# Decomposable subspaces of Banach spaces 

By MANUEL GONZÁLEZ (Santander) and ANTONIO MARTINÓN (La Laguna)


#### Abstract

We introduce and study the notion of hereditarily A-indecomposable Banach space for $A$ a space ideal. The case $A=F$, the finite dimensional spaces, corresponds to the hereditarily indecomposable spaces. We show that several properties of the case $A=F$ extend to some other space ideals.


## 1. Introduction

W. T. Gowers and B. Maurey [10] constructed the first example of a hereditarily indecomposable Banach space (HI space, for short). The main property of the HI spaces is that they do not contain unconditional basic sequences. So they provide a counterexample to an old question in Banach space theory. Moreover, a result of Weis [18] characterizes the HI spaces as those spaces $X$ such that for every Banach space $Y$ any operator in $L(X, Y)$ is upper semi-Fredholm or strictly singular.

In this paper we consider a natural notion of hereditarily A-indecomposable Banach space associated to a space ideal A: a Banach space $X$ is hereditarily A-indecomposable (HAI space, for short) if no (closed) subspace of $X$ can be written as the direct sum of two subspaces which are not in $A$. In the case $A=F$, the finite dimensional spaces, we obtain the

[^0]Key words and phrases: hereditarily indecomposable Banach spaces, space ideals.
Research of the first author supported in part by DGI (Spain), Proyecto BFM2001-1147.
Research of the second author supported in part by Gobierno de Canarias (Spain) PI2001/039.

HI spaces. We show that the notion of HAI space is nontrivial for A the reflexive spaces, the weakly sequentially complete spaces, the spaces with the Mazur property and for some other space ideals.

Note that $X$ HI means that any two infinite dimensional subspaces $M$ and $N$ of $X$ are very close, in the sense that $\operatorname{dist}\left(S_{M}, S_{N}\right)=0$, where $S_{M}$ is the unit sphere of $M$. Similarly, $X$ HAI means that $\operatorname{dist}\left(S_{M}, S_{N}\right)=0$ when $M$ and $N$ do not belong to A .

We show that the HAI spaces do not contain unconditional basic sequences of some kinds related to A. Moreover, we show that $X$ is HAI if and only if $L(X, Y)=\mathrm{A} \Phi_{+}(X, Y) \cup \mathrm{A} S S(X, Y)$, for any space $Y$. Here $\mathrm{A} \Phi_{+}$ and ASS are classes of operators which were introduced in [8], [9]. These classes generalize the upper semi-Fredholm operators and the strictly singular operators, respectively.

We also consider space ideals satisfying $\mathrm{A}=\mathrm{A}_{i i}$. This is a condition defined in terms of incomparability. It means that A coincides with the class of all Banach spaces $X$ such that every infinite dimensional subspace of $X$ contains an infinite dimensional subspace isomorphic to a subspace of a space in A.

In the case $X \in \mathrm{~A}=\mathrm{A}_{i i}$ we prove that the union $L(X, Y)=\mathrm{A} \Phi_{+}(X, Y) \cup$ $\mathrm{A} S S(X, Y)$ is disjoint, and that for each $T \in L(X, Y), i n_{\mathrm{A}}\left(T J_{M}\right)=i n_{\mathrm{A}}(T)$ and $s j_{\mathrm{A}}\left(T J_{M}\right)=s j_{\mathrm{A}}(T)$ for all the subspaces $M$ of $X$ which are not in A, where $i n_{\mathrm{A}}(T)>0$ and $s j_{\mathrm{A}}(T)=0$ characterize $T \in \mathrm{~A} \Phi_{+}$and $T \in \mathrm{~A} S S$, respectively.

Notation and terminology. Along the paper, $X, Y$ and $Z$ are Banach spaces, and we denote by $X^{*}$ and $X^{* *}$ the dual space and the second dual of $X$, respectively. A subspace is always a closed linear subspace. Given a subspace $M$ of $X$, we denote by $J_{M}$ the inclusion of $M$ into $X$, and by $Q_{M}$ the quotient map from $X$ onto $X / M$.

We denote by $L(X, Y)$ the set of all (continuous linear) operators from $X$ into $Y$. An operator $T \in L(X, Y)$ is strictly singular if from $T J_{M}$ an isomorphism, we obtain that $M$ has finite dimension; $T$ is upper semi-Fredholm operator if it has finite dimensional null space and closed range.

A space ideal A is a class of Banach spaces which contains the finite dimensional spaces and is stable under passing to isomorphic spaces, finite
products or complemented subspaces. We refer to [14] for information on operator ideals and space ideals.

## 2. Hereditarily indecomposable Banach spaces

Let A be a space ideal in the sense of Pietsch [14]. For each Banach space $X$ we consider
$S_{\mathrm{A}}(X):=\{M \subset X: M$ is a subspace of $X$ and $M \notin \mathrm{~A}\}$.
Definition 1. A Banach space $X$ is said to be A-indecomposable if there are no subspaces $M$ and $N$ in $S_{\mathrm{A}}$ such that $X=M \oplus N$. Equivalently, if $M, N \in S_{\mathrm{A}}(X)$ and $X=M+N$, then $M \cap N \neq\{0\}$.

The space $X$ is said to be hereditarily A-indecomposable (HAI) if every subspace $M$ of $X$ is A -indecomposable.

Remark 1. Every space in $A$ is $A$-indecomposable. Moreover, if $A_{1} \subset$ $\mathrm{A}_{2}$, then the (hereditarily) $\mathrm{A}_{1}$-indecomposable spaces are (hereditarily) $\mathrm{A}_{2}$-indecomposable.

Remark 2. Let $\mathrm{N} \ell_{1}$ be the ideal of the spaces that contain no copies of $\ell_{1}$.

This case is trivial because the spaces in $\mathrm{N} \ell_{1}$ are the only hereditarily $\mathrm{N} \ell_{1}$-indecomposable spaces. Indeed, if $X$ contains a subspace isomorphic to $\ell_{1}$, this subspace can be written as the direct sum of two subspaces isomorphic to $\ell_{1}$. The same happens for $\mathrm{N} \ell_{p}, 1 \leq p<\infty$.

A nontrivial example has to include a A-indecomposable space $X$ which is not in $A$. Observe that this space $X$ cannot be isomorphic to $X \times X$.

Example 1. Let $\mathrm{A}=\mathrm{F}$, the finite dimensional spaces. The hereditarily F-indecomposable spaces are precisely the hereditarily indecomposable spaces.

The existence of infinite dimensional hereditarily indecomposable spaces has been a long-standing open problem in Banach space theory. Finally, Gowers and Maurey have constructed an example that we denote $X_{G M}$ [10].

Example 2. Let $\mathrm{A}=\mathrm{R}$ be the reflexive spaces.
James' space $J$ is a hereditarily R -indecomposable, non-reflexive space. The reason is that $\operatorname{dim}\left(J^{* *} / J\right)=1$.

Example 3. Let A = WSC be the weakly sequentially complete spaces.
A Banach space $X$ is weakly sequentially complete if and only if $B_{1}(X)=X$, where $B_{1}(X)$ is the subspace of all $F \in X^{* *}$ which are the weak*-limit of some weakly Cauchy sequence in $X$. Observe that $B_{1}(M)=B_{1}(X) \cap M^{\perp \perp}$ for every subspace $M$ of $X$.

The space $J$ is a hereditarily WSC-indecomposable space which is not weakly sequentially complete. The reason is that $\operatorname{dim}\left(B_{1}(J) / J\right)=1$.

Example 4. Let $\mathrm{A}=\mathrm{M}$ be the spaces with the Mazur property [19], [11].

Recall that $X$ is in M when $S_{1}(X)=X$, where $S_{1}(X)$ is the subspace of all weak*-sequentially continuous elements of $X^{* *}$. Observe that $S_{1}(M)=$ $S_{1}(X) \cap M^{\perp \perp}$ for every subspace $M$ of $X$.

The space $C\left[0, \omega_{1}\right]$ is a hereditarily M -indecomposable space which has not the Mazur property. Again, the reason is that $\operatorname{dim}\left(S_{1}\left(C\left[0, \omega_{1}\right]\right)\right.$ ) $\left.C\left[0, \omega_{1}\right]\right)=1$. See [17] or [5, Proposition 3.6.b] for a direct proof.

Let $Q: X^{* *} \longrightarrow X^{* *} / X$ denote the quotient map. Given a closed subspace $M$ of $X$, we can identify $M^{* *} / M$ with $Q\left(M^{\perp \perp}\right)$. Thus,

$$
\mathrm{A}^{c o}:=\left\{X: X^{* *} / X \in \mathrm{~A}\right\}
$$

is a space ideal. For the properties of $Q$ we refer to [20].
Observe that for every separable space $Z$ there exists a separable space $X$ so that $X^{* *} / X$ is isomorphic to $Z[12]$.

Example 5. Let A be one of the space ideals $\mathrm{F}, \mathrm{R}$ or WSC. Let $X$ be a Banach space such that $X^{* *} / X$ is isomorphic to $X_{G M}, J$ or $J$, respectively.

The space $X$ is a hereditarily $\mathrm{A}^{c o}$-indecomposable space which is not in $\mathrm{A}^{c o}$.

Remark 3. The HI spaces contain no unconditional basic sequence [10].
In the case $A=R$, the reflexive spaces, every unconditional basic sequence in a HRI space $X$ generates a reflexive subspace; indeed, if an unconditional basic sequence in $X$ generates a nonreflexive subspace, then
$X$ contains an isomorphic copy of $c_{0}$ or $\ell_{1}$ [13, 1.c.13]. Since $c_{0}$ and $\ell_{1}$ are isomorphic copy of $c_{0} \times c_{0}$ and $\ell_{1} \times \ell_{1}$ respectively, $X$ is not a HRI space.

Similarly, if $X$ is hereditarily WSC-indecomposable, then every unconditional basic sequence in $X$ generates a weakly sequentially complete subspace [13, 1.c.13].

In general, if $\left(x_{n}\right)_{n \in \mathbb{N}}$ is an unconditional basic sequence of $X$ which is HAI and $\mathbb{N}=I \cup J$ is a partition of $\mathbb{N}$ into two infinite subsets, then the subspace generated by $\left(x_{n}\right)_{n \in I}$ or the subspace generated by $\left(x_{n}\right)_{n \in J}$ belongs to A .

The following characterizations of the hereditarily A-indecomposable spaces will be useful later.

Proposition 1. Let A be a space ideal. For a Banach space $X$ the following assertions are equivalent:

1. $X$ is HAI.
2. If $M, N \in S_{\mathrm{A}}(X)$, then $Q_{M} J_{N}$ is not an isomorphism.
3. If $M, N \in S_{\mathrm{A}}(X)$, then $\operatorname{dist}\left(S_{M}, S_{N}\right)=0$.

Proof. Since the kernel of $Q_{M} J_{N}$ is $M \cap N$ and its range is $(M+$ $N) / M$, (1) and (2) are clearly equivalent. The equivalence between (1) and (3) for infinite dimensional subspaces $M$ and $N$ is well known [6, Exercise 5.15].

## 3. Operators on HAI spaces

Recall that the injection modulus of an operator $T \in L(X, Y)$ is defined by

$$
j(T):=\inf \{\|T x\|: x \in X,\|x\|=1\} .
$$

From the norm and from $j$ we derive two operational quantities that allows us to define two classes of operators.

Definition 2. Let A be a space ideal. Suppose that $S_{\mathrm{A}}(X) \neq \emptyset$ and let $Y$ be a Banach space. For each operator $T \in L(X, Y)$ we define the following quantities:

$$
\operatorname{sj}_{\mathrm{A}}(T):=\sup \left\{j\left(T J_{M}\right): M \in S_{\mathrm{A}}(X)\right\},
$$

$$
\operatorname{in}_{\mathrm{A}}(T):=\inf \left\{\left\|T J_{M}\right\|: M \in S_{\mathrm{A}}(X)\right\} .
$$

Definition 3. For $S_{\mathrm{A}}(X) \neq \emptyset$ we define

1. $\mathrm{A} S S(X, Y):=\left\{T \in L(X, Y): \operatorname{sj}_{\mathrm{A}}(T)=0\right\}$
2. $\mathrm{A} \Phi_{+}(X, Y):=\left\{T \in L(X, Y): i n_{\mathrm{A}}(T)>0\right\}$

For $S_{\mathrm{A}}(X)=\emptyset$ we define $\mathrm{A} S S(X, Y)=\mathrm{A} \Phi_{+}(X, Y)=L(X, Y)$.
In the case $A=F$, the finite dimensional spaces, the quantities $i n_{F}$ and $s j_{\mathrm{F}}$ were introduced in [16]. In this case $\mathrm{F} \Phi_{+}=\Phi_{+}$, the upper semiFredholm operators, and FSS $=S S$, the strictly singular operators.

In the general case the quantities $i n_{\mathrm{A}}$ and $s j_{\mathrm{A}}$ and the associated classes of operators were introduced in [8], [9].

Theorem 1. Let A be a space ideal. For a Banach space $X$ the following assertions are equivalent:

1. $X$ is HAI
2. For every space $Y$ and every $T \in L(X, Y), s j_{\mathrm{A}}(T) \leq i n_{\mathrm{A}}(T)$
3. For every space $Y, L(X, Y)=\mathrm{A} \Phi_{+}(X, Y) \cup \mathrm{A} S S(X, Y)$
4. For every $M \in S_{\mathrm{A}}(X)$, the quotient map $Q_{M}$ belongs to $\mathrm{A} S S$

Proof. $(1) \Longrightarrow(2)$ Assume that $X$ is HAI and let $M, N \in S_{\mathrm{A}}(X)$. From Proposition 1 we obtain $\operatorname{dist}\left(S_{M}, S_{N}\right)=0$; that is, given $\varepsilon>0$, there exist $u \in S_{M}$ and $v \in S_{N}$ such that $\|u-v\|<\varepsilon$. Then

$$
\|T u\|-\|T v\| \leq\|T(u-v)\| \leq \varepsilon\|T\| .
$$

Consequently

$$
j\left(T J_{M}\right) \leq\|T u\| \leq\|T v\|+\varepsilon\|T\| \leq\left\|T J_{N}\right\|+\varepsilon\|T\|
$$

Since $\varepsilon>0$ is arbitrary we obtain $j\left(T J_{M}\right) \leq\left\|T J_{N}\right\|$, for every $M, N \in$ $S_{\mathrm{A}}(X)$, hence $\operatorname{sj}_{\mathrm{A}}(T) \leq i n_{\mathrm{A}}(T)$.
$(2) \Longrightarrow(3)$ If $T \notin \mathrm{~A} \Phi_{+}$, then $i n_{\mathrm{A}}(T)=0$, hence $s j_{\mathrm{A}}(T)=0$ and we have $T \in \mathrm{~A} S S$.
$(3) \Longrightarrow(4)$ Let $M \in S_{\mathrm{A}}(X)$. As $Q_{M} \notin \mathrm{~A} \Phi_{+}$we have $Q_{M} \in \mathrm{~A} S S$.
$(4) \Longrightarrow(1)$ Let $M, N \in S_{\mathrm{A}}(X)$. Since $Q_{M} \in \mathrm{~A} S S, Q_{M} J_{N}$ is not an isomorphism. By Proposition 1 we have that $X$ is HAI.

We say that two Banach spaces $X$ and $Y$ are totally incomparable [15] if no infinite dimensional subspace of $X$ is isomorphic to a subspace of $Y$. Given a class $\mathcal{C}$ of Banach spaces, the class of incomparability $\mathcal{C}_{i}$ was defined in [3] as follows:

$$
\mathcal{C}_{i}:=\{X: X \text { is totally incomparable with every } Y \in \mathcal{C}\}
$$

The class $\mathcal{C}_{i}$ is a space ideal. Moreover it is not difficult to see that $X \in \mathcal{C}_{i i}$ if and only if $X$ has no infinite dimensional subspace in $\mathcal{C}_{i}$, and that $\mathcal{C}_{i i i}=\mathcal{C}_{i}$.

In the case $\mathrm{A}=\mathrm{A}_{i i}$ the class $\mathrm{A} \Phi_{+}$was studied in [8] and the class $\mathrm{A} S S$ was studied in [4], [9], [2]; see also [1, Section 4.2].

Theorem 2. Let $\mathrm{A}=\mathrm{A}_{i i}$ be a space ideal. Suppose that $S_{\mathrm{A}}(X) \neq \emptyset$. Then

$$
\mathrm{A} \Phi_{+}(X, Y) \cap \mathrm{A} S S(X, Y)=\emptyset
$$

for every Banach space $Y$. Moreover, if $X$ is a HAI space, then the union

$$
L(X, Y)=\mathrm{A} \Phi_{+}(X, Y) \cup \mathrm{A} S S(X, Y)
$$

is disjoint.
Proof. Let $M \in S_{\mathrm{A}}(X)$. Since $\mathrm{A}=\mathrm{A}_{i i}$, there exists an infinite dimensional subspace $N$ of $M$ such that $N \in \mathrm{~A}_{i}$. Since $S_{\mathrm{A}}(N)=S_{\mathrm{F}}(N)$, $s j_{\mathrm{A}}\left(T J_{N}\right)=s j_{\mathrm{F}}\left(T J_{N}\right)$.

Let $T \in L(X, Y)$. Suppose that $T \in \mathrm{~A} S S$; i.e., $\operatorname{sj}_{\mathrm{A}}(T)=0$. For every $M \in S_{\mathrm{A}}(X)$, we take the subspace $N$ introduced in the previous paragraph. Then $s j_{\mathrm{A}}\left(T J_{N}\right)=s j_{\mathrm{F}}\left(T J_{N}\right)=0$, so $T J_{N}$ is a strictly singular operator. Thus, for every $\varepsilon>0$, there exists an infinite dimensional subspace $P$ of $N$ such that $\left\|T J_{P}\right\|<\varepsilon[13,2 . c .4]$. Since $P \notin \mathrm{~A}$, we have $i n_{\mathrm{A}}(T)=0$, hence $T \notin \mathrm{~A} \Phi_{+}$.

Proposition 2. Let $\mathrm{A}=\mathrm{A}_{i i}$ be a space ideal. Suppose that $X$ is a $H A I$ space and $S_{\mathrm{A}}(X) \neq \emptyset$. Let $T \in L(X, Y)$. Then for every $M \in S_{\mathrm{A}}(X)$,

$$
i n_{\mathrm{A}}\left(T J_{M}\right)=i n_{\mathrm{A}}(T) \quad \text { and } \quad s j_{\mathrm{A}}\left(T J_{M}\right)=s j_{\mathrm{A}}(T)
$$

Thus $\operatorname{in}_{\mathrm{A}}\left(T J_{M}\right)$ and $\operatorname{sj}_{\mathrm{A}}\left(T J_{M}\right)$ are constant for $M \in S_{\mathrm{A}}(X)$.

Proof. Let $M \in S_{\mathrm{A}}(X)$. Basically we follow the proof of [7, Lemma 3]. As in [7, Lemma 1] we can prove that for each $P \in S_{\mathrm{A}}(X)$, there exist $U \in S_{\mathrm{A}}(P)$ and a strictly singular operator $S: U \longrightarrow X$ such that

$$
J_{U}+S: x \in U \longrightarrow x+S x \in M
$$

defines an isomorphism onto $N:=\left(J_{U}+S\right) U \in S_{\mathrm{A}}(M)$. Note that the hypothesis $\mathrm{A}=\mathrm{A}_{i i}$ allows us to choose $U \in \mathrm{~A}_{i}$.

Obviously, $i n_{\mathrm{A}}\left(T J_{M}\right) \geq i n_{\mathrm{A}}(T)$ and $s j_{\mathrm{A}}\left(T J_{M}\right) \leq s j_{\mathrm{A}}(T)$. Thus it is enough to prove that for each $P \in S_{\mathrm{A}}(X)$ and each $\varepsilon>0$

$$
i n_{\mathrm{A}}\left(T J_{M}\right) \leq\left\|T J_{P}\right\|+\varepsilon \quad \text { and } \quad j\left(T J_{P}\right)-\varepsilon \leq s j_{\mathrm{A}}\left(T J_{M}\right) .
$$

In order to show the first inequality, note that, for any $\varepsilon^{\prime}>0$, we can choose $U$ so that $\|S\|<\varepsilon^{\prime}$ and $\left\|\left(J_{U}+S\right)^{-1}\right\|<1+\varepsilon^{\prime}$. Since $T J_{N}=$ $T\left(J_{U}+S\right)\left(J_{U}+S\right)^{-1}$, we obtain

$$
\begin{aligned}
i n_{\mathrm{A}}\left(T J_{M}\right) & \leq\left\|T J_{N}\right\| \leq\left\|T J_{U}+T S\right\|\left\|\left(J_{U}+S\right)^{-1}\right\| \\
& \leq\left(\left\|T J_{U}\right\|+\varepsilon^{\prime}\|T\|\right)\left(1+\varepsilon^{\prime}\right) \leq\left\|T J_{P}\right\|+\varepsilon^{\prime}\left(2+\varepsilon^{\prime}\right)\|T\| .
\end{aligned}
$$

For the second inequality, we choose $U$ verifying $\|S\|<\varepsilon^{\prime}$ and $\left\|J_{U}+S\right\|^{-1}=j\left(\left(J_{U}+S\right)^{-1}\right) \geq 1-\varepsilon^{\prime}$. As $T J_{N}=T\left(J_{U}+S\right)\left(J_{U}+S\right)^{-1}$, we have

$$
\begin{aligned}
s j_{\mathrm{A}}\left(T J_{M}\right) & \geq j\left(T J_{N}\right) \geq j\left(T J_{U}+T S\right) j\left(\left(J_{U}+S\right)^{-1}\right) \\
& \geq\left(j\left(T J_{U}\right)-\|T S\|\right)\left(1-\varepsilon^{\prime}\right) \geq j\left(T J_{P}\right)-\varepsilon^{\prime}\left(2-\varepsilon^{\prime}\right)\|T\| .
\end{aligned}
$$

Remark 4. In the case $\mathrm{A}=\mathrm{A}_{i i}$, the components $\mathrm{A} \Phi_{+}(X, Y)$ are open. Moreover, the class $\mathrm{A} \Phi_{+}$is stable under taking products: $T \in \mathrm{~A} \Phi_{+}(X, Y)$ and $S \in \mathrm{~A} \Phi_{+}(Y, Z)$ imply $S T \in \mathrm{~A} \Phi_{+}(X, Z)$. Analogously, in this case, the class ASS has closed components and it is an operator ideal [8], [9]

Proposition 3. $\operatorname{Let} \mathrm{A}=\mathrm{A}_{i i}$ be a space ideal and let $X$ be a HAI space. For every subspace $M$ of $X$, either $M \in \mathrm{~A}$ or $M$ contains a subspace $N \notin \mathrm{~A}$ which is a HI space.

Proof. Let $X$ be a HAI space and let $M$ be a subspace of $X$. Suppose that $M \notin \mathrm{~A}$. Then $M$ contains an infinite dimensional subspace $N \in \mathrm{~A}_{i}$. Let us see that $N$ is HI. If $N=N_{1} \oplus N_{2}$, then $N_{1} \in \mathrm{~A}$ or $N_{2} \in \mathrm{~A}$. Since $N_{1}, N_{2} \in \mathrm{~A}_{i}$, we obtain that $N_{1}$ or $N_{2}$ is finite dimensional. Thus $N$ is HI .

## References

[1] P. Aiena, M. González and A. Martínez-Abejón, Operators Semigroups in Banach Space Theory, Boll. U. M. I. 4-B (2001), 157-205.
[2] P. Aiena, M. González and A. Martínez-Abejón, Incomparable Banach spaces and operator semigroups, Arch. Math. 79 (2002), 372-378.
[3] T. Álvarez, M. González and V. M. Onieva, Totally incomparable Banach spaces and three-space ideals, Math. Nachr. 131 (1987), 83-88.
[4] T. Álvarez, M. González and V. M. Onieva, Characterizing two classes of operator ideals, In: Contribuciones matemáticas, Homenaje Prof. Antonio Plans, 7-21, Univ. Zaragoza, 1990.
[5] J. M. F. Castillo and M. González, Three-space problems in Banach space theory, Lecture Notes in Math. 1667, Springer-Verlag, Berlin, 1997.
[6] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant and V. Zizler, Functional analysis and infinite-dimensional Banach spaces, Springer, New York, 2001.
[7] V. Ferenczi, Operators on subspaces of hereditarily indecomposable Banach spaces, Bull. London Math. Soc. 29 (1997), 338-344.
[8] M. González and A. Martinón, Operational quantities derived from the norm and generalized Fredholm theory, Comment. Math. Univ. Carolinae 32 (1991), 645-657.
[9] M. GonzÁlez and A. Martinón, Fredholm Theory and Space Ideals, Bol. U. M. I. (7) 7-B (1993), 473-488.
[10] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, J. Amer. Math. Soc. 6 (1993), 851-874.
[11] D. H. Leung, On Banach spaces with the Mazur's property, Glasgow Math. J. 33 (1991), 51-54.
[12] J. Lindenstrauss, On James's paper "Separable conjugate spaces", Israel J. Math. 9 (1971), 279-284.
[13] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, I, Springer, Berlin, 1977.
[14] A. Pietsch, Operator Ideals, North-Holland, Amsterdam, 1980.
[15] H. P. Rosenthal, On totally incomparable Banach spaces, J. Funct. Anal. 4 (1969), 167-175.
[16] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071.
[17] Z. Semadeni, Banach spaces non-isomorphic to their cartesian squares, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 81-84.
[18] L. Weis, Perturbation Classes of Semi-Fredholm Operators, Math. Z. 178 (1981), 429-442.
[19] A. Wilansky, Mazur spaces, Internat. J. Math. Sci. 4 (1981), 39-53.
[20] K.-W. Yang, The generalized Fredholm Operators, Trans. Amer. Math. Soc. 216 (1976), 313-326.

```
MANUEL GONZÁLEZ
DEPARTAMENTO DE MATEMÁTICAS
FACULTAD DE CIENCIAS
UNIVERSIDAD DE CANTABRIA
E-39071 SANTANDER
SPAIN
E-mail: gonzalem@unican.es
ANTONIO MARTINÓN
DEPARTAMENTO DE ANÁLISIS MATEMÁTICO
UNIVERSIDAD DE LA LAGUNA
E-38271 LA LAGUNA (TENERIFE)
SPAIN
E-mail: anmarce@ull.es
```

(Received November 8, 2002; revised August 5, 2003)


[^0]:    Mathematics Subject Classification: 46B03, 47A53, 47B10.

