Publ. Math. Debrecen 42 / 3-4 (1993), 409-415

On the exponent of the group of normalized units of a modular group algebras

By A. BOVDI (Debrecen) and P. LAKATOS (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Let G be a finite p-group and K a finite field of characteristic p. The group of units of KG is denoted by U(KG). It is easy to show that $U(KG) = U(K) \times V(KG)$ where

$$V(KG) = \left\{ \sum_{g \in G} \alpha_g g \in KG \mid \sum_{g \in G} \alpha_g = 1, \alpha_g \in K \right\}$$

is the group of normalized units. V(KG) is a p-group and $|V(KG)| = p^{r(|G|-1)}$ where $|K| = p^r$. Clearly V(KG) is a normal Sylow p-subgroup in U(KG).

In general the problem of determining the exponent of V(KG) is open, the first partial result was obtained by Z. PATAY [4] and A. SHALEV [5]. It is an interesting and important problem.

Since G is embedded in V(KG), we obviously have

$$\exp(V(KG)) \ge \exp(G),$$

but usually the exponent of V(KG) is much larger. Indeed, by the result of COLEMAN and PASSMAN [4] if G is non-abelian and $p \neq 2$ then the wreath product $C_p wr C_p$ is involved in V(KG), and we get

$$\exp(V(KG)) \ge p^2.$$

Moreover, it turns out that for every $p \neq 2$ there exists a sequence $\{G_m\}_{m\geq 1}$ of finite groups of exponent p, such that $\exp(V(KG_m)) \to \infty$

Research supported by the Hungarian National Foundatin for Scientific Research No. 1903 and 1654.

[5]. For example, we may choose G_m as the free nilpotent group of class 2 and exponent p on m generators. This is a consequence of the theorem of PASSMAN [2] on polynomial identities in group rings of characteristic p. Therefore one cannot expect general inequalities of the form $\exp(V(KG)) \leq f(\exp(G))$ for a fixed function $f: N \to N$. On the other hand, $\exp(V(KG))$ can be small for arbitrary large G. Thus, for example, if G is abelian, then $\exp(V(KG)) = \exp(G)$. ANER SHALEV [5] proved that if $p \geq 7$ and $\exp(G)^3 > |G|$, then G and V(KG) have the same exponent. Our main problem is identify situations when $\exp(V(KG))$ is finite and close to $\exp(G)$.

If 1 + A(KG) = V(KG) and V(KG) has a finite exponent then by Zelmanov's theorem and by theorem 2.12 [1] G is a locally finite p-group and K is a field of characteristic p.

We proved the following results:

Theorem 1. Let G be a locally finite p-group. Then V(KG) has finite exponent if and only if G has finite exponent and there exists a normal subgroup L of finite index in G such that the commutator subgroup of L is finite.

PROOF. Let p^n be the exponent of V(KG). Clearly V(KG) = 1 + A(KG) and for every $x \in KG$ there exists such $\alpha \in K$ that $\alpha + x \in V(KG)$. Then the Lie product $((\alpha + x)^{p^n}, y)$ coincides with (x^{p^n}, y) and KG satisfies the polynomial identity $(x^{p^n}, y) = 0$, where $y \in KG$. By Passman's theorem [2] we know the structure of the group G.

Now suppose that G has a normal subgroup L such that $|G/L| = p^m$ and the commutator subgroup L' has order p^t . Let I(L') be an ideal of KG generated by the elements g - 1 ($g \in L'$). It is well-known that I(L')nilpotent and

$$V(KG)/(I(L')+1) \cong V(K(G/L'))$$

Since 1 + I(L') is a subgroup of finite exponent without loss of generality we can assume that L is abelian. Let g_1, \ldots, g_{p^m} be representatives of the distinct cosets of G modules L. If $x \in V(KG)$, then there exist elements x_i in KL such that

$$x = x_1 g_1 + x_2 g_2 + \dots + x_{p^m} g_{p^m}.$$

Every element x_i has finite *G*-orbit and the order of each orbit is less than |G:L|. If $x_i = \sum_{g \in L} \alpha_g^i g$ and $\chi(x_i) = \sum_{g \in L} \alpha_g^i$, then $(x_i - \chi(x_i))^{p^k} = 0$ where p^k is the exponent of *L*. Since

$$x = 1 + (x_1 - \chi(x_1))g_1 + \dots + (x_{p^m} - \chi(x_{p^m})g_{p^m}),$$

we have that $x^{p^{k+m}} = 1$ which proves the theorem.

Lemma 1. Let G be such group that

(1)
$$[a^{p^n}, b] = [a, b]^{p^n} c^{p^n}$$

for all $a, b \in G$, where c is in the commutator group of the group generated by a and b. If $w \in I(G')^{p^{n-1}}$ and $x_i \in \{w, g^{p^n} (g \in G)\}$ then the Lie product

(2)
$$(x_1x_2\cdots x_k, x_{k+1}\cdots x_p) \in I(G')^{p^n}.$$

PROOF. The following identities hold in KG

(3)
$$(uv, w) = (u, v)v + u(v, w)$$

where $u, v, w \in KG$. If $x_i = w$ for all *i* than the statement of lemma is trivial.

Suppose that the first $x_j = g^{p^n}$ and $x_{j-1} = \cdots = x_1 = w$. Applying (3), we conclude that

$$(x_{1}\cdots x_{j-1}g^{p^{n}}\cdots x_{k}, x_{k+1}\cdots x_{p^{n}}) = (w^{j-1}, x_{k+1}\cdots x_{p^{n}})g^{p^{n}}x_{j+1}\cdots x_{k} + w^{j-1}(g^{p^{n}}x_{j+1}\cdots x_{k}, x_{k+1}\cdots x_{p^{n}}) = (w^{j-1}, x_{k+1}\cdots x_{p})g^{p^{n}}x_{j+1}\cdots x_{k} + w^{j-1}(g^{p^{n}}, x_{k+1}\cdots x_{p^{n}})x_{j+1}\cdots x_{k} + w^{j-1}g^{p^{n}}(x_{j+1}\cdots x_{k}, x_{k+1}\cdots x_{p^{n}}).$$

Let

$$x_{j+1}\cdots x_{p^n} = \sum_{h\in G} \alpha_h h.$$

Then

$$(g^{p^n}, x_{k+1} \cdots x_p) = \sum_{h \in G} \alpha_h (g^{p^n} h - hg^{p^n}) =$$
$$= \sum_{h \in G} \alpha_h g^{p^n} h(1 - [g^{p^n}, h]) = \sum \alpha_h g^{p^n} h(1 - [g, h]^{p^n} c^{p^n}) \in I(G')^{p^n}.$$

If $x_k = w$ $(k = j + 1, \dots, p^n)$, then the proof is complete; otherwise the argument may be repeated until we see that all relevant commutator are in $I(G')^{p^n}$.

Theorem 2. Let G be a finite p-group with cyclic commutator subgroup G'. If $\exp(G) = \exp(G')$ then $\exp(V(KG)) = p \cdot \exp(G)$, and if $\exp(G) \neq \exp(G')$ then $\exp(V(KG)) = \exp(G)$.

PROOF. Let $G' = \langle c \rangle$ be the cyclic commutator subgroup of order p^n . The lower central series of G will be denoted by

$$G = \gamma_1(G) \ge \gamma_2(G) \ge \cdots \ge \gamma_s(G).$$

It is well-known the following Hall's collection formula [6]

(4)
$$[a^{p^{n-1}}, b] \equiv [a, b]^{p^{n-1}} \operatorname{mod}(\gamma_2(G))^{p^{n-1}} \prod_{1 \le r < n} (\gamma_{p^r}(H))^{p^{n-1-r}},$$

where H is the subgroup generated by elements a, [a, b]. Because $\gamma_2(G) = \langle c \rangle$ and G is nilpotent this formula implies that

(5)
$$[a^{p^{n-1}}, b] = [a, b]^{p^{n-1}} c^{kp^{n-1}}$$

for all $a, b \in G$ and k depends on a, b. Let

$$x = \sum_{g \in G} \alpha_g g \in V(KG)$$

and L(KG) = [KG, KG] is the K-modul generated by Lie product (u, v) for any $u, v \in KG$. Then by Proposition 3.1 [1]

$$x^p = \sum_{g \in G} \alpha_g^p g^p + w \quad (w \in L(KG)).$$

It is clear that L(KG) is contained in ideal I(G') of KG generated by all g - 1 ($g \in G'$).

Let us prove by induction of on the order p^n of commutator subgroup of G that

(6)
$$x^{p^n} \equiv \sum_{g \in G} \alpha_g^{p^n} g^{p^n} (\operatorname{mod} I(G')^{p^{n-1}})$$

In the case n = 1 it is true by (4). Let H be a subgroup of order p of G' and I(H) is an ideal of KG generated by h - 1 ($h \in H$). Then $KG/I(H) \cong KG/H$, the commutator subgroup of G/H has order p^{n-1} and $I(H) \subseteq I(G')^{p^{n-1}}$. Applying the induction hypothesis, we deduce

$$x^{p^{n-1}} + I(H) \equiv \sum_{g \in G} \alpha_g^{p^{n-1}} g^{p^{n-1}} + I(H) (\text{mod } I(G')^{p^{n-2}} / I(H)).$$

Because there exists element $y \in I(G')^{p^{n-2}}$ such that

$$x^{p^{n-1}} = \sum_{g \in G} \alpha_g^{p^{n-1}} g^{p^{n-1}} + y,$$

then

$$x^{p^{n}} = \sum_{g \in G} \alpha_{g}^{p^{n}} g^{p} + y^{p} + \sum u_{1} u_{2} \cdots u_{p}, \quad u_{i} \in \{g^{p^{n-1}}, y\},\$$

where the sum is taken over all such products $u_1u_2\cdots u_p$, that not all u_i equal to g^{p^n} or y, and the sum contains the cyclic permutation of each word $u_1u_2\cdots u_p$. Because KG has characteristic p and

$$u_i u_{i+1} \cdots u_p u_1 u_2 \cdots u_{i-1} - u_1 u_2 \cdots u_p = (u_i u_{i+1} \cdots u_p, u_1 u_2 \cdots u_{i-1}),$$

then $\sum u_1 u_2 \cdots u_p$ may be represent as Lie product

$$v = (u_{i_1}u_{i_2}\cdots u_{i_k}, u_{i_{k+1}}\cdots u_{i_p}).$$

Let for some Lemma 1 we conclude that $v \in I(G')^{p^n}$. Therefore (6) is true and this we can use in determination of the exponent of V(KG).

Obviously, the element g^{p^n} is in the centre for all $g \in G$ and $I(G')^{p^n} = 0$. If $\exp(G) > p^n$ then it follows from (3) that $\exp(G) = \exp(V(KG))$.

Assume that $\exp(G) = \exp(G') = p^n$. By virtue of (6) $\exp(V(KG)) \le p^{n+1}$. There exist such $a, b \in G$ that c = [a, b] and c has order p^n .

We now claim the element $x = 1 + b^{-1}(a-1)$ has order p^{n+1} .

Suppose that $x^{p^n} = 1$. Then $b^{-i}ab^i = ac^{k_i}$ and $[b^{-1}(a-1)]^{p^n} = 0$ from which it follows that

$$(ac-1)(ac^{k_2}-1)\cdots(ac^{k_pn}-1)(a-1)=0.$$

By proposition 2.7 [1]

(7)
$$(ac-1)(ac^{k_2}-1)\cdots(ac^{k_pn-1}-1) = (1+a+\cdots+a^{p^n-1})z \ (z \in K\langle c \rangle).$$

It easily verified from (5) that $\langle c \rangle \bigcap \langle a \rangle = 1$ since $\langle c \rangle$ is a normal subgroup of $\langle c, a \rangle$ and comparising coefficients of a and 1 in (7) we get

$$c = z, \quad -1 = z,$$

which is impossible. Therefore we conclude $\exp(V(KG)) = p^{n+1}$.

Theorem 3. Let G be a finite p-group of nilpotency class two or G is a finite p-regular group. Let t(G') denotes the nilpotency class of the augmentation ideal A(KG') and k is the least integer such that $t(G') \leq p^k$. Then

1. if
$$p^k < \exp(G)$$
, then $\exp(V(KG)) = \exp(G)$;
2. if $p^k \ge \exp(G)$, then $\exp(V(KG)) \le p^{k+1}$.

PROOF. If G has the nilpotency class two then (1) is valid and the conditions the Lemma 1 is satisfied.

Immediate consequence of the definition of p-regular group we become

$$[x^{p^{n-1}}, y] = [x, y]^{p^{n-1}} c^{p^{n-1}},$$

where c is in the commutator subgroup. Then the argument of proof of the theorem 2 may be repeated and we get the statement of this theorem.

A. Bovdi and P. Lakatos

Theorem 4. Let C be the center of a 2-group G which contains an abelian subgroup A of index two and K be a field of two elements. Then

- 1. if $\exp(A/C) < \exp(A)$ then $\exp(V(KG)) = \exp(G)$,
- 2. if $\exp(A/C) = \exp(A) = \exp(G)$ then $\exp(V(KG)) = 2 \cdot \exp(G)$,

3. if $\exp(A/C) = \exp(A) < \exp(G)$ then $\exp(V(KG)) = \exp(G)$.

PROOF. Clearly there exists such $b \in G$ that $G = \langle A, b \rangle$ and $b^2 \in A$. Then every element x of V(KG) has a unique representation in the form $x = x_1 + x_2 b$, where $x_1, x_2 \in KA$. It is easy to see that the map defined by $u \to \overline{u} = b^{-1}ub$ ($u \in KA$) is an involution on KG and

$$x^2 = x_1^2 + x_2 \bar{x_2} b^2 + x_2 (x_1 + \bar{x_1}) b$$

The reader can readily verify by induction that

(8)
$$x^{2^{n}} = x_{1}^{2^{n}} + (x_{2}\bar{x_{2}})^{2^{n-1}}b^{2^{n}} + \sum_{i=1}^{n-1} (x_{2}\bar{x_{2}})^{2^{i-1}}(x_{1} + \bar{x_{1}})^{2^{n}-2^{i}}b^{2^{i}} + x_{2}(x_{1} + \bar{x_{1}})^{2^{n}-1}b^{2^{n}}$$

Let $\exp(A) = 2^m$, $\exp(A/C) = 2^t$ and $x_1 = \sum_{a \in A} \alpha_a a$. Then $x_1 + \bar{x_1} = \sum_{a \in A} \alpha_a (a + \bar{a})$ and $(a + \bar{a})^{2^t} = 0$, because $(x_1 + \bar{x_1})^{2^t} = 0$ and

$$(x_2\bar{x_2})^{2^t} = x_2^{2^{t+1}}$$

Suppose that t < m. It is clear that $2^m - 2^i \ge 2^{m-1}$ for every $i \le m-1$. By (8) we have

$$x^{2^{m}} = \chi(x_{1})^{2^{m}} + \chi(x_{2})^{2^{m}} b^{2^{m}}$$

where $\chi(x_1) = \sum_{a \in A} \alpha_a$. Suppose that t = m. Then

$$x^{2^{m}} = \chi(x_{1})^{2^{m}} + (x_{2}\bar{x_{2}})^{2^{m-1}}b^{2^{m}}$$

and we conclude

(9)
$$x^{2^{m+1}} = \chi(x_1)^{2^{m+1}} + \chi(x_2)^{2^{m+1}} b^{2^{m+1}}$$

Because $x \in V(KG)$ we have $\chi(x_1) + \chi(x_2) = 1$. If $\exp(A) < \exp(V)$, then (9) implies that $\exp(V(KG)) = \exp(G)$.

Assume that $\exp(A/C) = \exp(A) = \exp(G)$. Clearly there exist cyclic subgroups $\langle a_1 \rangle, \langle a_2 \rangle$ of order 2^m in A such that $\langle ba_1b^{-1} \rangle \cap \langle a_2 \rangle = 1$. Then one immediately verifies that $x = 1 + (a_1 + a_2)b$ has order 2^{m+1} . Thus $\exp(V(KG)) = 2\exp(G)$, which proves the theorem. On the exponent of the group of normalized units ...

References

- A. BOVDI, Group rings, Uchebo-metodicheskij kabinet Visheho obrazovanija, Kiew, 1988. (in Russian)
- [2] D. S. PASSMAN, Group rings satisfying a polynomial identity, J. Algebra 20 (1972), 103–117.
- [3] COLEMAN and D. S. PASSMAN, Units in modular group rings, Proc Amer Math Soc. 25 (1970), 170–175.
- [4] Z. PATAY, On the structure of the center of the unit group of the group ring, Dissertation, Uzhgorod, 1975.
- [5] A. SHALEV, Lie dimension subgroups, Lie nilpotency indices, and the exponent of the group of normalized units, J. Math. Soc. 2 43 (1991), 23–31.
- [6] B. HUPPERT and N. BLACKBURN, Finite groups II, Springer-Verlag, Berlin-New York, 1967.

A. BOVDI KOSSUTH LAJOS UNIVERSITY INSTITUTE OF MATHEMATICS H-4010 DEBRECEN, PF. 12. HUNGARY

P. LAKATOS KOSSUTH LAJOS UNIVERSITY INSTITUTE OF MATHEMATICS H-4010 DEBRECEN, PF. 12. HUNGARY

(Received February 12, 1993)