where f≡ 1 is trivial. Therefore assume that f(x) 6=1
for some x > 0. First we show that there exists c ∈ R with

f(x)− 1
x

= c for x > 0 with f(x) > 0. (4)

For the proof by contradiction suppose that x > y > 0, f(x), f(y) > 0
and

f(x)− 1
x

6= f(y)− 1
y

.

Then
x + yf(x) 6= y + xf(y),
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and
f(x + yf(x)) = f(x)f(y) = f(y + xf(y)) 6= 0.

Thus, by Lemma 5, f ≡ 1, a contradiction.
Now suppose that there exists x > 0 with f(x) < 0 and

f(x)− 1
x

6= c. (5)

Since limx→0+ f(x) = 1, there exists d > 0 with f(d) > 0 and x+df(x) > 0.
Next, by (4) f(d)−1

d = c. This and (5) imply that

f(x)− 1
x

6= f(d)− 1
d

.

Thus
x + df(x) 6= d + xf(d),

and
f(x + df(x)) = f(x)f(d) = f(d + xf(d)) 6= 0.

Hence on account of Lemma 5, f ≡ 1, a contradiction.
In this way we have shown that there is c ∈ R such that f(x)−1

x = c

for x > 0 with f(x) 6= 0, which implies the statement. ¤

Lemma 7. Suppose that there exists y > 0 with f(y) 6= 0 and c :=
f(y)−1

y 6= 0. Then the following statements are valid:

I) (a) In the case c < 0, f(x) = cx + 1 for x ∈ (0,−1
c ).

(b) In the case c > 0, f(x) = cx + 1 for x > 0.

II) In the case c < 0, either f(x) = cx + 1 for x ≥ −1
c or f(x) = 0 for

x ≥ −1
c .

Proof. I) Since limx→0+ f(x) = 1, there exists h1 > 0 such that

f(x) > 0 for x ∈ (0, h1]. (6)

Define a sequence {hn} by

hn+1 = h1 + f(h1)hn for n ∈ N
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and let Un := (0, hn]. Note that f(hn+1) = f(h1 + f(h1)hn) = f(h1)f(hn)
for n ∈ N. Thus, by induction, we get

f(hn) = (f(h1))n for n ∈ N. (7)

Next we prove that

f(x) > 0 for x ∈ Un. (8)

So fix n ∈ N and assume (8). Define a function g : Un → Un+1 by

g(x) = h1 + f(h1)x for x ∈ Un.

Then g(Un) = g((0, hn]) = (h1, hn+1] =: Vn+1 and

f(Vn+1) = f(g(Un)) = f(h1)f(Un) ⊂ R+.

Since Un+1 = U1 ∪ Vn+1, f(Un+1) ⊂ R+. Consequently, in view of (6), (8)
holds for every n ∈ N.

Observe that (6) and Lemma 6 imply f(h1) = ch1 +1. Moreover c 6= 0
and h1 6= 0; whence f(h1) 6= 1. Two cases may occur:

1) f(h1) < 1 (then c < 0);

2) f(h1) > 1 (then c > 0 ).

In the first case, by (7), we have

lim
n→∞ f(hn) = lim

n→∞(f(h1))n = 0. (9)

Further, on account of (8), f(hn) > 0 for n ∈ N. Thus, according to
Lemma 6, f(hn) = chn + 1. This and (9) imply limn→∞ chn + 1 = 0.
Therefore limn→∞ hn = −1

c and consequently from (8) and Lemma 6 we
infer that f(x) = cx + 1 for x ∈ (0,−1

c ).
Now consider case 2). Then, by (7), we get

lim
n→∞ f(hn) = lim

n→∞(f(h1))n = ∞. (10)

On the other hand f(hn) = chn + 1. Hence from (10) we derive
limn→∞ chn + 1 = ∞, which means that limn→∞ hn = ∞. Consequently
(8) and Lemma 6 yield f(x) = cx + 1 for x > 0.
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II) According to I) f is continuous on the interval (0,−1
c ) and, by

Lemma 6, f(−1
c ) = 0. Suppose that there is a point b2 >− 1

c with f(b2)= 0.
Take b1 > −1

c and consider first the case where b1 < b2. Let

g(x) = x + b2f(x) for x ∈
(

0,−1
c

)
.

Since f(x) = cx + 1 for x ∈ (0,−1
c ), we get

lim
x→0+

g(x) = b2 and lim
x→− 1

c

g(x) = −1
c
. (11)

Moreover by the continuity of f on (0,−1
c ), g is continuous. This and (11)

imply that there exists x1 ∈ (0,−1
c ) with g(x1) = b1. Consequently

f(b1) = f(g(x1)) = f(x1 + b2f(x1)) = f(x1)f(b2) = 0.

If b1 > b2 we put g(x) = x + b1f(x) for x ∈ (0,−1
c ) and obtain, in

a similar way, g(x2) = b2 for some x2 ∈ (0,−1
c ). Hence 0 = f(b2) =

f(x2)f(b1), which implies f(b1) = 0.
Thus we have shown that either f(x) = 0 for x > −1

c or f(x) 6= 0 for
x > −1

c . In the latter case, in view of Lemma 6, we get f(x) = cx + 1 for
x > −1

c . This completes the proof. ¤

Lemma 8. Suppose that f(x) ∈ {0, 1} for x > 0. Then f(x) = 1 for

x > 0.

Proof. Since limx→0+ f(x) = 1, there exists δ > 0 such that f(x) 6= 0
for x ∈ (0, δ), which means that f(x) = 1 for x ∈ (0, δ). Hence, according
to Lemma 5, we get f(x) = 1 for x > 0. ¤

Finally we have the following.

Theorem 1. Suppose that a function f : R+ → R satisfies (1) and

one of the subsequent three conditions holds.

(a) limx→a+ f(x) = f(a) for some a ∈ R+ with f(a) > 0

(b) limx→a− f(x) = f(a) for some a ∈ R+ with f(a) < 0

(c) limx→0+ f(x) = 1.
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Then

f(x) = max{cx + 1, 0} for every x ∈ R+,

or

f(x) = cx + 1 for every x ∈ R+.

Proof. Assume (a) ((b), respectively) and fix ε > 0. Then there
exists δ ∈ (0, a) such that |f(t) − f(a)| < ε|f(a)| for t ∈ (a, a + δ) (t ∈
(a − δ, a), respectively). Let δ1 := δ

|f(a)| and take x1 ∈ (0, δ1). Notice
that x1|f(a)| < δ < a, which means −a < f(a)x1 and consequently x :=
a + f(a)x1 > 0. Since

|x− a| = |a + f(a)x1 − a| = |f(a)x1| = |f(a)|x1 < |f(a)|δ1 = δ,

so
|f(x)− f(a)| < ε|f(a)|. (12)

From (1) and (12) we have

|f(a)f(x1)− f(a)| = |f(a + f(a)x1)− f(a)| = |f(x)− f(a)| < ε|f(a)|.
Hence

|f(x1)− 1| < ε.

Thus we have proved that, for every ε > 0, there exists δ1 > 0 such
that |f(x1) − 1| < ε for x1 ∈ (0, δ1). This means that limx→0+ f(x) = 1.
Now from Lemmas 6, 7 and 8 we get the statement. ¤

Remark 1. Let f : R+ → R be given by: f(x) = 1 for x ∈ N and
f(x) = 0 for x ∈ R+ \ N. Then it is easily seen that f satisfies (1). This
example shows that continuity at a point a ∈ R+ does not need to imply
continuity of a solution f : R+ → R of (1), unless f(a) 6= 0.

Remark 2. P. Kahling and J. Matkowski (see [14], Problem 1)
have raised the problem to determine all functions f : [0,∞) → [0,∞),
satisfying the following conditional GoÃla̧b–Schinzel functional equation

f(x + f(x)y) = f(x)f(y) for x, y ≥ 0, (13)

that are differentiable at some point y0 ≥ 0 with f(y0) 6= 0. A solution
to the problem can be easily derived from Theorem 1. Namely let f :
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[0,∞) → [0,∞) satisfy (13) and be differentiable at a point y0 ≥ 0 with
f(y0) 6= 0. Then f is continuous at y0. Next, with x = y = 0, from (13)
we get f(0) = (f(0))2, which means that f(0) ∈ {0, 1}. Now it is easily
seen that in the case y0 = 0 we have limx→0+ f(x) = 1. Therefore one of
conditions (a)–(c) of Theorem (1) are fulfilled, whence we obtain the form
of f .
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Savez Drǔstava Mat. Fiz. i Astronom., Belgrade, 1969, 206–209.

[13] P. Kahlig and J. Matkowski, On some extensions of the GoÃla̧b–Schinzel func-
tional equation, Ann. Math. Siles. 8 (1994), 13–31.
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