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On collapsing iteration semigroups of set-valued functions

By GRAŻYNA ÃLYDZIŃSKA (Katowice)

Abstract. We introduce the notion of collapsing iteration semigroup of set-
valued functions and study conditions under which a certain family of set-valued
functions, naturally occuring in iteration theory, is such a semigroup.

Introduction

Given a set X a function F : (0,∞)×X → 2X is said to be set-valued
iteration semigroup if

F (s + t, x) = F
(
t, F (s, x)

)
for x ∈ X and s, t ∈ (0,∞)

(here and in the sequel we write F (t, A) for the image F ({t}×A) of {t}×A;
see also Section 2). This notion was introduced and studied under various
assumptions by A. Smajdor in [2]. In the present paper we propose
a more general notion of collapsing iteration semigroup postulating that
F : (0,∞)×X → 2X satisfies the condition

F (s + t, x) ⊂ F
(
t, F (s, x)

)
for x ∈ X and s, t ∈ (0,∞).

Both above definitions take pattern by the classical notion of iteration
semigroup intensively studied, among others, by M. C. Zdun (see, for
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286 Grażyna ÃLydzińska

instance, [3]). It is well-known and easy to check that if α is a bijection
mapping X onto R then the function f : (0,∞)×X → X, given by

f(t, x) = α−1
(
α(x) + t

)
,

is an iteration semigroup:

f(s + t, x) = f
(
t, f(s, x)

)
for x ∈ X and s, t ∈ (0,∞).

More generally we have the following observation.

Remark 1. Let α be a bijection mapping a set X onto an interval I ⊂ R
with the right endpoint q ∈ (−∞, +∞]. Assume that q ∈ I whenever q is
finite. Then the function f : (0,∞)×X → X, given by

f(t, x) = α−1
(
min{α(x) + t, q}), (1)

is an iteration semigroup.

Proof. Fix s ∈ (0,∞) and x ∈ X. If α(x) + s < q then

min
{

min{α(x) + s, q}+ t, q
}

= min{α(x) + s + t, q}
and if α(x) + s > q then

min
{

min{α(x) + s, q}+ t, q
}

= min{q + t, q} = q

= min{α(x) + s + t, q}
for every t ∈ (0,∞). Then

f(s + t, x) = α−1
(
min{α(x) + s + t, q})

= α−1
(
min

{
min{α(x) + s, q}+ t, q

})

= α−1
(
min

{
α

(
α−1 (min {α(x) + s, q})) + t, q

} )

= α−1
(
min{α(f(s, x)) + t, q}) = f

(
t, f(s, x)

)

for every t ∈ (0,∞) which gives the desired equality. ¤

It seems that for the first time this observation was made by M. C.

Zdun (cf. [3, Theorems 5.1–8.1]). As he proved there, (1) with homeo-
morfic α is a general form of the so called continuous iteration semigroups
on an interval (cf. also [1, Theorem 1]).

The aim of the present paper is to introduce a set-valued counterpart
of (1) and to find conditions under which such set-valued functions are
collapsing iteration semigroups.
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1. Preliminaries

In what follows, given sets X, Y and a set-valued function F : X → 2Y ,
we define images and preimages by F putting

F (U) :=
⋃

x∈U

F (x)

for every U ⊂ X and

F−1(V ) := {x ∈ X : F (x) ∩ V 6= ∅}
for every V ⊂ Y .

Fix a set X and a set-valued function A : X → 2R with non-empty
values. Put

S := A(X) and q := supS.

Given x, y ∈ X and t ∈ (0,∞) we say that A(y) is t-attainable from
A(x) if

[A(x) + t] ∩A(y) 6= ∅.

If x ∈ X, t ∈ (0,∞) and
inf A(x) + t > q

A(x) is called t-coming out.

Throughout this paper we will always assume that

(H) for every s, t ∈ (0,∞) and x, z ∈ X such that A(z) is (s + t)-
attainable from A(x) there exists a y ∈ X such that A(y) is s-attainable
from A(x) and A(z) is t-attainable from A(y).

Proposition 1. (i) If S is an interval then (H) holds.

(ii) Assume that all values of A are open sets. If (inf S, supS) ⊂ clS
then (H) holds.

(iii) Assume that all values of A are intervals. If (H) holds then

(inf S, supS) ⊂ cl S.

Proof. (i) Assume that S is an interval. Fix s, t∈ (0,∞) and x, z ∈X

such that A(z) is (s + t)-attainable from A(x), that is

[A(x) + s] ∩ [A(z)− t] 6= ∅.
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Therefore there exists a real number u such that

u ∈ A(x) + s and u ∈ A(z)− t, (2)

whence
u− s ∈ A(x) ⊂ S and u + t ∈ A(z) ⊂ S.

Since S is an interval and u − s < u < u + t we have u ∈ S. Then there
exists a y ∈ X such that u ∈ A(y). Hence and by (2) we get

A(y) ∩ [A(x) + s] 6= ∅

and
[A(y) + t] ∩A(z) 6= ∅.

(ii) Now assume that (inf S, supS) ⊂ clS. Fix s, t∈ (0,∞) and x, z ∈X

such that
[A(x) + s + t] ∩A(z) 6= ∅.

Then [A(x) + s] ∩ [A(z) − t] is a non-empty open subset of (inf S, supS).
Since the latter is contained in clS this means that

[A(x) + s] ∩ [A(z)− t] ∩ S 6= ∅

which completes the proof of (ii).

(iii) Assume that (H) holds. Suppose that (inf S, supS) 6⊂ clS. Then
there exists v ∈ (inf S, supS) and an open interval G such that v ∈ G and

G ∩ S = ∅. (3)

Since inf S < v < supS and all values of A are intervals there exist x, z ∈ X

such that

u < v for u ∈ A(x) and v < w for w ∈ A(z).

We can find s, t ∈ (0,∞) such that

∅ 6= [A(x) + s] ∩ [A(z)− t] ⊂ G. (4)

Obviously
[A(x) + s + t] ∩A(z) 6= ∅.
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Then, by (H), there is a y ∈ X with

[A(x) + s] ∩A(y) 6= ∅ and [A(z)− t] ∩A(y) 6= ∅. (5)

Since A(x) + s, A(z)− t and A(y) are intervals, by (4) and (5), we have
[
[A(x) + s] ∩ [A(z)− t]

] ∩A(y) 6= ∅.
Then, by (4), G ∩ S 6= ∅ which contradicts (3). ¤

The examples below show that none of the implications in Proposi-
tion 1 can be converted; also the assumptions made in (ii) and (iii) turn
out to be essential.

Example 1. Let X be an arbitrary set and A : X → 2R be defined by

A(x) = (0, 2) ∪ (3, 5).

Obviously S = (0, 2) ∪ (3, 5) and

(inf S, supS) = (0, 5) 6⊂ clS.

We will show that (H) holds. Notice that
{
t ∈ (0,∞) : [A(x1) + t] ∩A(x2) 6= ∅} = (0, 5)

for every x1, x2 ∈ X. Fix x, z ∈ X and let s, t ∈ (0,∞) be such that

[A(x) + s + t] ∩A(z) 6= ∅.
Then s + t ∈ (0, 5) whence s, t ∈ (0, 5). Therefore, taking any y ∈ X, we
have [A(x) + s] ∩A(y) 6= ∅ and A(y) ∩ [A(z)− t] 6= ∅.

Example 2. Let X = {1, 2, 3} and A : X → 2R be defined by

A(x) =





(0, 2) for x = 1,

(2, 3) for x = 2,

{3} for x = 3.

Obviously S =(0, 2)∪ (2, 3] and (inf S, supS)= (0, 3) ⊂ clS. Notice that
[A(1)+2]∩A(3) 6= ∅ but A(3)−1 = {2} and 2 6∈ S. Then [A(3)−1]∩S = ∅
and, consequently, (H) does not hold.
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Corollary 1. (i) Assume that A is single-valued. Then (H) holds if

and only if S is an interval.

(ii) Assume that all values of A are open intervals. Then (H) holds if

and only if (inf S, supS) ⊂ clS.

Proof. (i) Assume (H) and take u,w ∈ S such that u < w. Therefore
there exist points x, z ∈ X such that A(x) = {u}, A(z) = {w}. Fix a
v ∈ (u,w) and put

s := v − u, t := w − v.

Obviously A(x) + s + t = A(z), i.e. A(z) is (s + t)-attainable from A(x).
Then, by (H), there exists a y ∈ X such that [A(x) + s] ∩ A(y) 6= ∅, i.e.
A(x) + s = A(y). On the other hand, A(x) + s = {v}. Thus A(y) = {v}
and, consequently, v ∈ S. This means that S is an interval and by Propo-
sition 2(i) completes the proof of (i).

The second assertion follows immediately from Proposition 2(ii)
and (iii). ¤

For every x ∈ X define

τ(x) := sup
{
t ∈ [0,∞) : [A(x) + t] ∩ S 6= ∅}.

Theorem 1. Let x ∈ X. If t < τ(x) then [A(x) + t] ∩ S 6= ∅ and if

t > τ(x) then [A(x) + t] ∩ S = ∅ for every t ∈ (0,∞).

Proof. To prove the first claim it suffices to show that if for some
t ∈ (

0, τ(x)
)

condition [A(x) + t] ∩ S 6= ∅ holds, then [A(x) + s] ∩ S 6= ∅
for every s ∈ (0, t). To this aim let t ∈ (

0, τ(x)
)

satisfy [A(x) + t] ∩ S 6= ∅
and fix an s ∈ (0, t). Then there exists a z ∈ X such that

[A(x) + t] ∩A(z) 6= ∅.

Let u := t− s. Then u ∈ (0,∞) and

[A(x) + s + u] ∩A(z) 6= ∅.

By (H) there exists a y ∈ X such that

[A(x) + s] ∩A(y) 6= ∅.
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Thus we have shown that

[A(x) + s] ∩ S 6= ∅,

which completes the proof in this case.
The second assertion follows directly from the definition of τ(x). ¤

Lemma 1. For every x ∈ X

τ(x) = q − inf A(x).

Proof. Fix an x ∈ X and suppose that τ(x) < q − inf A(x). Then
τ(x) 6= ∞ and τ(x) + inf A(x) < q whence there exist s, t such that
s ∈ A(x) + τ(x), t ∈ S and s < t. Thus

t = s + (t− s) ∈ A(x) +
(
τ(x) + (t− s)

)
,

contrary to Theorem 1.
Now suppose that τ(x) > q − inf A(x) for an x ∈ X. Therefore

inf A(x) 6= −∞ and there exists a u such that q < u < inf A(x) + τ(x).
We can find an s ∈ (

0, τ(x)
)

such that u = inf A(x) + s. Obviously u 6∈ S.
Then for every v ∈ A(x)+s we have v > u and, consequently, v 6∈ S which
contradicts Theorem 1. ¤

Corollary 2. For every x ∈ X

[
A(x) + τ(x)

] ∩ S ⊂ {q}.

Proof. By Lemma 1 and definition of the number q we have
[
A(x) + τ(x)

] ∩ S =
[
A(x) + q − inf A(x)

] ∩ S ⊂ [q, +∞] ∩ (−∞, q] = {q}

for every x ∈ X. ¤

Let e : (0,∞)×X → [0,∞) be a function defined by

e(t, x) := sup{s ∈ [0, t] : [A(x) + s] ∩ S 6= ∅}.

Lemma 2. For every t ∈ (0,∞) and x ∈ X

e(t, x) = min{t, τ(x)}.
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Proof. If t 6 τ(x) then, by Theorem 1,

[A(x) + s] ∩ S 6= ∅

for every s ∈ [0, t) whence

e(t, x) = sup{s ∈ [0, t] : [A(x) + s] ∩ S 6= ∅} = t = min{t, τ(x)}.

If t > τ(x) then, again by Theorem 1, we have

e(t, x) = sup
{
s ∈ [0, t] : [A(x) + s] ∩ S 6= ∅}

= sup
{
s ∈ [0, τ(x)] : [A(x) + s] ∩ S 6= ∅} = τ(x) = min{t, τ(x)}.

¤

2. Collapsing iteration semigroups

In what follows, given a set-valued function F : (0,∞)×X → 2X , we
put

F (t, U) := F
({t} × U

)
=

⋃

x∈U

F (t, x)

whenever U ⊂ X; moreover, we will write F t(x) and F t(U) instead of
F (t, x) and F (t, U), respectively.

Remark 2. If F : (0,∞)×X → 2X is a single-valued collapsing itera-
tion semigroup then

F (s + t, x) = F
(
t, F (s, x)

)

for every s, t ∈ (0,∞) and x ∈ X, that is F generates a classical iteration
semigroup.

Remark 3. If S is an interval, q ∈ S whenever q is finite and A is a
single-valued bijection mapping X onto S then

A−1
(
A(x) + e(t, x)

)
= A−1

(
min{A(x) + t, q})

for every t ∈ (0,∞) and x ∈ X.
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Proof. Assume that S is a interval and A : X → S is a single-valued
bijection. Fix t ∈ (0,∞) and x ∈ X. Then, by Lemmas 2 and 1 and the
equality inf{A(x)} = A(x), we have

A(x) + e(t, x) = A(x) + min{t, τ(x)}
= min

{
A(x) + t, A(x) + τ(x)

}

= min
{
A(x) + t, A(x) + q − inf{A(x)}}

= min{A(x) + t, q}
which gives the desired property. ¤

Now we pass to the problem of finding conditions under which a set-
valued function of the form

F (t, x) := A−1
(
A(x) + e(t, x)

)
(6)

is a collapsing iteration semigroup.

Lemma 3. Let F : (0,∞)×X → 2X be given by (6) and let t ∈ (0,∞)
and x ∈ X. If t < τ(x) then

F (t, x) = A−1
(
A(x) + t

) 6= ∅
and if t > τ(x) then

F (t, x) =

{
A−1({q}), if q ∈ S and inf A(x) ∈ A(x);

∅ otherwise.

Proof. The first assertion follows directly from Lemma 2 and Theo-
rem 1. So assume that t > τ(x). Again by Lemma 2 we have

F t(x) = A−1
(
A(x) + τ(x)

)
= A−1

(
(A(x) + τ(x)) ∩ S

)
.

If q ∈ S and inf A(x) ∈ A(x) then, by Lemma 1 and Corollary 2,

F t(x) = A−1({q}).
If either q 6∈ S, or inf A(x) 6∈ A(x) then, again by Lemma 1 and Corollary 2,
we have [

A(x) + τ(x)
] ∩ S = ∅

whence F t(x) = ∅. ¤
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Proposition 2. Let F : (0,∞) × X → 2X be given by (6), x ∈ X,

and s, t ∈ (0,∞). If s + t 6 τ(x) then

F s+t(x) ⊂ F t
(
F s(x)

)
. (7)

Proof. Assume that s + t 6 τ(x). To show the inclusion (7) fix a
z ∈ F s+t(x). By (6) and Lemma 2 we have

z ∈ F s+t(x) = A−1
(
A(x) + (s + t)

)

that is
A(z) ∩ [

A(x) + (s + t)
] 6= ∅.

Thus, by virtue of (H), there exists a y ∈ X such that

A(z) ∩ [A(y) + t] 6= ∅ and A(y) ∩ [A(x) + s] 6= ∅.

According to Theorem 1 we have t 6 τ(y), whence

z ∈ A−1
(
A(y) + t

)
= F t(y) and y ∈ A−1

(
A(x) + s

)
= F s(x)

that is z ∈ F t
(
F s(x)

)
. ¤

Now we are in position to formulate the main result of the paper.

Theorem 2. Let F : (0,∞) × X → 2X be given by (6). Then F is

a collapsing iteration semigroup if and only if either q 6∈ S, or, for every

x ∈ X and s, t ∈ (0,∞) such that s + t > τ(x) and A(x) has the smallest

element, at least one of the following conditions holds:

(i) there exists a y ∈ F (s, x) such that A(y) is t-coming out and has the

smallest element,

(ii) for every z ∈ A−1({q}) there exists a y ∈ F (s, x) such that A(z) is

t-attainable from A(y).

Before proving Theorem 2 we will derive the following consequence
of it.

Theorem 3. Let F : (0,∞) × X → 2X be given by (6). Every

of the following conditions is sufficient for F to be a collapsing iteration

semigroup:

(i) q 6∈ S; (ii) q = ∞;
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(iii) no value of A has the smallest element;

(iv) A is single-valued.

Proof. It follows immediately from Theorem 2 that each of the con-
ditions (i)–(iii) is sufficient for F to be a collapsing iteration semigroup.

Assume that A is single-valued and q ∈ S. Fix s, t ∈ (0,∞) and x ∈ X

such that s + t > τ(x). Then, by Lemma 1, we have

s + t > q − inf A(x).

Of course inf A(x) 6= −∞ and

inf A(x) + s + t > q. (8)

First assume that s < τ(x). Thus, on account of Lemma 3,

F s(x) = A−1(A(x) + s) 6= ∅.

Fix a y ∈ F s(x). Then A(y) ∩ [A(x) + s)] 6= ∅, that is A(x) + s = A(y)
whence, by (8), inf A(y) + t > q which means that A(y) is t-coming out.

Now consider the case s > τ(x). Then, by Lemma 3 and the assump-
tions,

F s(x) = A−1({q}) 6= ∅.

Taking any y ∈ F s(x) we have A(y) = {q}, whence

inf A(y) + t = q + t > q.

To complete the proof it is enough to use Theorem 2. ¤

Proof of Theorem 2. Assume that F is a collapsing iteration semi-
group and q ∈ S. Fix x ∈ X and s, t ∈ (0,∞) such that

s + t > τ(x) and inf A(x) ∈ A(x).

Obviously A−1({q}) 6= ∅, so we can fix a z ∈ A−1({q}). By Lemma 3

F s+t(x) = A−1({q}).

Thus z ∈ F s+t(x) and, consequently, there exists a y ∈ F s(x) such that

z ∈ F t(y). (9)
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At first assume that t > τ(y). Then, by Lemma 1,

inf A(y) + t > q.

Since F t(y) 6= ∅ it follows from Lemma 3 that

F t(y) = A−1({q}) and inf A(y) ∈ A(y).

In such a way we have come to condition (i).
If t < τ(y) then, by Lemma 3,

F t(y) = A−1(A(y) + t)

whence, by (9),
A(z) ∩ [A(y) + t] 6= ∅

and, consequently, (ii) holds true.
To prove the converse fix x ∈ X and s, t ∈ (0,∞). If s + t 6 τ(x) the

assertion follows from Proposition 2 so assume that s + t > τ(x). If q 6∈ S

then, by Lemma 3, F s+t(x) = ∅ and (7) holds true. Thus we can assume
that q ∈ S. To prove (7) fix a z ∈ F s+t(x). Since F s+t(x) 6= ∅ we have, by
Lemma 3,

F s+t(x) = A−1({q}) and inf A(x) ∈ A(x).

In particular,
z ∈ A−1({q}). (10)

Assume (i). Then there exists a y ∈ F s(x) such that

inf A(y) + t > q and inf A(y) ∈ A(y).

Thus, according to Lemma 1, τ(y) = q − inf A(y) 6 t. Consequently, it
follows from Lemma 3 that F t(y) = A−1({q}) whence, by (10), we have
z ∈ F t(y) ⊂ F t(F s(x)).

Finally assume (ii). Then [A(y) + t] ∩A(z) 6= ∅ for a y ∈ F s(x), i.e.

z ∈ A−1
(
A(y) + t

)
. (11)

In particular, the set A−1(A(y) + t) is non-empty, whence, by Theorem 1,
t 6 τ(y) and, on account of (6) and Lemma 2,

A−1
(
A(y) + t

)
= F t(y).
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Thus, by (11),
z ∈ F t(y) ⊂ F t

(
F s(x)

)

which completes the proof. ¤

Example 3. Let X = [0, 1] and A : X → 2R be defined by

A(x) := [x− 1, x + 1].

Obviously S = [−1, 2] and q = 2. Then, by Proposition 1(i), A satisfies
condition (H). According to Lemma 1

τ(x) = 3− x (12)

for every x ∈ X. Let F : (0,∞) ×X → 2X be given by (6). We will find
the explicite formula for F .

Fix t ∈ (0,∞) and x ∈ X. If t < τ(x) then, by Lemma 3,

F t(x) = A−1
(
A(x) + t

)
= A−1

(
[x− 1, x + 1] + t

)

= A−1
(
[x + t− 1, x + t + 1]

)

=
{
y ∈ [0, 1] : [y − 1, y + 1] ∩ [x + t− 1, x + t + 1] 6= ∅}

=
{
y ∈ [0, 1] : x + t− 1 6 y + 1 and y − 1 6 x + t + 1

}

= [0, 1] ∩ [
x + t− 2, x + t + 2

]

=
[
max{x + t− 2, 0}, 1]

.

If t > τ(x) then, again by Lemma 3,

F t(x) = A−1({2}) = {1}.

Consequently, we have

F t(x) =





[max{x + t− 2, 0}, 1], if x + t < 3,

{1}, if x + t > 3,
(13)

for every t ∈ (0,∞) and x ∈ X. Observe that

1 ∈ F t(x) (14)

for every t ∈ (0,∞) and x ∈ X.
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Now fix s, t ∈ (0,∞) and x ∈ X. If s + t > τ(x) then, by (13) and
(14), we have F s+t(x) = {1} ⊂ F t

(
F s(x)

)
. Thus Proposition 2 implies

that F is a collapsing iteration semigroup. Observe that F does not satisfy
any of the assumptions (i)–(iv) of Theorem 3. Consequently, none of those
conditions, which are sufficient for F to be a collapsing iteration semigroup,
is necessary.

Observe also that τ(1) = 2 and, by (13), F 2(1) = {1} and F 1(y) =
[0, 1] for y ∈ [0, 1]. On the other hand, again by (13),

F 1
(
F 1(1)

)
=

⋃

y∈[0,1]

F 1(y) =
⋃

y∈[0,1]

[0, 1] = [0, 1].

Consequently, F 1
(
F 1(1)

) 6⊂ F 2(1). This shows that F does not satisfy the
condition

F t
(
F s(x)

) ⊂ F s+t(x) for s, t ∈ (0,∞) and x ∈ X,

which could serve as a definition of expanding iteration semigroup.
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