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On the divergence of partial sums of orthogonal series

By LÁSZLÓ LEINDLER (Szeged)

Dedicated to Professor László Csernyák on our 50 years friendship

Abstract. We slightly weaken the assumption of a theorem pertaining to
the divergence of partial sums of orthogonal series from monotonicity to almost
monotonicity.

1. Introduction

We take (0, 1) as the interval of orthogonality, and “almost every-
where” means simply in (0, 1) everywhere with the exception of at most a
set of measure zero in the sense of Lebesgue.

Let {an} be a given sequence of real numbers, and denote {mn} a
fixed strictly increasing sequence of natural numbers. We put

An :=
{
a2

mn−1
+ · · · + a2

mn

}1/2 (n = 1, 2, . . .).

In a joint paper with L. Csernyák [1] we proved the following result,
which is an improvement of a theorem due to K. Tandori [3].
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Theorem A. If An ≥ An+1 and

∞∑
n=2

A2
n log2 n = ∞, (1.1)

then there exists a uniformly bounded orthonormal system {ψn(x)} such

that the mn-th partial sums of the series

∞∑
k=1

ak ψk(x) (1.2)

are almost everywhere divergent.

The aim of this note is to extend Theorem A such that, instead of the
monotonicity of {An}, only its almost monotonicity is required.

A nonnegative sequence c := {cn} is called almost monotone nonin-
creasing if there exists a constant K := K(c), depending on the sequence c
only, such that for all n ≥ m

cn ≤ K cm.

If a sequence c monotone nonincreasing, or almost monotone nonincreas-
ing, we shall use the notations: c ∈MS or c ∈ AMS, respectively.

2. Results

Theorem. Theorem A can be refined such that the condition {An} ∈
MS is replaced by the assumption {An} ∈ AMS.

With regard to a strictly increasing sequence p = {pn} of natural num-
bers, we call a summability method A an N(p) method if the following
holds: In order that every orthogonal series

∑∞
n=1 cnϕn(x) with

∑
c2n <∞

be summable A almost everywhere its pn-th partial sums must converge
almost everywhere. It is well known that every permanent Toeplitz sum-
mation process is an N(p)-summability with certain {pn}. Our Theorem
clearly implies the next result.
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Corollary. Let

A2
n(p) :=

pn+1∑
k=pn+1

a2
n.

If {An(p)} ∈ AMS and

∞∑
n=2

A2
n(p) log2 n = ∞,

then there exists a uniformly bounded orthonormal system {ψn(x)} such

that the series (1.2) is not summable almost everywhere by some N(p)
method.

We mention that, by virtue of a former theorem of the author ([2],
Satz II) Theorem and Corollary can be improved both such that the system
{ψn(x)} is replaced by a uniformly bounded polynom system {Pn(x)}.

3. Lemmas

We shall use the following two lemmas. The first lemma is proved
implicitly in [1].

Lemma 1. Under the assumptions of Theorem A there exist an index-

sequence N0 < N1 · · · < Nm < . . . , a uniformly bounded orthonormal

system {ψn(x)} and a sequence of simple sets Hk (Hk is the union of finite

intervals) such that

(i) for every x ∈ Hk there is some nk(x) ∈ N such that

∣∣∣∣∣
Nk+nk(x)∑

i=Nk

mi∑
�=mi−1+1

a� ψ�(x)

∣∣∣∣∣ ≥ D, (k = 1, 2, . . . ), (3.1)

where D is a positive constant, and the sums

si(x) :=
mi∑

�=mi−1+1

a� ψ�(x) (i = Nk, . . . , Nk + nk(x)) (3.2)

have equal signs,
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(ii) the sets Hk (k = 0, 1, . . . ) are stochastically independent and

∞∑
k=0

µ(Hk) = ∞, (3.3)

where µ(H) denotes the Lebesgue measure of H.

Lemma 2. If c := {cn} ∈ AMS and γn := supk≥n ck, then

cn ≤ γn ≤ K(c)cn (3.4)
holds.

Proof. By c ∈ AMS

γn ≤ sup
k≥n

K(c)cn = K(c)cn,

this and the definition of γn clearly yield (3.4).

4. Proof of Theorem

Denote α := {An} and let A∗
n := supk≥nAk. Then clearly {A∗

n} ∈MS,
and by Lemma 2

An ≤ A∗
n ≤ K(α)An (4.1)

holds. Thus, for ρn := A∗
n

An
we have

1 ≤ ρn ≤ K(α). (4.2)

Moreover by (1.1) and (4.1)

∞∑
n=2

(A∗
n)2 log2 n = ∞. (4.3)

Next let us define a new sequence {a∗k} as follows:

a∗k := ρnak if mn−1 < k ≤ mn, n = 1, 2, . . .

Then
mn∑

k=mn−1+1

(a∗k)
2 = ρ2

n

mn∑
k=mn−1+1

a2
k = ρ2

nA
2
n = (A∗

n)2.
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Therefore we can apply Lemma 1 with the sequence {a∗k} and obtain that
(3.1) holds with {a∗k} in place of {ak}, furthermore the sums in (3.2) with
{a∗�} have equal signs for all i. Using these facts we get that

∣∣∣∣∣
Nk+nk(x)∑

i=Nk

mi∑
�=mi−1+1

a∗� ψ�(x)

∣∣∣∣∣ =

∣∣∣∣∣
Nk+nk(x)∑

i=Nk

ρi

mi∑
�=mi−1+1

a� ψ�(x)

∣∣∣∣∣ ≥ D,

whence, by (4.2),
∣∣∣∣∣

Nk+nk(x)∑
i=Nk

mi∑
�=mi−1+1

a� ψ�(x)

∣∣∣∣∣ ≥
D

K(α)
> 0 (4.4)

follows.
In virtue of (3.3) and the Borel–Cantelli lemma we get that

µ
(

lim
k→∞

Hk

)
= 1,

that is, almost every x ∈ (0, 1) belongs to limk→∞Hk. Thus (4.3) holds
almost everywhere for infinite k.

Consequently the mn-th partial sums of the series (1.2) are almost
everywhere divergent.

This completes the proof. �
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