Publ. Math. Debrecen 64/3-4 (2004), 319–328

Decomposable subspaces of Banach spaces

By MANUEL GONZÁLEZ (Santander) and ANTONIO MARTINÓN (La Laguna)

Abstract. We introduce and study the notion of hereditarily A-indecomposable Banach space for A a space ideal. The case A = F, the finite dimensional spaces, corresponds to the hereditarily indecomposable spaces. We show that several properties of the case A = F extend to some other space ideals.

1. Introduction

W. T. GOWERS and B. MAUREY [10] constructed the first example of a *hereditarily indecomposable Banach space* (HI space, for short). The main property of the HI spaces is that they do not contain unconditional basic sequences. So they provide a counterexample to an old question in Banach space theory. Moreover, a result of WEIS [18] characterizes the HI spaces as those spaces X such that for every Banach space Y any operator in L(X, Y) is upper semi-Fredholm or strictly singular.

In this paper we consider a natural notion of hereditarily A-indecomposable Banach space associated to a space ideal A: a Banach space Xis hereditarily A-indecomposable (HAI space, for short) if no (closed) subspace of X can be written as the direct sum of two subspaces which are not in A. In the case A = F, the finite dimensional spaces, we obtain the

Mathematics Subject Classification: 46B03, 47A53, 47B10.

Key words and phrases: hereditarily indecomposable Banach spaces, space ideals. Research of the first author supported in part by DGI (Spain), Proyecto BFM2001-1147. Research of the second author supported in part by Gobierno de Canarias (Spain) PI2001/039.

HI spaces. We show that the notion of HAI space is nontrivial for A the reflexive spaces, the weakly sequentially complete spaces, the spaces with the Mazur property and for some other space ideals.

Note that X HI means that any two infinite dimensional subspaces Mand N of X are very close, in the sense that $dist(S_M, S_N) = 0$, where S_M is the unit sphere of M. Similarly, X HAI means that $dist(S_M, S_N) = 0$ when M and N do not belong to A.

We show that the HAI spaces do not contain unconditional basic sequences of some kinds related to A. Moreover, we show that X is HAI if and only if $L(X,Y) = A\Phi_+(X,Y) \cup ASS(X,Y)$, for any space Y. Here $A\Phi_+$ and ASS are classes of operators which were introduced in [8], [9]. These classes generalize the upper semi-Fredholm operators and the strictly singular operators, respectively.

We also consider space ideals satisfying $A = A_{ii}$. This is a condition defined in terms of incomparability. It means that A coincides with the class of all Banach spaces X such that every infinite dimensional subspace of X contains an infinite dimensional subspace isomorphic to a subspace of a space in A.

In the case $X \in A = A_{ii}$ we prove that the union $L(X, Y) = A\Phi_+(X, Y) \cup ASS(X, Y)$ is disjoint, and that for each $T \in L(X, Y)$, $in_A(TJ_M) = in_A(T)$ and $sj_A(TJ_M) = sj_A(T)$ for all the subspaces M of X which are not in A, where $in_A(T) > 0$ and $sj_A(T) = 0$ characterize $T \in A\Phi_+$ and $T \in ASS$, respectively.

Notation and terminology. Along the paper, X, Y and Z are Banach spaces, and we denote by X^* and X^{**} the dual space and the second dual of X, respectively. A subspace is always a closed linear subspace. Given a subspace M of X, we denote by J_M the inclusion of M into X, and by Q_M the quotient map from X onto X/M.

We denote by L(X, Y) the set of all (continuous linear) operators from X into Y. An operator $T \in L(X, Y)$ is strictly singular if from TJ_M an isomorphism, we obtain that M has finite dimension; T is upper semi-Fredholm operator if it has finite dimensional null space and closed range.

A space ideal A is a class of Banach spaces which contains the finite dimensional spaces and is stable under passing to isomorphic spaces, finite

products or complemented subspaces. We refer to [14] for information on operator ideals and space ideals.

2. Hereditarily indecomposable Banach spaces

Let A be a space ideal in the sense of PIETSCH [14]. For each Banach space X we consider

$$S_{\mathsf{A}}(X) := \{ M \subset X : M \text{ is a subspace of } X \text{ and } M \notin \mathsf{A} \}.$$

Definition 1. A Banach space X is said to be A-indecomposable if there are no subspaces M and N in S_A such that $X = M \oplus N$. Equivalently, if $M, N \in S_A(X)$ and X = M + N, then $M \cap N \neq \{0\}$.

The space X is said to be *hereditarily* A-indecomposable (HAI) if every subspace M of X is A-indecomposable.

Remark 1. Every space in A is A-indecomposable. Moreover, if $A_1 \subset A_2$, then the (hereditarily) A_1 -indecomposable spaces are (hereditarily) A_2 -indecomposable.

Remark 2. Let $N\ell_1$ be the ideal of the spaces that contain no copies of ℓ_1 .

This case is trivial because the spaces in $N\ell_1$ are the only hereditarily $N\ell_1$ -indecomposable spaces. Indeed, if X contains a subspace isomorphic to ℓ_1 , this subspace can be written as the direct sum of two subspaces isomorphic to ℓ_1 . The same happens for $N\ell_p$, $1 \le p < \infty$.

A nontrivial example has to include a A-indecomposable space X which is not in A. Observe that this space X cannot be isomorphic to $X \times X$.

Example 1. Let A = F, the finite dimensional spaces. The hereditarily F-indecomposable spaces are precisely the hereditarily indecomposable spaces.

The existence of infinite dimensional hereditarily indecomposable spaces has been a long-standing open problem in Banach space theory. Finally, GOWERS and MAUREY have constructed an example that we denote X_{GM} [10].

Example 2. Let A = R be the reflexive spaces.

James' space J is a hereditarily R-indecomposable, non-reflexive space. The reason is that $\dim(J^{**}/J) = 1$.

Example 3. Let A = WSC be the weakly sequentially complete spaces.

A Banach space X is weakly sequentially complete if and only if $B_1(X) = X$, where $B_1(X)$ is the subspace of all $F \in X^{**}$ which are the weak*-limit of some weakly Cauchy sequence in X. Observe that $B_1(M) = B_1(X) \cap M^{\perp \perp}$ for every subspace M of X.

The space J is a hereditarily WSC-indecomposable space which is not weakly sequentially complete. The reason is that $\dim(B_1(J)/J) = 1$.

Example 4. Let A = M be the spaces with the Mazur property [19], [11].

Recall that X is in M when $S_1(X) = X$, where $S_1(X)$ is the subspace of all weak*-sequentially continuous elements of X^{**} . Observe that $S_1(M) = S_1(X) \cap M^{\perp \perp}$ for every subspace M of X.

The space $C[0, \omega_1]$ is a hereditarily M-indecomposable space which has not the Mazur property. Again, the reason is that $\dim(S_1(C[0, \omega_1])/C[0, \omega_1]) = 1$. See [17] or [5, Proposition 3.6.b] for a direct proof.

Let $Q: X^{**} \longrightarrow X^{**}/X$ denote the quotient map. Given a closed subspace M of X, we can identify M^{**}/M with $Q(M^{\perp \perp})$. Thus,

$$\mathsf{A}^{co} := \{ X : X^{**} / X \in \mathsf{A} \}$$

is a space ideal. For the properties of Q we refer to [20].

Observe that for every separable space Z there exists a separable space X so that X^{**}/X is isomorphic to Z [12].

Example 5. Let A be one of the space ideals F, R or WSC. Let X be a Banach space such that X^{**}/X is isomorphic to X_{GM} , J or J, respectively.

The space X is a hereditarily A^{co} -indecomposable space which is not in A^{co} .

Remark 3. The HI spaces contain no unconditional basic sequence [10].

In the case A = R, the reflexive spaces, every unconditional basic sequence in a HRI space X generates a reflexive subspace; indeed, if an unconditional basic sequence in X generates a nonreflexive subspace, then

X contains an isomorphic copy of c_0 or ℓ_1 [13, 1.c.13]. Since c_0 and ℓ_1 are isomorphic copy of $c_0 \times c_0$ and $\ell_1 \times \ell_1$ respectively, X is not a HRI space.

Similarly, if X is hereditarily WSC-indecomposable, then every unconditional basic sequence in X generates a weakly sequentially complete subspace [13, 1.c.13].

In general, if $(x_n)_{n \in \mathbb{N}}$ is an unconditional basic sequence of X which is HAI and $\mathbb{N} = I \cup J$ is a partition of \mathbb{N} into two infinite subsets, then the subspace generated by $(x_n)_{n \in I}$ or the subspace generated by $(x_n)_{n \in J}$ belongs to A.

The following characterizations of the hereditarily A-indecomposable spaces will be useful later.

Proposition 1. Let A be a space ideal. For a Banach space X the following assertions are equivalent:

- 1. X is HAI.
- 2. If $M, N \in S_A(X)$, then $Q_M J_N$ is not an isomorphism.
- 3. If $M, N \in S_A(X)$, then dist $(S_M, S_N) = 0$.

PROOF. Since the kernel of $Q_M J_N$ is $M \cap N$ and its range is (M + N)/M, (1) and (2) are clearly equivalent. The equivalence between (1) and (3) for infinite dimensional subspaces M and N is well known [6, Exercise 5.15].

3. Operators on HAI spaces

Recall that the injection modulus of an operator $T \in L(X, Y)$ is defined by

$$j(T) := \inf\{\|Tx\| : x \in X, \|x\| = 1\}.$$

From the norm and from j we derive two operational quantities that allows us to define two classes of operators.

Definition 2. Let A be a space ideal. Suppose that $S_A(X) \neq \emptyset$ and let Y be a Banach space. For each operator $T \in L(X,Y)$ we define the following quantities:

$$sj_{\mathsf{A}}(T) := \sup\{j(TJ_M) : M \in S_{\mathsf{A}}(X)\},\$$

Manuel González and Antonio Martinón

$$in_{\mathsf{A}}(T) := \inf\{\|TJ_M\| : M \in S_{\mathsf{A}}(X)\}.$$

Definition 3. For $S_{\mathsf{A}}(X) \neq \emptyset$ we define

1.
$$ASS(X,Y) := \{T \in L(X,Y) : sj_A(T) = 0\}$$

2. $A\Phi_+(X,Y) := \{T \in L(X,Y) : in_A(T) > 0\}$

For $S_{\mathsf{A}}(X) = \emptyset$ we define $\mathsf{A}SS(X, Y) = \mathsf{A}\Phi_+(X, Y) = L(X, Y)$.

In the case A = F, the finite dimensional spaces, the quantities in_F and sj_F were introduced in [16]. In this case $F\Phi_+ = \Phi_+$, the upper semi-Fredholm operators, and FSS = SS, the strictly singular operators.

In the general case the quantities in_A and sj_A and the associated classes of operators were introduced in [8], [9].

Theorem 1. Let A be a space ideal. For a Banach space X the following assertions are equivalent:

- 1. X is HAI
- 2. For every space Y and every $T \in L(X,Y)$, $sj_{\mathsf{A}}(T) \leq in_{\mathsf{A}}(T)$
- 3. For every space Y, $L(X,Y) = A\Phi_+(X,Y) \cup ASS(X,Y)$
- 4. For every $M \in S_A(X)$, the quotient map Q_M belongs to ASS

PROOF. (1) \implies (2) Assume that X is HAI and let $M, N \in S_A(X)$. From Proposition 1 we obtain dist $(S_M, S_N) = 0$; that is, given $\varepsilon > 0$, there exist $u \in S_M$ and $v \in S_N$ such that $||u - v|| < \varepsilon$. Then

$$||Tu|| - ||Tv|| \le ||T(u-v)|| \le \varepsilon ||T||.$$

Consequently

$$j(TJ_M) \le ||Tu|| \le ||Tv|| + \varepsilon ||T|| \le ||TJ_N|| + \varepsilon ||T||.$$

Since $\varepsilon > 0$ is arbitrary we obtain $j(TJ_M) \leq ||TJ_N||$, for every $M, N \in S_A(X)$, hence $sj_A(T) \leq in_A(T)$.

(2) \implies (3) If $T \notin A\Phi_+$, then $in_A(T) = 0$, hence $sj_A(T) = 0$ and we have $T \in ASS$.

(3) \Longrightarrow (4) Let $M \in S_{\mathsf{A}}(X)$. As $Q_M \notin \mathsf{A}\Phi_+$ we have $Q_M \in \mathsf{A}SS$.

(4) \implies (1) Let $M, N \in S_A(X)$. Since $Q_M \in ASS, Q_M J_N$ is not an isomorphism. By Proposition 1 we have that X is HAI.

We say that two Banach spaces X and Y are totally incomparable [15] if no infinite dimensional subspace of X is isomorphic to a subspace of Y. Given a class C of Banach spaces, the class of incomparability C_i was defined in [3] as follows:

 $C_i := \{X : X \text{ is totally incomparable with every } Y \in C\}.$

The class C_i is a space ideal. Moreover it is not difficult to see that $X \in C_{ii}$ if and only if X has no infinite dimensional subspace in C_i , and that $C_{iii} = C_i$.

In the case $A = A_{ii}$ the class $A\Phi_+$ was studied in [8] and the class ASS was studied in [4], [9], [2]; see also [1, Section 4.2].

Theorem 2. Let $A = A_{ii}$ be a space ideal. Suppose that $S_A(X) \neq \emptyset$. Then

$$\mathsf{A}\Phi_+(X,Y)\cap\mathsf{A}SS(X,Y)=\emptyset$$

for every Banach space Y. Moreover, if X is a HAI space, then the union

$$L(X,Y) = \mathsf{A}\Phi_+(X,Y) \cup \mathsf{A}SS(X,Y)$$

is disjoint.

PROOF. Let $M \in S_A(X)$. Since $A = A_{ii}$, there exists an infinite dimensional subspace N of M such that $N \in A_i$. Since $S_A(N) = S_F(N)$, $sj_A(TJ_N) = sj_F(TJ_N)$.

Let $T \in L(X, Y)$. Suppose that $T \in ASS$; i.e., $sj_A(T) = 0$. For every $M \in S_A(X)$, we take the subspace N introduced in the previous paragraph. Then $sj_A(TJ_N) = sj_F(TJ_N) = 0$, so TJ_N is a strictly singular operator. Thus, for every $\varepsilon > 0$, there exists an infinite dimensional subspace P of N such that $||TJ_P|| < \varepsilon$ [13, 2.c.4]. Since $P \notin A$, we have $in_A(T) = 0$, hence $T \notin A\Phi_+$.

Proposition 2. Let $A = A_{ii}$ be a space ideal. Suppose that X is a HAI space and $S_A(X) \neq \emptyset$. Let $T \in L(X, Y)$. Then for every $M \in S_A(X)$,

$$in_{\mathsf{A}}(TJ_M) = in_{\mathsf{A}}(T)$$
 and $sj_{\mathsf{A}}(TJ_M) = sj_{\mathsf{A}}(T)$.

Thus $in_{\mathsf{A}}(TJ_M)$ and $sj_{\mathsf{A}}(TJ_M)$ are constant for $M \in S_{\mathsf{A}}(X)$.

PROOF. Let $M \in S_{\mathsf{A}}(X)$. Basically we follow the proof of [7, Lemma 3]. As in [7, Lemma 1] we can prove that for each $P \in S_{\mathsf{A}}(X)$, there exist $U \in S_{\mathsf{A}}(P)$ and a strictly singular operator $S : U \longrightarrow X$ such that

 $J_U + S : x \in U \longrightarrow x + Sx \in M$

defines an isomorphism onto $N := (J_U + S)U \in S_A(M)$. Note that the hypothesis $A = A_{ii}$ allows us to choose $U \in A_i$.

Obviously, $in_{\mathsf{A}}(TJ_M) \ge in_{\mathsf{A}}(T)$ and $sj_{\mathsf{A}}(TJ_M) \le sj_{\mathsf{A}}(T)$. Thus it is enough to prove that for each $P \in S_{\mathsf{A}}(X)$ and each $\varepsilon > 0$

$$in_{\mathsf{A}}(TJ_M) \le ||TJ_P|| + \varepsilon$$
 and $j(TJ_P) - \varepsilon \le sj_{\mathsf{A}}(TJ_M)$.

In order to show the first inequality, note that, for any $\varepsilon' > 0$, we can choose U so that $||S|| < \varepsilon'$ and $||(J_U + S)^{-1}|| < 1 + \varepsilon'$. Since $TJ_N = T(J_U + S)(J_U + S)^{-1}$, we obtain

$$in_{\mathsf{A}}(TJ_M) \leq ||TJ_N|| \leq ||TJ_U + TS|| ||(J_U + S)^{-1}||$$

$$\leq (||TJ_U|| + \varepsilon'||T||)(1 + \varepsilon') \leq ||TJ_P|| + \varepsilon'(2 + \varepsilon')||T||.$$

For the second inequality, we choose U verifying $||S|| < \varepsilon'$ and $||J_U + S||^{-1} = j((J_U + S)^{-1}) \ge 1 - \varepsilon'$. As $TJ_N = T(J_U + S)(J_U + S)^{-1}$, we have

$$sj_{\mathsf{A}}(TJ_M) \ge j(TJ_N) \ge j(TJ_U + TS) \ j((J_U + S)^{-1})$$
$$\ge (j(TJ_U) - ||TS||)(1 - \varepsilon') \ge j(TJ_P) - \varepsilon'(2 - \varepsilon')||T||. \quad \Box$$

Remark 4. In the case $A = A_{ii}$, the components $A\Phi_+(X, Y)$ are open. Moreover, the class $A\Phi_+$ is stable under taking products: $T \in A\Phi_+(X, Y)$ and $S \in A\Phi_+(Y, Z)$ imply $ST \in A\Phi_+(X, Z)$. Analogously, in this case, the class ASS has closed components and it is an operator ideal [8], [9]

Proposition 3. Let $A = A_{ii}$ be a space ideal and let X be a HAI space. For every subspace M of X, either $M \in A$ or M contains a subspace $N \notin A$ which is a HI space.

PROOF. Let X be a HAI space and let M be a subspace of X. Suppose that $M \notin A$. Then M contains an infinite dimensional subspace $N \in A_i$. Let us see that N is HI. If $N = N_1 \oplus N_2$, then $N_1 \in A$ or $N_2 \in A$. Since $N_1, N_2 \in A_i$, we obtain that N_1 or N_2 is finite dimensional. Thus N is HI.

References

- P. AIENA, M. GONZÁLEZ and A. MARTÍNEZ-ABEJÓN, Operators Semigroups in Banach Space Theory, Boll. U. M. I. 4-B (2001), 157–205.
- [2] P. AIENA, M. GONZÁLEZ and A. MARTÍNEZ-ABEJÓN, Incomparable Banach spaces and operator semigroups, Arch. Math. 79 (2002), 372–378.
- [3] T. ÁLVAREZ, M. GONZÁLEZ and V. M. ONIEVA, Totally incomparable Banach spaces and three-space ideals, *Math. Nachr.* 131 (1987), 83–88.
- [4] T. ÁLVAREZ, M. GONZÁLEZ and V. M. ONIEVA, Characterizing two classes of operator ideals, In: Contribuciones matemáticas, Homenaje Prof. Antonio Plans, 7-21, Univ. Zaragoza, 1990.
- [5] J. M. F. CASTILLO and M. GONZÁLEZ, Three-space problems in Banach space theory, Lecture Notes in Math. 1667, Springer-Verlag, Berlin, 1997.
- [6] M. FABIAN, P. HABALA, P. HÁJEK, V. MONTESINOS, J. PELANT and V. ZIZLER, Functional analysis and infinite-dimensional Banach spaces, *Springer, New York*, 2001.
- [7] V. FERENCZI, Operators on subspaces of hereditarily indecomposable Banach spaces, Bull. London Math. Soc. 29 (1997), 338–344.
- [8] M. GONZÁLEZ and A. MARTINÓN, Operational quantities derived from the norm and generalized Fredholm theory, *Comment. Math. Univ. Carolinae* **32** (1991), 645–657.
- [9] M. GONZÁLEZ and A. MARTINÓN, Fredholm Theory and Space Ideals, *Bol. U. M. I.* (7) **7-B** (1993), 473–488.
- [10] W. T. GOWERS and B. MAUREY, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851–874.
- [11] D. H. LEUNG, On Banach spaces with the Mazur's property, *Glasgow Math. J.* 33 (1991), 51–54.
- [12] J. LINDENSTRAUSS, On James's paper "Separable conjugate spaces", Israel J. Math. 9 (1971), 279–284.
- [13] J. LINDENSTRAUSS and L. TZAFRIRI, Classical Banach Spaces, I, Springer, Berlin, 1977.
- [14] A. PIETSCH, Operator Ideals, North-Holland, Amsterdam, 1980.
- [15] H. P. ROSENTHAL, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167–175.
- [16] M. SCHECHTER, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061–1071.
- [17] Z. SEMADENI, Banach spaces non-isomorphic to their cartesian squares, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 81–84.
- [18] L. WEIS, Perturbation Classes of Semi-Fredholm Operators, Math. Z. 178 (1981), 429–442.
- [19] A. WILANSKY, Mazur spaces, Internat. J. Math. Sci. 4 (1981), 39–53.

328 M. González and A. Martinón : Decomposable subspaces...

[20] K.-W. YANG, The generalized Fredholm Operators, Trans. Amer. Math. Soc. 216 (1976), 313–326.

MANUEL GONZÁLEZ DEPARTAMENTO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE CANTABRIA E-39071 SANTANDER SPAIN

E-mail: gonzalem@unican.es

ANTONIO MARTINÓN DEPARTAMENTO DE ANÁLISIS MATEMÁTICO UNIVERSIDAD DE LA LAGUNA E-38271 LA LAGUNA (TENERIFE) SPAIN

E-mail: anmarce@ull.es

(Received November 8, 2002; revised August 5, 2003)