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On the exponent of the group of normalized
units of a modular group algebras

By A. BOVDI (Debrecen) and P. LAKATOS (Debrecen)

Dedicated to Professor Lajos Tamássy on his 70th birthday

Let G be a finite p-group and K a finite field of characteristic p.
The group of units of KG is denoted by U(KG). It is easy to show that
U(KG) = U(K)× V (KG) where

V (KG) =





∑

g∈G

αgg ∈ KG |
∑

g∈G

αg = 1, αg ∈ K





is the group of normalized units. V (KG) is a p-group and |V (KG)| =
= pr(|G|−1) where |K| = pr. Clearly V (KG) is a normal Sylow p-subgroup
in U(KG).

In general the problem of determining the exponent of V (KG) is open,
the first partical result was obtained by Z. Patay [4] and A. Shalev [5].
It is an interesting and important problem.

Since G is embedded in V (KG), we obviously have

exp(V (KG)) ≥ exp(G),

but usually the exponent of V (KG) is much larger. Indeed, by the result
of Coleman and Passman [4] if G is non-abelian and p 6= 2 then the
wreath product CpwrCp is involved in V (KG), and we get

exp(V (KG)) ≥ p2.

Moreover, it turns out that for every p 6= 2 there exists a sequence
{Gm}m≥1 of finite groups of exponent p, such that exp(V (KGm)) → ∞
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[5]. For example, we may choose Gm as the free nilpotent group of class
2 and exponent p on m generators. This is a consequence of the the-
orem of Passman [2] on polynomial identities in group rings of charac-
teristic p. Therefore one cannot expect general inequalities of the form
exp(V (KG)) ≤ f(exp(G)) for a fixed function f : N → N. On the other
hand, exp(V (KG)) can be small for arbitrary large G. Thus, for example,
if G is abelian, then exp(V (KG)) = exp(G). Aner Shalev [5] proved
that if p ≥ 7 and exp(G)3 > |G| , then G and V (KG) have the same
exponent. Our main problem is identify situations when exp(V (KG)) is
finite and close to exp(G).

If 1 + A(KG) = V (KG) and V (KG) has a finite exponent then by
Zelmanov’s theorem and by theorem 2.12 [1] G is a locally finite p-group
and K is a field of characteristic p.

We proved the following results:

Theorem 1. Let G be a locally finite p-group. Then V (KG) has finite
exponent if and only if G has finite exponent and there exists a normal
subgroup L of finite index in G such that the commutator subgroup of L
is finite.

Proof. Let pn be the exponent of V (KG). Clearly V (KG) = 1 +
A(KG) and for every x ∈ KG there exists such α ∈ K that α + x ∈
V (KG). Then the Lie product ((α + x)pn

, y) coincides with (xpn

, y) and
KG satisfies the polinomial identity (xpn

, y) = 0 , where y ∈ KG. By
Passman’s theorem [2] we know the structure of the group G.

Now suppose that G has a normal subgroup L such that |G/L| = pm

and the commutator subgroup L′ has order pt. Let I(L′) be an ideal of
KG generated by the elements g − 1 (g ∈ L′). It is well-known that I(L′)
nilpotent and

V (KG)/(I(L′) + 1) ∼= V (K(G/L′)).

Since 1 + I(L′) is a subgroup of finite exponent without loss of generality
we can assume that L is abelian. Let g1, . . . , gpm be representatives of the
distinct cosets of G modules L. If x ∈ V (KG), then there exist elements
xi in KL such that

x = x1g1 + x2g2 + · · ·+ xpmgpm .

Every element xi has finite G-orbit and the order of each orbit is less than
|G : L|. If xi =

∑
g∈L αi

gg and χ(xi) =
∑

g∈L αi
g, then (xi − χ(xi))pk

= 0
where pk is the exponent of L. Since

x = 1 + (x1 − χ(x1))g1 + · · ·+ (xpm − χ(xpm)gpm ,

we have that xpk+m

= 1 which proves the theorem.
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Lemma 1. Let G be such group that

(1) [apn

, b] = [a, b]p
n

cpn

for all a, b ∈ G, where c is in the commutator group of the group generated

by a and b. If w ∈ I(G′)pn−1
and xi ∈ {w, gpn

(g ∈ G)} then the Lie
product

(2) (x1x2 · · ·xk, xk+1 · · ·xp) ∈ I(G′)pn

.

Proof. The following identities hold in KG

(3) (uv, w) = (u, v)v + u(v, w) ,

where u, v, w ∈ KG. If xi = w for all i than the statment of lemma is
trivial.

Suppose that the first xj = gpn

and xj−1 = · · · = x1 = w. Applying
(3), we conclude that

(x1 · · ·xj−1g
pn · · ·xk, xk+1 · · ·xpn) = (wj−1, xk+1 · · ·xpn)gpn

xj+1 · · ·xk+

+wj−1(gpn

xj+1 · · ·xk, xk+1 · · ·xpn) =

= (wj−1, xk+1 · · ·xp)gpn

xj+1 · · ·xk + wj−1(gpn

, xk+1 · · ·xpn)xj+1 · · ·xk+

+wj−1gpn

(xj+1 · · ·xk, xk+1 · · ·xpn) .

Let
xj+1 · · ·xpn =

∑

h∈G

αhh.

Then

(gpn

, xk+1 · · ·xp) =
∑

h∈G

αh(gpn

h− hgpn

) =

=
∑

h∈G

αhgpn

h(1− [gpn

, h]) =
∑

αhgpn

h(1− [g, h]p
n

cpn

) ∈ I(G′)pn

.

If xk = w (k = j + 1, · · · , pn), then the proof is complete; otherwise the
argument may be repeated until we see that all relevant commutator are
in I(G′)pn

.

Theorem 2. Let G be a finite p-group with cyclic commutator sub-
group G′. If exp(G) = exp(G′) then exp(V (KG)) = p · exp(G), and if
exp(G) 6= exp(G′) then exp(V (KG)) = exp(G).

Proof. Let G′ = 〈c〉 be the cyclic commutator subgroup of order pn.
The lower central series of G will be denoted by

G = γ1(G) ≥ γ2(G) ≥ · · · ≥ γs(G).
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It is well-known the following Hall’s collection formula [6]

(4) [apn−1
, b] ≡ [a, b]p

n−1
mod(γ2(G))pn−1 ∏

1≤r<n

(γpr (H))pn−1−r

,

where H is the subgroup generated by elements a, [a, b]. Because γ2(G)=〈c〉
and G is nilpotent this formula implies that

(5) [apn−1
, b] = [a, b]p

n−1
ckpn−1

for all a, b ∈ G and k depends on a, b. Let

x =
∑

g∈G

αgg ∈ V (KG)

and L(KG) = [KG, KG] is the K-modul generated by Lie product (u, v)
for any u, v ∈ KG. Then by Proposition 3.1 [1]

xp =
∑

g∈G

αp
gg

p + w (w ∈ L(KG)).

It is clear that L(KG) is contained in ideal I(G′) of KG generated by
all g − 1 (g ∈ G′).

Let us prove by induction of on the order pn of commutator subgroup
of G that

(6) xpn ≡
∑

g∈G

αpn

g gpn

(mod I(G′)pn−1
)

In the case n = 1 it is true by (4). Let H be a subgroup of order p
of G′ and I(H) is an ideal of KG generated by h − 1 (h ∈ H). Then
KG/I(H) ∼= KG/H, the commutator subgroup of G/H has order pn−1

and I(H) ⊆ I(G′)pn−1
. Applying the induction hypothesis, we deduce

xpn−1
+ I(H) ≡

∑

g∈G

αpn−1

g gpn−1
+ I(H)(mod I(G′)pn−2

/I(H)).

Because there exists element y ∈ I(G′)pn−2
such that

xpn−1
=

∑

g∈G

αpn−1

g gpn−1
+ y,

then

xpn

=
∑

g∈G

αpn

g gp + yp +
∑

u1u2 · · ·up, ui ∈ {gpn−1
, y},
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where the sum is taken over all such products u1u2 · · ·up, that not all ui

equal to gpn

or y, and the sum contains the cyclic permutation of each
word u1u2 · · ·up . Because KG has characteristic p and

uiui+1 · · ·upu1u2 · · ·ui−1 − u1u2 · · ·up = (uiui+1 · · ·up, u1u2 · · ·ui−1),

then
∑

u1u2 · · ·up may be represent as Lie product

v = (ui1ui2 · · ·uik
, uik+1 · · ·uip

).

Let for some Lemma 1 we conclude that v ∈ I(G′)pn

. Therefore (6) is true
and this we can use in determination of the exponent of V (KG).

Obviously, the element gpn

is in the centre for all g ∈ G and I(G′)pn

=0.
If exp(G) > pn then it follows from (3) that exp(G) = exp(V (KG)).

Assume that exp(G) = exp(G′) = pn. By virtue of (6) exp(V (KG)) ≤
≤ pn+1. There exist such a, b ∈ G that c = [a, b] and c has order pn.

We now claim the element x = 1 + b−1(a− 1) has order pn+1.
Suppose that xpn

= 1. Then b−iabi = acki and [b−1(a − 1)]p
n

= 0
from which it follows that

(ac− 1)(ack2 − 1) · · · (ackpn−1 − 1)(a− 1) = 0.

By proposition 2.7 [1]

(7) (ac−1)(ack2−1) · · · (ackpn−1−1) = (1+a+ · · ·+apn−1)z (z ∈ K〈c〉) .

It easily verified from (5) that 〈c〉⋂〈a〉 = 1 since 〈c〉 is a normal subgroup
of 〈c, a〉 and comparising coefficients of a and 1 in (7) we get

c = z, −1 = z,

which is impossible. Therefore we conclude exp(V (KG)) = pn+1.

Theorem 3. Let G be a finite p-group of nilpotency class two or G
is a finite p-regular group. Let t(G′) denotes the nilpotency class of the
augmentation ideal A(KG′) and k is the least integer such that t(G′) ≤ pk.
Then

1. if pk < exp(G) , then exp(V (KG)) = exp(G);
2. if pk ≥ exp(G), then exp(V (KG)) ≤ pk+1.

Proof. If G has the nilpotency class two then (1) is valid and the
conditions the Lemma 1 is satisfied.

Immediate consequence of the definition of p-regular group we become

[xpn−1
, y] = [x, y]p

n−1
cpn−1

,

where c is in the commutator subgroup. Then the argument of proof of
the theorem 2 may be repeated and we get the statement of this theorem.
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Theorem 4. Let C be the center of a 2-group G which contains an
abelian subgroup A of index two and K be a field of two elements. Then

1. if exp(A/C) < exp(A) then exp(V (KG)) = exp(G),
2. if exp(A/C) = exp(A) = exp(G) then exp(V (KG)) = 2 · exp(G),
3. if exp(A/C) = exp(A) < exp(G) then exp(V (KG)) = exp(G).

Proof. Clearly there exists such b ∈ G that G = 〈A, b〉 and b2 ∈ A.
Then every element x of V (KG) has a unique representation in the form
x = x1 + x2b, where x1, x2 ∈ KA. It is easy to see that the map defined
by u → ū = b−1ub (u ∈ KA) is an involution on KG and

x2 = x2
1 + x2x̄2b

2 + x2(x1 + x̄1)b

The reader can readily verify by induction that

(8) x2n

= x2n

1 + (x2x̄2)2
n−1

b2n

+
n−1∑

i=1

(x2x̄2)2
i−1

(x1 + x̄1)2
n−2i

b2i

+

+ x2(x1 + x̄1)2
n−1b .

Let exp(A) = 2m, exp(A/C) = 2t and x1 =
∑

a∈A αaa. Then x1+x̄1=∑
a∈A αa(a + ā) and (a + ā)2

t

= 0, because (x1 + x̄1)2
t

= 0 and

(x2x̄2)2
t

= x2t+1

2 .

Suppose that t < m. It is clear that 2m − 2i ≥ 2m−1 for every
i ≤ m− 1. By (8) we have

x2m

= χ(x1)2
m

+ χ(x2)2
m

b2m

,

where χ(x1) =
∑

a∈A αa. Suppose that t = m. Then

x2m

= χ(x1)2
m

+ (x2x̄2)2
m−1

b2m

and we conclude

(9) x2m+1
= χ(x1)2

m+1
+ χ(x2)2

m+1
b2m+1

.

Because x ∈ V (KG) we have χ(x1)+χ(x2) = 1. If exp(A) < exp(V ), then
(9) implies that exp(V (KG)) = exp(G).

Assume that exp(A/C) = exp(A) = exp(G). Clearly there exist cyclic
subgroups 〈a1〉, 〈a2〉 of order 2m in A such that 〈ba1b

−1〉 ∩ 〈a2〉 = 1. Then
one immediately verifies that x = 1 + (a1 + a2)b has order 2m+1. Thus
exp(V (KG)) = 2 exp(G), which proves the theorem.
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