On the exponent of the group of normalized units of a modular group algebras

By A. BOVDI (Debrecen) and P. LAKATOS (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Let G be a finite p-group and K a finite field of characteristic p. The group of units of $K G$ is denoted by $U(K G)$. It is easy to show that $U(K G)=U(K) \times V(K G)$ where

$$
V(K G)=\left\{\sum_{g \in G} \alpha_{g} g \in K G \mid \sum_{g \in G} \alpha_{g}=1, \alpha_{g} \in K\right\}
$$

is the group of normalized units. $V(K G)$ is a p-group and $|V(K G)|=$ $=p^{r(|G|-1)}$ where $|K|=p^{r}$. Clearly $V(K G)$ is a normal Sylow p-subgroup in $U(K G)$.

In general the problem of determining the exponent of $V(K G)$ is open, the first partical result was obtained by Z. Patay [4] and A. Shalev [5]. It is an interesting and important problem.

Since G is embedded in $V(K G)$, we obviously have

$$
\exp (V(K G)) \geq \exp (G)
$$

but usually the exponent of $V(K G)$ is much larger. Indeed, by the result of Coleman and Passman [4] if G is non-abelian and $p \neq 2$ then the wreath product $C_{p} w r C_{p}$ is involved in $V(K G)$, and we get

$$
\exp (V(K G)) \geq p^{2}
$$

Moreover, it turns out that for every $p \neq 2$ there exists a sequence $\left\{G_{m}\right\}_{m \geq 1}$ of finite groups of exponent p , such that $\exp \left(V\left(K G_{m}\right)\right) \rightarrow \infty$

[^0][5]. For example, we may choose G_{m} as the free nilpotent group of class 2 and exponent p on m generators. This is a consequence of the theorem of PASSmAN [2] on polynomial identities in group rings of characteristic p. Therefore one cannot expect general inequalities of the form $\exp (V(K G)) \leq f(\exp (G))$ for a fixed function $f: N \rightarrow N$. On the other hand, $\exp (V(K G))$ can be small for arbitrary large G. Thus, for example, if G is abelian, then $\exp (V(K G))=\exp (G)$. Aner Shalev [5] proved that if $p \geq 7$ and $\exp (G)^{3}>|G|$, then G and $V(K G)$ have the same exponent. Our main problem is identify situations when $\exp (V(K G))$ is finite and close to $\exp (G)$.

If $1+A(K G)=V(K G)$ and $V(K G)$ has a finite exponent then by Zelmanov's theorem and by theorem 2.12 [1] G is a locally finite p-group and K is a field of characteristic p.

We proved the following results:
Theorem 1. Let G be a locally finite p-group. Then $V(K G)$ has finite exponent if and only if G has finite exponent and there exists a normal subgroup L of finite index in G such that the commutator subgroup of L is finite.

Proof. Let p^{n} be the exponent of $V(K G)$. Clearly $V(K G)=1+$ $A(K G)$ and for every $x \in K G$ there exists such $\alpha \in K$ that $\alpha+x \in$ $V(K G)$. Then the Lie product $\left((\alpha+x)^{p^{n}}, y\right)$ coincides with $\left(x^{p^{n}}, y\right)$ and $K G$ satisfies the polinomial identity $\left(x^{p^{n}}, y\right)=0$, where $y \in K G$. By Passman's theorem [2] we know the structure of the group G.

Now suppose that G has a normal subgroup L such that $|G / L|=p^{m}$ and the commutator subgroup L^{\prime} has order p^{t}. Let $I\left(L^{\prime}\right)$ be an ideal of $K G$ generated by the elements $g-1\left(g \in L^{\prime}\right)$. It is well-known that $I\left(L^{\prime}\right)$ nilpotent and

$$
V(K G) /\left(I\left(L^{\prime}\right)+1\right) \cong V\left(K\left(G / L^{\prime}\right)\right)
$$

Since $1+I\left(L^{\prime}\right)$ is a subgroup of finite exponent without loss of generality we can assume that L is abelian. Let $g_{1}, \ldots, g_{p^{m}}$ be representatives of the distinct cosets of G modules L. If $x \in V(K G)$, then there exist elements x_{i} in $K L$ such that

$$
x=x_{1} g_{1}+x_{2} g_{2}+\cdots+x_{p^{m}} g_{p^{m}}
$$

Every element x_{i} has finite G-orbit and the order of each orbit is less than $|G: L|$. If $x_{i}=\sum_{g \in L} \alpha_{g}^{i} g$ and $\chi\left(x_{i}\right)=\sum_{g \in L} \alpha_{g}^{i}$, then $\left(x_{i}-\chi\left(x_{i}\right)\right)^{p^{k}}=0$ where p^{k} is the exponent of L. Since

$$
x=1+\left(x_{1}-\chi\left(x_{1}\right)\right) g_{1}+\cdots+\left(x_{p^{m}}-\chi\left(x_{p^{m}}\right) g_{p^{m}},\right.
$$

we have that $x^{p^{k+m}}=1$ which proves the theorem.

Lemma 1. Let G be such group that

$$
\begin{equation*}
\left[a^{p^{n}}, b\right]=[a, b]^{p^{n}} c^{p^{n}} \tag{1}
\end{equation*}
$$

for all $a, b \in G$, where c is in the commutator group of the group generated by a and b. If $w \in I\left(G^{\prime}\right)^{p^{n-1}}$ and $x_{i} \in\left\{w, g^{p^{n}}(g \in G)\right\}$ then the Lie product

$$
\begin{equation*}
\left(x_{1} x_{2} \cdots x_{k}, x_{k+1} \cdots x_{p}\right) \in I\left(G^{\prime}\right)^{p^{n}} \tag{2}
\end{equation*}
$$

Proof. The following identities hold in $K G$

$$
\begin{equation*}
(u v, w)=(u, v) v+u(v, w) \tag{3}
\end{equation*}
$$

where $u, v, w \in K G$. If $x_{i}=w$ for all i than the statment of lemma is trivial.

Suppose that the first $x_{j}=g^{p^{n}}$ and $x_{j-1}=\cdots=x_{1}=w$. Applying (3), we conclude that

$$
\begin{gathered}
\left(x_{1} \cdots x_{j-1} g^{p^{n}} \cdots x_{k}, x_{k+1} \cdots x_{p^{n}}\right)=\left(w^{j-1}, x_{k+1} \cdots x_{p^{n}}\right) g^{p^{n}} x_{j+1} \cdots x_{k}+ \\
\quad+w^{j-1}\left(g^{p^{n}} x_{j+1} \cdots x_{k}, x_{k+1} \cdots x_{p^{n}}\right)= \\
=\left(w^{j-1}, x_{k+1} \cdots x_{p}\right) g^{p^{n}} x_{j+1} \cdots x_{k}+w^{j-1}\left(g^{p^{n}}, x_{k+1} \cdots x_{p^{n}}\right) x_{j+1} \cdots x_{k}+ \\
+w^{j-1} g^{p^{n}}\left(x_{j+1} \cdots x_{k}, x_{k+1} \cdots x_{p^{n}}\right)
\end{gathered}
$$

Let

$$
x_{j+1} \cdots x_{p^{n}}=\sum_{h \in G} \alpha_{h} h
$$

Then

$$
\begin{gathered}
\left(g^{p^{n}}, x_{k+1} \cdots x_{p}\right)=\sum_{h \in G} \alpha_{h}\left(g^{p^{n}} h-h g^{p^{n}}\right)= \\
=\sum_{h \in G} \alpha_{h} g^{p^{n}} h\left(1-\left[g^{p^{n}}, h\right]\right)=\sum \alpha_{h} g^{p^{n}} h\left(1-[g, h]^{p^{n}} c^{p^{n}}\right) \in I\left(G^{\prime}\right)^{p^{n}} .
\end{gathered}
$$

If $x_{k}=w\left(k=j+1, \cdots, p^{n}\right)$, then the proof is complete; otherwise the argument may be repeated until we see that all relevant commutator are in $I\left(G^{\prime}\right)^{p^{n}}$.

Theorem 2. Let G be a finite p-group with cyclic commutator subgroup G^{\prime}. If $\exp (G)=\exp \left(G^{\prime}\right)$ then $\exp (V(K G))=p \cdot \exp (G)$, and if $\exp (G) \neq \exp \left(G^{\prime}\right)$ then $\exp (V(K G))=\exp (G)$.

Proof. Let $G^{\prime}=\langle c\rangle$ be the cyclic commutator subgroup of order p^{n}. The lower central series of G will be denoted by

$$
G=\gamma_{1}(G) \geq \gamma_{2}(G) \geq \cdots \geq \gamma_{s}(G)
$$

It is well-known the following Hall's collection formula [6]

$$
\begin{equation*}
\left[a^{p^{n-1}}, b\right] \equiv[a, b]^{p^{n-1}} \bmod \left(\gamma_{2}(G)\right)^{p^{n-1}} \prod_{1 \leq r<n}\left(\gamma_{p^{r}}(H)\right)^{p^{n-1-r}} \tag{4}
\end{equation*}
$$

where H is the subgroup generated by elements $a,[a, b]$. Because $\gamma_{2}(G)=\langle c\rangle$ and G is nilpotent this formula implies that

$$
\begin{equation*}
\left[a^{p^{n-1}}, b\right]=[a, b]^{p^{n-1}} c^{k p^{n-1}} \tag{5}
\end{equation*}
$$

for all $a, b \in G$ and k depends on a, b. Let

$$
x=\sum_{g \in G} \alpha_{g} g \in V(K G)
$$

and $L(K G)=[K G, K G]$ is the K-modul generated by Lie product (u, v) for any $u, v \in K G$. Then by Proposition 3.1 [1]

$$
x^{p}=\sum_{g \in G} \alpha_{g}^{p} g^{p}+w \quad(w \in L(K G))
$$

It is clear that $L(K G)$ is contained in ideal $I\left(G^{\prime}\right)$ of $K G$ generated by all $g-1\left(g \in G^{\prime}\right)$.

Let us prove by induction of on the order p^{n} of commutator subgroup of G that

$$
\begin{equation*}
x^{p^{n}} \equiv \sum_{g \in G} \alpha_{g}^{p^{n}} g^{p^{n}}\left(\bmod I\left(G^{\prime}\right)^{p^{n-1}}\right) \tag{6}
\end{equation*}
$$

In the case $n=1$ it is true by (4). Let H be a subgroup of order p of G^{\prime} and $I(H)$ is an ideal of $K G$ generated by $h-1(h \in H)$. Then $K G / I(H) \cong K G / H$, the commutator subgroup of G / H has order p^{n-1} and $I(H) \subseteq I\left(G^{\prime}\right)^{p^{n-1}}$. Applying the induction hypothesis, we deduce

$$
x^{p^{n-1}}+I(H) \equiv \sum_{g \in G} \alpha_{g}^{p^{n-1}} g^{p^{n-1}}+I(H)\left(\bmod I\left(G^{\prime}\right)^{p^{n-2}} / I(H)\right)
$$

Because there exists element $y \in I\left(G^{\prime}\right)^{p^{n-2}}$ such that

$$
x^{p^{n-1}}=\sum_{g \in G} \alpha_{g}^{p^{n-1}} g^{p^{n-1}}+y
$$

then

$$
x^{p^{n}}=\sum_{g \in G} \alpha_{g}^{p^{n}} g^{p}+y^{p}+\sum u_{1} u_{2} \cdots u_{p}, \quad u_{i} \in\left\{g^{p^{n-1}}, y\right\}
$$

where the sum is taken over all such products $u_{1} u_{2} \cdots u_{p}$, that not all u_{i} equal to $g^{p^{n}}$ or y, and the sum contains the cyclic permutation of each word $u_{1} u_{2} \cdots u_{p}$. Because $K G$ has characteristic p and

$$
u_{i} u_{i+1} \cdots u_{p} u_{1} u_{2} \cdots u_{i-1}-u_{1} u_{2} \cdots u_{p}=\left(u_{i} u_{i+1} \cdots u_{p}, u_{1} u_{2} \cdots u_{i-1}\right)
$$

then $\sum u_{1} u_{2} \cdots u_{p}$ may be represent as Lie product

$$
v=\left(u_{i_{1}} u_{i_{2}} \cdots u_{i_{k}}, u_{i_{k+1}} \cdots u_{i_{p}}\right)
$$

Let for some Lemma 1 we conclude that $v \in I\left(G^{\prime}\right)^{p^{n}}$. Therefore (6) is true and this we can use in determination of the exponent of $V(K G)$.

Obviously, the element $g^{p^{n}}$ is in the centre for all $g \in G$ and $I\left(G^{\prime}\right)^{p^{n}}=0$. If $\exp (G)>p^{n}$ then it follows from (3) that $\exp (G)=\exp (V(K G))$.

Assume that $\exp (G)=\exp \left(G^{\prime}\right)=p^{n}$. By virtue of $(6) \exp (V(K G)) \leq$ $\leq p^{n+1}$. There exist such $a, b \in G$ that $c=[a, b]$ and c has order p^{n}.

We now claim the element $x=1+b^{-1}(a-1)$ has order p^{n+1}.
Suppose that $x^{p^{n}}=1$. Then $b^{-i} a b^{i}=a c^{k_{i}}$ and $\left[b^{-1}(a-1)\right]^{p^{n}}=0$ from which it follows that

$$
(a c-1)\left(a c^{k_{2}}-1\right) \cdots\left(a c^{k_{p^{n}}-1}-1\right)(a-1)=0
$$

By proposition 2.7 [1]
$(a c-1)\left(a c^{k_{2}}-1\right) \cdots\left(a c^{k_{p^{n}}-1}-1\right)=\left(1+a+\cdots+a^{p^{n}-1}\right) z(z \in K\langle c\rangle)$.
It easily verified from (5) that $\langle c\rangle \bigcap\langle a\rangle=1$ since $\langle c\rangle$ is a normal subgroup of $\langle c, a\rangle$ and comparising coefficients of a and 1 in (7) we get

$$
c=z, \quad-1=z
$$

which is impossible. Therefore we conclude $\exp (V(K G))=p^{n+1}$.
Theorem 3. Let G be a finite p-group of nilpotency class two or G is a finite p-regular group. Let $t\left(G^{\prime}\right)$ denotes the nilpotency class of the augmentation ideal $A\left(K G^{\prime}\right)$ and k is the least integer such that $t\left(G^{\prime}\right) \leq p^{k}$. Then

1. if $p^{k}<\exp (G)$, then $\exp (V(K G))=\exp (G)$;
2. if $p^{k} \geq \exp (G)$, then $\exp (V(K G)) \leq p^{k+1}$.

Proof. If G has the nilpotency class two then (1) is valid and the conditions the Lemma 1 is satisfied.

Immediate consequence of the definition of p-regular group we become

$$
\left[x^{p^{n-1}}, y\right]=[x, y]^{p^{n-1}} c^{p^{n-1}}
$$

where c is in the commutator subgroup. Then the argument of proof of the theorem 2 may be repeated and we get the statement of this theorem.

Theorem 4. Let C be the center of a 2-group G which contains an abelian subgroup A of index two and K be a field of two elements. Then

1. if $\exp (A / C)<\exp (A)$ then $\exp (V(K G))=\exp (G)$,
2. if $\exp (A / C)=\exp (A)=\exp (G)$ then $\exp (V(K G))=2 \cdot \exp (G)$,
3. if $\exp (A / C)=\exp (A)<\exp (G)$ then $\exp (V(K G))=\exp (G)$.

Proof. Clearly there exists such $b \in G$ that $G=\langle A, b\rangle$ and $b^{2} \in A$. Then every element x of $V(K G)$ has a unique representation in the form $x=x_{1}+x_{2} b$, where $x_{1}, x_{2} \in K A$. It is easy to see that the map defined by $u \rightarrow \bar{u}=b^{-1} u b(u \in K A)$ is an involution on $K G$ and

$$
x^{2}=x_{1}^{2}+x_{2} \overline{x_{2}} b^{2}+x_{2}\left(x_{1}+\overline{x_{1}}\right) b
$$

The reader can readily verify by induction that

$$
\begin{align*}
& x^{2^{n}}=x_{1}^{2^{n}}+\left(x_{2} \overline{x_{2}}\right)^{2^{n-1}} b^{2^{n}}+\sum_{i=1}^{n-1}\left(x_{2} \overline{x_{2}}\right)^{2^{i-1}}\left(x_{1}+\overline{x_{1}}\right)^{2^{n}-2^{i}} b^{2^{i}}+ \tag{8}\\
&+x_{2}\left(x_{1}+\overline{x_{1}}\right)^{2^{n}-1} b .
\end{align*}
$$

Let $\exp (A)=2^{m}, \exp (A / C)=2^{t}$ and $x_{1}=\sum_{a \in A} \alpha_{a} a$. Then $x_{1}+\overline{x_{1}}=$ $\sum_{a \in A} \alpha_{a}(a+\bar{a})$ and $(a+\bar{a})^{2^{t}}=0$, because $\left(x_{1}+\overline{x_{1}}\right)^{2^{t}}=0$ and

$$
\left(x_{2} \overline{x_{2}}\right)^{2^{t}}=x_{2}^{2^{t+1}}
$$

Suppose that $t<m$. It is clear that $2^{m}-2^{i} \geq 2^{m-1}$ for every $i \leq m-1$. By (8) we have

$$
x^{2^{m}}=\chi\left(x_{1}\right)^{2^{m}}+\chi\left(x_{2}\right)^{2^{m}} b^{2^{m}}
$$

where $\chi\left(x_{1}\right)=\sum_{a \in A} \alpha_{a}$. Suppose that $t=m$. Then

$$
x^{2^{m}}=\chi\left(x_{1}\right)^{2^{m}}+\left(x_{2} \overline{x_{2}}\right)^{2^{m-1}} b^{2^{m}}
$$

and we conclude

$$
\begin{equation*}
x^{2^{m+1}}=\chi\left(x_{1}\right)^{2^{m+1}}+\chi\left(x_{2}\right)^{2^{m+1}} b^{2^{m+1}} \tag{9}
\end{equation*}
$$

Because $x \in V(K G)$ we have $\chi\left(x_{1}\right)+\chi\left(x_{2}\right)=1$. If $\exp (A)<\exp (V)$, then (9) implies that $\exp (V(K G))=\exp (G)$.

Assume that $\exp (A / C)=\exp (A)=\exp (G)$. Clearly there exist cyclic subgroups $\left\langle a_{1}\right\rangle,\left\langle a_{2}\right\rangle$ of order 2^{m} in A such that $\left\langle b a_{1} b^{-1}\right\rangle \cap\left\langle a_{2}\right\rangle=1$. Then one immediately verifies that $x=1+\left(a_{1}+a_{2}\right) b$ has order 2^{m+1}. Thus $\exp (V(K G))=2 \exp (G)$, which proves the theorem.

References

[1] A. Bovdi, Group rings, Uchebo-metodicheskij kabinet Visheho obrazovanija, Kiew, 1988. (in Russian)
[2] D. S. PASSMAN, Group rings satisfying a polynomial identity, J. Algebra 20 (1972), 103-117.
[3] Coleman and D. S. Passman, Units in modular group rings, Proc Amer Math Soc. 25 (1970), 170-175.
[4] Z. Patay, On the structure of the center of the unit group of the group ring, Dissertation, Uzhgorod, 1975.
[5] A. Shalev, Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units, J. Math. Soc. 243 (1991), 23-31.
[6] B. Huppert and N. Blackburn, Finite groups II, Springer-Verlag, BerlinNew York, 1967.

```
A. BOVDI
KOSSUTH LAJOS UNIVERSITY
INSTITUTE OF MATHEMATICS
H-4010 DEBRECEN, PF. }12
HUNGARY
P. LAKATOS
KOSSUTH LAJOS UNIVERSITY
INSTITUTE OF MATHEMATICS
H-4010 DEBRECEN, PF. }12
HUNGARY
```


[^0]: Research supported by the Hungarian National Foundatin for Scientific Research No. 1903 and 1654.

