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Square free part of products of consecutive integers

By ANIRBAN MUKHOPADHYAY (Allahabad) and T. N. SHOREY (Mumbai)

Dedicated to Professor K. Ramachandra on his 70th birthday

Abstract. Defining ∆(n, k) = n(n + 1) . . . (n + k − 1), it is proved that, for
k ≥ 10 and n > k2, there are at least 8 distinct primes exceeding k dividing
∆(n, k) to odd powers except a few explicitly given values of n and k. We also
list all the squares which can be written as a product of k − 2 distinct terms out
of k consecutive positive integers.

1. Introduction

Let n and k ≥ 3 be positive integers. For an integer ν > 1, we denote
by P (ν) the greatest prime factor of ν and we write P (1) = 1. Further we
put

∆(n, k) = n(n + 1) · · · (n + k − 1).

We write G = G(n, k) for the set of all i with 0 ≤ i ≤ k − 1 such that
n + i is divisible by a prime > k to odd power. Further we denote by
G′ = G′(n, k) the set of prime divisors of ∆(n, k) exceeding k. We put
g = g(n, k) = |G| and g′ = g′(n, k) = |G′|. A theorem of Sylvester [12]
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dating back to 1892 states that

g′ > 0 if n > k.

Here the assumption n > k is necessary since P (1 × 2 × · · · × k) ≤ k.
Further Saradha and Shorey [10] showed that

g′ ≥ [π(k)/3] + 2 if n > k (1)

unless 



n ∈ {4, 6, 7, 8, 16} if k = 3;

n ∈ {6} if k = 4;

n ∈ {6, 7, 8, 9, 12, 14, 15, 16, 23, 24} if k = 5;

n ∈ {7, 8, 15} if k = 6;

n ∈ {8, 9, 10, 12, 14, 15, 24} if k = 7;

n ∈ {9, 14} if k = 8;

n ∈ {14, 15, 16, 18, 20, 21, 24} if k = 13;

n ∈ {15, 20} if k = 14;

n = {20} if k = 17.

(2)

We observe that

g′ = π(2k)− π(k) if n = k + 1.

Therefore 1
3 cannot be replaced by a constant larger than 1. Shanta

Laishram and Shorey [6] sharpened (1) for k ≥ 19 to

g′ ≥
[
3
4
π(k)

]
− 1 if n > k ≥ 19 (3)
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unless (n, k) is given by



n ∈ {20− 22, 24} if k = 19; n ∈ {21} if k = 20;

n ∈ {48− 50, 54} if k = 47; n ∈ {49} if k = 48;

n ∈ {74, 75} if k = 71; n ∈ {74} if k = 72;

n ∈ {74− 76, 84} if k = 73;

n ∈ {75} if k = 74; n ∈ {84} if k = 79;

n ∈ {84, 90, 108, 110} if k = 83;

n ∈ {90, 102, 104} if k = 89;

n ∈ {108, 110, 111, 114, 115} if k = 103;

n ∈ {110, 114} if k = 104; n ∈ {108− 119} if k = 107;

n ∈ {109− 118} if k = 108; n ∈ {110− 118} if k = 109;

n ∈ {111− 117} if k = 110; n ∈ {112− 116} if k = 111;

n ∈ {113− 115} if k = 112;

n ∈ {114− 120, 138, 140, 141} if k = 113;

n ∈ {115− 119, 140} if k = 114;

n ∈ {116− 118} if k = 115;

n ∈ {117} if k = 116; n ∈ {174} if k = 173;

n ∈ {198, 200, 201} if k = 181;

n ∈ {200} if k = 182; n ∈ {200, 201} if k = 193;

n ∈ {200} if k = 194; n ∈ {200} if k = 197;

n ∈ {200− 202} if k = 199; n ∈ {201} if k = 200;

n ∈ {282− 286} if k = 271;

n ∈ {282, 284, 285} if k = 272;

n ∈ {284} if k = 273;

n ∈ {278− 280, 282− 286} if k = 277;

n ∈ {279, 282− 285} if k = 278;

n ∈ {282− 284} if k = 279;

n ∈ {282} if k = 280; n ∈ {282− 288} if k = 281;

n ∈ {283− 287} if k = 282;

n ∈ {284− 288, 294} if k = 283;

n ∈ {285− 287} if k = 284;

n ∈ {286} if k = 285; n ∈ {294} if k = 293.

(4)
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Thus the estimate (3) always holds for k > 293. Further they derived
from their result that

g′ ≥ min
([

3
4
π(k)

]
− 1, π(2k)− π(k)− 1

)
if n > k. (5)

Now we turn to giving lower bounds for g. If k < n ≤ k2, we see
that G = G′ implying g = g′ and lower bounds for g′ have already been
given above. Thus we assume that n > k2. Erdős and Selfridge [4],
developing on the method of Erdős [2] and Rigge [7], proved that there
exists a prime p ≥ k dividing ∆(n, k) to odd power unless (n, k) = (48, 3).
Further Saradha [9] sharpened the assertion p ≥ k to p > k in the
preceding result. Thus

g ≥ 1 if (n, k) 6= (48, 3).

Next Saradha and Shorey [10] showed that

g ≥ 2 if k ≥ 4, (n, k) 6= (24, 4), (47, 4), (48, 4). (6)

In fact (6) is stated in [10] for the number of distinct prime divisors > k

dividing ∆(n, k) to odd powers but it is clear from the proof that the
assertion is valid for g. We sharpen (6) as follows.

Theorem 1. Let k ≥ 10 and n > k2. Then

g ≥ 8

unless

n ∈ {103− 105, 112, 116− 126, 135, 138− 144, 159− 162, 166− 168,

187− 189, 191, 192, 216, 234− 245, 247− 250, 280, 285− 288, 315,

334− 336, 354− 360, 375, 441, 477− 484, 498− 500, 503, 504,

667− 672, 717− 722, 726, 836− 841, 959, 960, 1080, 1343, 1344,

1436− 1440, 1443, 1444, 1673− 1681, 2016, 2019− 2023,

2518− 2520, 2879− 2883, 3355− 3360, 4796− 4800, 5034− 5041,

6718− 6724, 10077− 10080, 13447, 13448, 15116− 15123,

6375621} if k = 10;
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n ∈ {122− 126, 140, 144, 158− 162, 165− 168, 188− 192, 215, 216,

235− 243, 287, 288, 375, 440, 480, 719, 720, 837− 840, 1680,

2880, 5036− 5040, 6718− 6720, 15119, 15120} if k = 11;

n ∈ {158− 160, 165, 189, 239− 242} if k = 12;

n ∈ {188, 189, 240} if k = 13.

Since x2− 2y2 = −1 has infinitely many solutions in integers x and y,
it is clear that the assumption k ≥ 10 is necessary in Theorem 1. We
also observe that g ≤ 7 for every exception stated in Theorem 1. Further
we notice that the number of distinct primes > k dividing ∆(n, k) to odd
powers is at least g. Therefore Theorem 1 implies the following results
immediately.

Corollary 1. For k ≥ 10 and n > k2, there are at least 8 distinct

primes exceeding k dividing ∆(n, k) to odd powers unless

n ∈ {103− 105, 112, 116− 126, 144, 159− 162, 166− 168, 188, 189, 191,

192, 234− 243, 287, 288, 354− 360, 482, 483, 672, 717− 721,

837− 841, 1444, 5039} if k = 10;

n ∈ {122− 126, 140, 144, 158− 162, 165− 168, 188− 192, 235, 236, 240,

242, 287, 288, 719, 720, 837− 840, 1680} if k = 11;

n ∈ {158− 160, 165, 189} if k = 12;

n ∈ {188, 189, 240} if k = 13.

Corollary 2. Let k ≥ 10 if n ≥ 5040 and k ≥ 14 otherwise. Assume

that n > k2. Then there are at least 8 distinct primes exceeding k each

dividing ∆(n, k) to odd power.

We observe that the exceptions mentioned in Corollary 1 are neces-
sary. Sharper lower bounds for g have been given when n > k2 and k is
sufficiently large. Erdős [3] showed that

g ≥ C1
k

log k
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where C1 > 0 is an effectively computable absolute constant. This has
been improved by Shorey [11] to

g ≥ C2
k log log k

log k

where C2 > 0 is an effectively computable absolute constant. The improve-
ment depends upon a theorem of Baker [1] that a hyperelliptic equation,
under necessary assumptions, has only finitely many solutions. The con-
stants C1, C2 turn out to be small and therefore, the above estimates for
g are of interest only when k is large. As an immediate consequence of the
result of Baker referred above, we have

g ≥ k − 2

whenever n ≥ n0(k) and n0(k) is a sufficiently large number depending
only on k.

We shall derive Theorem 1 from the following more general result
which also covers smaller values k < 10.

Theorem 2. Let 2 ≤ g1 ≤ 7, k ≥ 3 + g1 and n > k2. Then all values

of n and k for which g = g1 are given in Table 1.

g1 k n g1 k n g1 k n g1 k n

2 5 45-48 78-80 15119-15120 287-288

96 94-96 15123 336

239-242 119 4 8 119-121 356-360

359-360 121-125 238-240 479-480

6 45 144 840 483-484

240 238 5039-5040 500

3 6 44 241-242 4 9 120 669-672

46-49 250 5 8 68-70 719-720

95-96 288 74-75 722

120 357-360 77-80 838-839

238-239 480 93-96 841

241-242 484 98 1438-1440

358-360 670-672 105 1675-1680

1440 720 118 2021-2023

4800 839-841 122-125 2520

5041 1439-1440 140 2883
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3 7 120 1676-1680 143-144 3357-3360

239-240 2022-2023 162 4798-4800

5040 3358-3360 168 5036-5038

4 7 50 4799-4800 189 5041

54 5037-5039 236-237 6720-6724

58-60 5041 241-243 10079-10080

69-70 6722-6724 245 15118-15120

75 10080 249-250 15122-15123

5 9 118-119 841 112 1443-1444

121 960 116 1673-1681

237-240 1344 122-126 2016

242 1437-1440 135 2019-2023

839-840 1444 138-144 2518-2520

5038-5040 1674-1680 159 2879-2883

6720 2020-2023 161-162 3355-3360

5 10 119-120 2519-2520 166-168 4796-4800

6 9 90 2880 187-189 5034-5036

92-98 2882-2883 191-192 5041

100 3356-3360 216 6718

104-105 4797-4800 234-235 6721-6724

117 5035-5037 244-245 10077-10080

122-125 5041 247-250 13447-13448

139-140 6719 280 15116-15119

142-144 6721-6724 285-288 15121-15123

160-162 10078-10080 315 6375621

167-168 13448 334-336 7 11 122-124

188-189 15117-15123 354-360 126

192 6 10 117-118 375 140

235-236 121 441 144

241 160 477-484 158

243-245 236-237 498-500 161-162

248-250 238-243 503-504 165-168

286-288 720 667-672 188-192

335-336 838-840 717-719 215-216

355-360 5037-5040 721-722 235-239

478-480 6719-6720 726 241

482-484 15120 836-837 243

499-500 6 11 125 841 287-288

504 159-160 959-960 375

668-672 240 1080 440

718-722 242 1343-1344 480

837-838 7 10 103-105 1436-1440 719-720

Table 1



86 A. Mukhopadhyay and T. N. Shorey

g1 k n g1 k n g1 k n g1 k n

7 11 837-840 5036-5040 7 12 158-160 239-242

1680 6718-6720 165 7 13 188-189

2880 15119-15120 189 240

Table 1 (contiuned)

The assumption 2 ≤ g1 ≤ 7 in Theorem 2 can be relaxed and the
assertion g ≥ 8 in Theorem 1 can be strengthened but this will increase
the computations and the number of exceptions. We prove Theorem 2
by induction and the first step of induction is given by (6). We write
G = {i1, · · · , ig} with i1 < i2 < · · · < ig. Then

∆(n, k)∏
i∈G(n + i)

= by2 (7)

where b and y are positive integers such that b is square free and P (b) ≤ k.
We derive from (7) that

n + i = aix
2
i for 0 ≤ i ≤ k − 1, i 6∈ G (8)

where ai’s are square free positive integers with P (ai) ≤ k. Further we see
that ai’s are distinct whenever n > k2. We observe that the assumptions
k ≥ 3 + g1 and n > k2 in Theorem 2 are necessary otherwise (7) has
infinitely many solutions.

The proof of Theorem 2 depends on elementary and combinatorial
arguments of Erdős [2] and Rigge [7] as developed by Erdős and Sel-

fridge [4]. We shall also use simath for solving elliptic curves

X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 12, P (b) ≤ 7

in positive integers X and Y . We shall apply some combinatorial argu-
ments to keep a check on the number of elliptic curves and securing the
ones that can be solved by simath.

We conclude from Theorem 2 that g ≥ 8 unless (n, k) with k ≥ 10 is
included in Table 1. This is the assertion of Theorem 1. By omitting all
exceptions (n, k) in Theorem 1 for which the number of distinct primes
> k dividing ∆(n, k) to odd power is at least 8, we conclude Corollary 1.
For Corollary 2, we observe that there are no exceptions in Corollary 1
whenever n ≥ 5040 or k ≥ 14.
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Erdős [4] and Rigge [7], independently, proved that a product of two
or more consecutive positive integers is never a square. Further Saradha

and Shorey [10] showed that any product of distinct k− 1 terms out of k

consecutive positive integers is a square only if

6!
5

= 122,
10!
7

= 7202. (9)

This confirms a conjecture of Erdős and Selfridge [4, p. 300]. We
re-write (9) as

6!
1 · 5 =

7!
5 · 7 = 122,

10!
1 · 7 =

11!
7 · 11

= 7202. (10)

These may be viewed as examples of squares which are products of k− 2
distinct terms out of k consecutive positive integers. There are more ex-
amples:





4!
2 · 3 =22,

6!
4 · 5 =62,

8!
2 · 5 · 7 =242,

10!
2 · 3 · 4 · 6 · 7 =602,

9!
2 · 5 · 7 =722,

10!
2 · 3 · 6 · 7 = 1202,

10!
2 · 7 · 8 = 1802,

10!
7 · 9 = 2402,

10!
4 · 7 = 3602,

21!
13! · 17 · 19

= 50402,
14!

2 · 3 · 4 · 11 · 13
= 50402,

14!
2 · 3 · 11 · 13

= 100802.

(11)

We derive from Theorem 3 that there are no more.

Corollary 3. Let k ≥ 4. A product of k − 2 distinct terms out of k

consecutive positive integers is a square only if it is given by (10) and (11).

It is clear that the assumption k ≥ 4 is necessary in Corollary 3 oth-
erwise there are infinitely many solutions. Let κ(t) and κ′(t) be given by

κ(2) = 8, κ(3) = 9, κ(4) = 11, κ(5) = 15, κ(6) = 16, κ(7) = 24 (12)

and
κ′(2) = 11, κ′(3) = 25, κ′(4) = 28,

κ′(5) = 30, κ′(6) = 46, κ′(7) = 50.
(13)
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We prove

Theorem 3. Let 2 ≤ t ≤ 7 and k ≥ 2 + t. Let d1, d2, . . . , dk−t be

distinct integers in [0, k − 1]. Assume that

(n + d1)(n + d2) · · · (n + dk−t) = z2 (14)

where z > 0 is an integer. If n > k2, then the solution of (14) are given

by
240.243.245 = 37802, 242.245.250 = 38502,

240.242.243.250 = 594002.
(15)

Further

k ≤ κ(t) if k < n ≤ k2 (16)

and

k ≤ κ′(t) if n ≤ k (17)

The proof of Theorem 3 depends on Theorem 2 and inequalities (1),
(3), (5). The values κ(t) and κ′(t) given in (12) and (13) are optimal. For
3 ≤ t ≤ 7, we can compute all squares which are products of k− t distinct
terms out of k consecutive positive integers such that t is minimal. But
the number of these squares turn out to be much larger than given by (11)
in the case t = 2. We shall follow the notation introduced in Section 1
throughout the paper. We shall use Mathematica for computations in
this paper.

We thank Shanta Laishram and the referee for their comments on an
earlier version of this paper.

2. Lemmas

This section consists of lemmas for the proof of Theorem 2. We shall
assume that n > k2 throughout this section so that ai with 0 ≤ i ≤ k − 1
and i /∈ G are distinct. We begin with the following result which will
be applied inductively on g to assume without loss of generality that k is
prime if k ≥ 7, g = 2; k ≥ 11, g = 3, 4, 5; k ≥ 13, g = 6 and k ≥ 17, g = 7.
This decreases the computational load considerably.
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Lemma 1. Let n > 0 and t ≥ 1 be integers. Assume that k1 < k2 be

consecutive primes. Suppose that

g(n, k) 6= t for k ≥ k1 (18)

and

g(n, k) 6= t + 1 for k = k1. (19)

Then

g(n, k) 6= t + 1 for k1 < k < k2.

Proof. Let k with k1 < k < k2 be given and assume that g(n, k) =
t + 1. We put it+1 = k − r and k = k1 + j with j, r positive integers. If
r ≥ j + 1, we observe that t + 1 = g(n, k) = g(n, k1) 6= t + 1 by (19). Thus
r ≤ j. Then k1 ≤ k − r and g(n, k − r) = t. This contradicts (18). ¤

Let m ≥ 1 be an integer. We denote by f(k, m,G) the number of ai’s
with 0 ≤ i ≤ k − 1 and i 6∈ G composed of the first m primes 2 = p1 <

p2 < · · · < pm. Then

f(k, m,G) ≥ f0(k, m, g) := k − g −
∑

j≥m+1

([
k

pj

]
+ εj

)

where εj = 0 if either pj > k or if pj | k and εj = 1 otherwise. Since ai’s
are square free, we see that f(k,m, G) ≤ 2m and hence

f0(k, m, g) ≤ 2m. (20)

This function with G = Φ was introduced by Erdős and Selfridge [4].
We check the values of this function given in the next two lemmas.

Lemma 2. We have

f0(k, 3, 2) ≥ 9 for 29 ≤ k ≤ 73 and

f0(k, 4, 2) ≥ 17 for 74 ≤ k ≤ 216,

f0(k, 4, 3) ≥ 17 for 53 ≤ k ≤ 263 and

f0(k, 5, 3) ≥ 33 for 264 ≤ k ≤ 276,

f0(k, 4, 4) ≥ 17 for 59 ≤ k ≤ 233 and
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f0(k, 5, 4) ≥ 33 for 234 ≤ k ≤ 338,

f0(k, 4, 5) ≥ 17 for 67 ≤ k ≤ 229 and

f0(k, 5, 5) ≥ 33 for 230 ≤ k ≤ 401,

f0(k, 4, 6) ≥ 17 for 83 ≤ k ≤ 211,

f0(k, 5, 6) ≥ 33 for 212 ≤ k ≤ 433 and

f0(k, 6, 6) ≥ 65 for 434 ≤ k ≤ 466,

f0(k, 4, 7) ≥ 17 for 97 ≤ k ≤ 197,

f0(k, 5, 7) ≥ 33 for 198 ≤ k ≤ 433 and

f0(k, 6, 7) ≥ 65 for 434 ≤ k ≤ 533.

Lemma 3. We have

(i) f0(5, 3, 2)= 3, f0(6, 3, 2)= f0(7, 3, 2)= 4, f0(11, 3, 2)= f0(13, 3, 2) =6,

f0(17, 3, 2) = f0(19, 3, 2) = f0(23, 3, 2) = 7.

(ii) f0(6, 3, 3) = 3, f0(7, 3, 3) = 3, f0(11, 3, 3) = f0(13, 3, 3) = 5,

f0(17, 3, 2) = f0(19, 3, 3) = f0(23, 3, 3) = 6,

f0(29, 3, 3) = f0(31, 3, 3) = 8.

(iii) f0(7, 4, 4)=3, f0(11, 4, 4) = f0(13, 4, 4)=6, f0(17, 4, 4)= f0(19, 4, 4)=8,

f0(23, 4, 4) = 9, f0(29, 4, 4) = f0(31, 4, 4) = 12,
f0(37, 4, 4) = f0(41, 4, 4) = f0(43, 4, 4) = f0(47, 4, 4) = 14.

(iv) f0(8, 4, 5) = 3, f0(9, 4, 5) = 4, f0(10, 4, 5) = 5,

f0(11, 4, 5) = f0(13, 4, 5) = 5, f0(17, 4, 5) = f0(19, 4, 5) = 7,

f0(23, 4, 5) = 8, f0(29, 4, 5) = f0(31, 4, 5) = 11,
f0(37, 4, 5) = f0(41, 4, 5) = f0(43, 4, 5) = f0(47, 4, 5) = 13,
f0(53, 4, 5) = 15.

(v) f0(9, 4, 6) = 3, f0(10, 4, 6) = 4, f0(11, 4, 6) = f0(13, 4, 6) = 4,

f0(17, 4, 6) = f0(19, 4, 6) = 6, f0(23, 4, 6) = 7,
f0(29, 4, 6) = f0(31, 4, 6) = 10,
f0(37, 4, 6) = f0(41, 4, 6) = f0(43, 4, 6) = f0(47, 4, 6) = 12,
f0(53, 4, 6) = 14, f0(59, 4, 6) = f0(61, 4, 6) = 15.

(vi) f0(10, 4, 7) = f0(11, 4, 7) = f0(13, 4, 7) = 3,

f0(17, 4, 7) = f0(19, 4, 7) = 5, f0(23, 4, 7) = 6,
f0(29, 4, 7) = f0(31, 4, 7) = 9,
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f0(37, 4, 7) = f0(41, 4, 7) = f0(43, 4, 7) = f0(47, 4, 7) = 11,
f0(53, 4, 7) = 13, f0(59, 4, 7) = f0(61, 4, 7) = 14,
f0(67, 4, 7) = f0(71, 4, 7) = f0(73, 4, 7) = f0(79, 4, 7) = 15.

The following result is due to Rosser and Schoenfeld [8, p. 69, 71].

Lemma 4. We have

(i) π(2x)− π(x) >
3x

5 log x
for x ≥ 20.5

(ii)
∏

p≤x

p < (2.78)x.

We apply Lemmas 2 and 4 in the next result.

Lemma 5. Let 2 ≤ g ≤ 7, n > k2 and k prime. Then k ≤ k0(g) where

k0(2) = 23, k0(3) = 31, k0(4) = 47, k0(5) = 53, k0(6) = 61 and k0(7) = 79.

Proof. Suppose that the assumptions of Lemma 5 are satisfied. We
recall that (7) holds and ai’s are square free and they are distinct since
n > k2. Let R be the set of integers in [0, k − 1] which do not belong
to G. We give an upper bound and a lower bound for

∏
i∈R ai. For a

prime p0 ≤ k, we write

γp0 = ordp0

( ∏

i∈R
ai

)
.

Then

γp0 ≤
[
k − 1

p0

]
+ 1.

Since ∏

i∈R
ai =

∏

p0≤k

p
γp0
0 ,

it follows that ∏

i∈R
ai

∣∣∣
∏

p0≤k

p
[ k−1

p0
]+1

0 .

Thus ∏

i∈R
ai

∣∣∣ (k − 1)!
∏

p0≤k

p0.
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Let
γ′p0

= ordp0

(
(k − 1)!

∏

p0≤k

p0

)
.

Let ph
0 ≤ k − 1 < ph+1

0 . Then

γ′p0
=

[
k − 1

p0

]
+ · · ·+

[
k − 1
ph
0

]
+ 1.

We observe that γp0 is equal to the number of terms n + i with i ∈ R
divisible by p0 to an odd power. Let n+J for J ∈ R be a term divisible by
the maximal power of p0. We consider the set S = {n + i : i ∈ R, i 6= J}
and let µ be a positive integer. Then the number of elements of S divisible
by pµ

0 is at most [(k − 1)/pµ
0 ] and at least [(k − 1)/pµ

0 ]− g − 1. Thus

γp0 ≤
[
k − 1

p0

]
−

([
k − 1

p2
0

]
− g − 1

)

+
[
k − 1

p3
0

]
−

([
k − 1

p4
0

]
− g − 1

)
+ · · ·+ (−1)ε

([
k − 1
ph
0

]
+ ε1

)
+ 1

where ε = 1 or 0 and ε1 = −(g + 1) or 0 according as h is even or odd,
respectively. Thus we have

γp0 − γ′p0
≤ (g + 1)

(h + ε− 1)
2

− 2

([
k − 1

p2
0

]
+

[
k − 1

p4
0

]
+ · · ·+

[
k − 1
ph+ε−1
0

])

≤ (g + 1)
(h + ε− 1)

2
− 2

(
k − 1

p2
0

+ · · ·+ k − 1
ph+ε−1
0

− h + ε− 1
2

)

≤ (g + 3)
(h + ε− 1)

2
− 2(k − 1)

p2
0 − 1

(
1− 1

ph+ε−1
0

)
.

Since ph+1
0 > k − 1 and h < log k/ log p0, we get

γp0 − γ′p0
<

log k

2 log p0
(g + 3)− 2k

p2
0 − 1

+ δp0

where

δp0 =
2 + 2p2

0

p2
0 − 1

.
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We observe that
∏

i∈R
ai

∣∣∣ (k − 1)!
∏

p0≤k

p0

∏

p0≤7

p
γp0−γ′p0
0 .

We compute that
∏

p0≤7

p
γp0−γ′p0
0 ≤ 296001k2g+6(2.5907)−k.

Thus ∏

i∈R
ai ≤ 296001(k − 1)!k2g+6(1.07307)k (21)

by Lemma 4. On the other hand, we see that

∏

i∈R
ai ≥

k−g∏

i=1

si (22)

where si denotes the i-th square free integer. Further

k−g∏

i=1

si ≥ (k − g)!(1.5)k−g for k ≥ 79. (23)

We check (23) for k = 79. Then (23) follows immediately by induction on
k from an inequality of Erdős [2] that si ≥ (1.5)i for i ≥ 39.

By combining (21), (22) and (23), we get

(1.3978)k ≤ 296001(1.5)gk3g+5

which implies that k ≤ 216 if g = 2; k ≤ 276 if g = 3; k ≤ 338 if g = 4;
k ≤ 401 if g = 5; k ≤ 466 if g = 6 and k ≤ 533 if g = 7.

Now we apply Lemma 2 and (20). We conclude that k ≤ 23 if g = 2;
k ≤ 47 if g = 3; k ≤ 53 if g = 4; k ≤ 61 if g = 5; k ≤ 79 if g = 6 and
k ≤ 89 if g = 7. Thus it remains to exclude the cases k = 37, 41, 43, 47 if
g = 3; k = 53 if g = 4; k = 59, 61 if g = 5; k = 67, 71, 73, 79 if g = 6 and
k = 83, 89 if g = 7.

Let g = 3. We observe that f0(37, 3, 3) = f0(41, 3, 3) = 9 which imply
that k 6= 37, 41 by (20). Let k = 43. Then the primes 43, 41, 37, 31,
29, 23, 19, 17, 13, 11, 7 divide 1, 2, 2, 2, 2, 2, 3, 3, 4, 4, 7 distinct ai’s,
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respectively, and none of these ai’s is divisible by more than one of these
primes. So 41 divides a0, a41 or a1, a42 and 7 divides a0, a7, a14, a21, a28,
a35, a42. This is not possible. Let k = 47. Then exactly 1, 2, 2, 2, 2, 2,
3, 3, 3, 4, 5, 7 distinct ai’s are divisible by 47, 43, 41, 37, 31, 29, 23, 19,
17, 13, 11, 7, respectively, and none of these ai’s is divisible by more than
one of these primes. Hence 23 divides a0, a23, a46. Then 11 divides either
a1, a12, a23, a34, a45 or a2, a13, a24, a35, a46 leading to a contradiction in
either of the cases.

The proofs for the other cases are similar and we suppress some details.
Let g = 4. We have f0(53, 3, 4) = 8. Hence 13 divides a0, a13, a26, a39, a52

and 17 divides a1, a18, a35, a52, a contradiction.
Let g = 5. Then f0(61, 4, 5) = f0(59, 4, 5) = 16. If k = 61, then 59

divides a0, a59 or a1, a60. If 59 divides a0, a59, then 29 divides a2, a31,
a60, 19 divides a1, a20, a39, a58 and 11 divides a3, a14, a25, a36, a47, a58

which is not possible. If 59 divides a1, a60, then 29 divides a0, a29, a58, 19
divides a2, a21, a40, a59 and 11 divides a3, a14, a25, a36, a47, a58 which is
impossible. When k = 59, then 29 divides a0, a29, a58 and 19 divides a1,
a20, a39, a58. This is a contradiction.

Let g = 6. We see that f0(79, 4, 6) = f0(73, 4, 6) = f0(71, 4, 6) =
f0(67, 4, 6) = 16. Let k = 79. Then 13 divides a0, a13, a26, a39, a52, a65,
a78 and 11 divide a1, a12, a23, a34, a45, a56, a67, a78. This is impossible.
Let k = 73. Then 71 divides a0, a71 or a1, a72. Let 71 divide a0, a71.
Then 23 divides a1, a24, a47, a70 or a3, a26, a49, a72. Suppose that the
first possibility holds. Then 17 divides a4, a21, a38, a55, a72 and 13 divides
a2, a15, a28, a41, a54, a67. Therefore 11 divides either a3, a14, a25, a36,
a47, a58, a69 or a4, a15, a26, a37, a48, a59, a70 but neither is possible. Let
23 divide a3, a26, a49, a72. Then 17 divides either a1, a18, a35, a52, a69

or a2, a19, a36, a53, a70. In case of the former possibility, we see that 13
divides a2, a15, a28, a41, a54, a67, 11 divides a4, a15, a26, a37, a48, a59, a70

which is not possible. When the latter possibility holds, we observe that
13 divides a4, a17, a30, a43, a56, a69, 11 divides a1, a12, a23, a34, a45, a56,
a67, a contradiction. The case 71 dividing a1, a72 is excluded similarly by
considering divisibility of ai’s by primes 23, 17, 13, 11 and 67. Let k = 71.
We observe that 23 divides a0, a23, a46, a69 or a1, a24, a47, a70. In the
first case, 17 divides a2, a19, a36, a53, a70, 67 divides a1, a68 and hence
11 can not divide 7 distinct ai’s. This is also the case whenever the latter
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possibility holds. This is a contradiction. Let k = 67. We observe that 11
divides a0, a11, a22, a33, a44, a55, a66 and 13 divides a1, a14, a27, a40, a53,
a66 which is not possible.

Let g = 7. Then we have f0(83, 4, 7) = f0(89, 4, 7) = 16. Let k = 89.
Then 11 divides a0, a11, a22, a33, a44, a55, a66, a77, a88 and 29 divides a1,
a30, a59, a88, a contradiction. Let k = 83. Then 41 divides a0, a41, a82.
If 79 divides a1, a80, then 13 divides a3, a16, a29, a42, a55, a68, a81 and 11
divides a2, a13, a24, a35, a46, a57, a68, a79 which is impossible. The case
79 dividing a2, a81 is excluded similarly. ¤

3. Proof of Theorem 2

Let 2 ≤ g1 ≤ 7, k ≥ 3+g1 and n > k2. Assume that g = g1. We recall
that (7) is valid. We first give a proof of Theorem 2 under the assumption
that k is prime if k ≥ 7, g = 2; k ≥ 11, g = 3, 4, 5; k ≥ 13 g = 6 and
k ≥ 17, g = 7. We conclude from Lemma 5 that k ≤ k0(g).

Let g = 2. We first consider k = 23. We have at least 7 ai’s composed
only of 2, 3, 5 by Lemma 3 (i). Hence there are at least 3 ai’s such that
the corresponding i’s belong to exactly one of the intervals [0, 7], [8, 15],
[16, 22]. Therefore we see from (8) that

(n + i0)(n + i0 + p)(n + i0 + q) = by2, 1 ≤ p < q ≤ 7, P (b) ≤ 5.

We shall always denote by i0 a non-negative integer and X = b(n + i0)
in the proof of Theorem 2. Putting b2y = Y, we get the following set of
elliptic curves

X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 7, P (b) ≤ 5. (24)

For k = 19, 17, 13, 11, 7, 6, 5, we divide 0 ≤ i ≤ k − 1 into 3, 3, 2, 2, 1,
1, 1 parts, respectively, and apply Lemma 3(i) as above to obtain elliptic
curves (24). Thus we need to solve (24) in integers.

We apply Lemma 3(ii), (iii), (iv), (v), (vi) as above according as
g = 3, 4, 5, 6, 7, respectively. Then we obtain the following set of ellip-
tic equations

X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 11, P (b) ≤ 5, (25)
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X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 7, P (b) ≤ 7, (26)

X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 9, P (b) ≤ 7 (27)

and

X(X + bp)(X + bq) = Y 2, 1 ≤ p < q ≤ 12, P (b) ≤ 7 (28)

according as g = 3, g = 4, 5, g = 6 and g = 7, respectively. For the
preceding assertion, we need to make few additional observations in the
cases k = 9, g = 5 and k = 11, 13, g = 6. Let k = 9, g = 5. Then
f0(9, 4, 5) = 4 and there are at least 3 ai’s with 1 ≤ i ≤ 8 composed only
of 2, 3, 5, 7. Let k = 11, g = 6. Then f0(11, 4, 6) = 4 and there are at
least 3 ai’s with 1 ≤ i ≤ 10 composed only of 2, 3, 5, 7. Finally let k = 13,
g = 6. Then f0(13, 4, 6) = 4. We may assume that 11 divides a0, a11 or
a1, a12. Thus we find at least three 3 ai’s with 1 ≤ i ≤ 10 or 2 ≤ i ≤ 11
composed only of 2, 3, 5, 7.

Now we use simath to solve the equations (24), (25), (26), (27) and
(28). This was used for the first time in a similar context by Filakovszky

and Hajdu [5]. Further we describe how to obtain Table 1 from the above
solutions. Let 2 ≤ g ≤ 7 be given and we restrict to (24), (25), (26), (27),
(28) according as g = 2, g = 3, g = 4, 5, g = 6 and g = 7, respectively.
We observe that n + i0 = X/b is an integer. Further k ≤ [

√
X/b ] since

n > k2. Let K = min{[
√

X/b ], k0(g)}. Thus

k ≤ K. (29)

Now i0 + q ≤ k − 1 ≤ K − 1 implying that 0 ≤ i0 ≤ K − q − 1. Therefore

n ∈ [X/b−K + q + 1, X/b]. (30)

For n, k satisfying (29) and (30), we include (g, n, k) in Table 1 if and only
if the number of i with 0 ≤ i ≤ k−1 such that n+ i is divisible by a prime
> k to odd power is exactly equal to g. We explain the above argument
in the case g = 2. Thus we need to solve (24). For example, we consider
(24) with p = 3, q = 4 and b = 15. We have X = 15(n + i0) > 15k2 and
k ≥ 5. Now we conclude by simath that X = 675. Then K = 6 and
k = 5, 6 by (29). Further n = 44, 45 by (30). Thus we need to consider
only the pairs (n, k) = (44, 5), (44, 6), (45, 5), (45, 6). The first two pairs



Square free part of products of consecutive integers 97

are excluded since g = 3 for both. On the other hand, we find that g = 2
for the last two pairs. Hence the values of n and k corresponding to these
pairs are included in Table 1 against g = 2.

For a composite k, it remains to show that g(n, k) 6= 2, 3, 4, 5, 6, 7
according as k exceeds 7, 11, 11, 11, 13, 17, respectively. Let k′ > 7 be
composite. Let k1 ≥ 7 and k2 be consecutive primes such that k1 < k′ < k2.
As shown above, g(n, k1) 6= 2 and g(n, k) 6= 1 for every k ≥ k1 by (6).
Therefore the assumptions of Lemma 1 with t = 1 are satisfied. Hence we
derive from Lemma 1 with t = 1 that g(n, k′) 6= 2. Thus g(n, k) 6= 2 for
every k ≥ 7. As proved above, g(n, k) 6= 3 whenever k ≥ 11 is prime. Now
we conclude from Lemma 1 with t = 2 that g(n, k) 6= 3 for every k ≥ 11.
Further we apply Lemma 1 inductively with t = 3, 4, 5, 6 to complete the
proof of Theorem 2. ¤

4. Proof of Theorem 3

Let 2 ≤ t ≤ 7, k ≥ 2 + t and we assume (14). Let k = 2 + t. We may
assume that all the solutions of (14) are given by 1 · 4 = 22, 1 · 9 = 32,
2 · 8 = 42, 4 · 9 = 62, 9 · 16 = 122. The last one is covered by (17) and the
remaining ones by (16). Thus we may assume that k > 2 + t. Further we
observe from (7) that g ≤ t.

Let n > k2. Then g ≥ 2 by (6) and the assertion of Theorem 2 holds.
If t = 7, then k ≥ 10 and g ≥ 5 by Table 1. Similarly g ≥ 4 if t = 5, 6 and
g ≥ 3 if t = 4. Further we check whether every possible product of k − t

distinct integers out of k − g integers n + i with 0 ≤ i ≤ k − 1 and i /∈ G

is a square. We find that all the solutions of (14) are given by (15). Thus
we may assume that n ≤ k2.

Let n > k. Then g′ = g ≤ t. Now we apply (1) to derive k ≤ κ1(t)
where

κ1(2) = 8, κ1(3) = 12, κ1(4) = 22,

κ1(5) = 36, κ1(6) = 46, κ1(7) = 60.

Further we apply (3) to sharpen k ≤ κ1(t) to k ≤ κ2(t) with t ≥ 4 where

κ2(2) = 8, κ2(3) = 12, κ2(4) = 18,

κ2(5) = 28, κ2(6) = 30, κ2(7) = 36.
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While applying (3), we check that the exceptions given in (4) with κ1(t) <

k ≤ κ2(t), t ≥ 5 are excluded by noting that π(2k) − π(k) − 1 > t and
(5) holds. Further the exceptions given in (4) with κ1(4) < k ≤ κ2(4) are
excluded by direct computations. Finally we conclude (16) from k ≤ κ2(t)
by computations as above in the case n > k2.

Therefore we may suppose that n ≤ k. Then n ≤ (n+k)/2 < n+k−1
and we see from (14) that

π(n + k − 1)− π

(
n + k

2

)
≤ t.

This implies that n+k ≤ 122 by Lemma 4. This is improved to n+k ≤ 66
by using exact values of π function. Thus k ≤ 65 which we sharpen to
(17) by checking whether a product of k − t distinct integers n + i with
0 ≤ i ≤ k − 1 such that n + i is composite whenever i > (k − n)/2, is a
square. ¤

5. Proof of Corollary 3

Assume (14) with t = 2. Then we conclude from Theorem 3 that
n ≤ k2. Further k ≤ 8 if n > k, k ≤ 11 if n ≤ k and the assertion of
Corollary 3 follows by computations as in the proof of Theorem 3. ¤

References

[1] A. Baker, Bounds for the solutions of the hyperelliptic equation, Proc. Cambridge
Philos. Soc. 65 (1969), 439–444.
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