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Modular group algebras
with maximal Lie nilpotency indices

By VICTOR BOVDI (Debrecen) and ERNESTO SPINELLI (Lecce)

Dedicated to the memory of Professor Jenő Erdős

Abstract. In the present paper we give the full description of the Lie nilpo-
tent modular group algebras which have maximal Lie nilpotency indices.

1. Introduction

Let R be an associative algebra with identity. The algebra R can be
regarded as a Lie algebra, called the associated Lie algebra of R, via the Lie
commutator [x, y] = xy − yx, for every x, y ∈ R. Set [x1, . . . , xn−1, xn] =
[[x1, . . . , xn−1], xn], where x1, . . . , xn ∈ R. The n-th lower Lie power R[n]

of R is the associative ideal generated by all Lie commutators [x1, . . . , xn],
where R[1] = R and x1, . . . , xn ∈ R. By induction, we define the n-th
upper Lie power R(n) of R as the associative ideal generated by all Lie
commutators [x, y], where R(1) = R and x ∈ R(n−1), y ∈ R.

An algebra R is called Lie nilpotent if there exists m such that R[m] =
0. The minimal integers m,n such that R[m] = 0 and R(n) = 0 are called
the Lie nilpotency index and the upper Lie nilpotency index of R and they
are denoted by tL(R) and tL(R), respectively.
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An algebra R is called Lie hypercentral if for every sequence {ai} of
elements of R there exists some n such that [a1, . . . , an] = 0.

Let KG be the group algebra of a group G over a field K of charac-
teristic char(K) = p > 0. According to [2], [9] for the noncommutative
group algebras KG, the following statements are equivalent: (a) KG is Lie
nilpotent; (b) KG is Lie hypercentral; (c) G is nilpotent and its commu-
tator subgroup G′ is a finite p-group. It is well known ([8, 13]) that if KG

is Lie nilpotent then tL(KG) ≤ tL(KG) ≤ |G′| + 1. Moreover, according
to [1], if char(K) > 3 then tL(KG) = tL(KG). But the question of when
tL(KG) = tL(KG) for char(K) = 2, 3 is still open.

In the present paper we investigate the group algebras KG for which
tL(KG) is maximal, i.e. tL(KG) = |G′| + 1. In particular, if G is a finite
p-group and char(K) ≥ 5, then, as Shalev proved in [12], tL(KG) is
maximal if and only if G′ is cyclic. We give a complete characterization
by proving the following:

Theorem 1. Let KG be a Lie nilpotent group algebra with

char(K) = p > 0. Then tL(KG) = |G′| + 1 if and only if one of the

following conditions holds:

(1) G′ is cyclic;

(2) p = 2 and G′ is the noncyclic of order 4 and γ3(G) �= 1.

Corollary 1. Let KG be a Lie nilpotent group algebra with

char(K) = p > 0. If tL(KG) = |G′| + 1, then tL(KG) = tL(KG).

By Du’s Theorem ([4]), the previous result lists also the group algebras
KG whose group of units U(KG) has maximal nilpotency class under
the assumption that G is a finite p-group. Note that for G a 2-group of
maximal class and K a field with char(K) = 2, Konovalov in ([7]) proved
that U(KG) has maximal nilpotency class.

We use the standard notation for a group G: Φ(G) denotes the Frattini
subgroup of G; gh = h−1gh and (g, h) = g−1h−1gh, (g, h ∈ G); γi(G)
means the i-th term of the lower central series of G, i.e.

γ1(G) = G, γi+1(G) =
(
γi(G), G

)
(i ≥ 1).

Moreover, Cn is the cyclic group of order n and set

Q2n = 〈a, b | a2n−1
= 1, b2 = a2n−2

, ab = a−1〉, with n ≥ 3;
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D2n = 〈a, b | a2n−1
= b2 = 1, ab = a−1〉, with n ≥ 3;

SD2n = 〈a, b | a2n−1
= b2 = 1, ab = a−1+2n−2〉, with n ≥ 4;

MD2n = 〈a, b | a2n−1
= b2 = 1, ab = a1+2n−2〉, with n ≥ 4.

2. Preliminaries

Let K be a field of characteristic p > 0 and G a group. We consider a
sequence of subgroups of G setting

D(m)(G) = G ∩ (1 + KG(m)), (m ≥ 1).

The subgroup D(m)(G) is called the m-th Lie dimension subgroup of KG.
It is possible to describe the D(m)(G)’s in terms of the lower central series
of G in the following manner ([8], p. 44)

D(m+1)(G) =




G if m = 0;

G′ if m = 1;(
D(m)(G), G

)
(D(�m

p
�+1)(G))p if m ≥ 2.

(1)

where �m
p 	 is the smallest integer greater than m

p .
Put pd(m) := [D(m)(G) : D(m+1)(G)]. If KG is Lie nilpotent, according

to Jennings’ theory ([10]) for the Lie dimension subgroups, we get that

tL(KG) = 2 + (p − 1)
∑
m≥1

md(m+1).

Lemma 1 ([11], [12]). Let K be a field with char(K) = p > 0 and G

a nilpotent group such that G′ is a finite p-group with exp(G′) = pl.

(1) If d(m+1) = 0 and m is a power of p, then D(m+1)(G) = 1.

(2) If d(m+1) = 0 and pl−1 divides m, then D(m+1)(G) = 1.

Lemma 2. Let p, s, n ∈ N and m0, . . . ,ms−1 the non-negative integers

such that s < n and
∑s−1

i=0 mi = n. Then
∑s−1

i=0 mip
i <

∑n−1
i=0 pi.
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Proof. By the assumptions, there exist integers 0 ≤ j1 < · · · < jk ≤
s−1 such that mjl

> 1 for every 1 ≤ l ≤ k. Since ps > pjk , we obtain that

s−1∑
i=0

mip
i =

s−1∑
i=0

pi +
k∑

i=1

(mji − 1)pji

≤
s−1∑
i=0

pi + pjk(n − s) <

s−1∑
i=0

pi +
n−1∑
i=s

pi. �

Lemma 3. Let K be a field with char(K) = p > 0 and G a nilpotent

group such that |G′| = pn. Then tL(KG) = |G′|+1 if and only if d(pi+1) = 1
and d(j) = 0, where 0 ≤ i ≤ n − 1, j �= pi + 1 and j > 1.

Proof. If d(pi+1) = 1 for 0 ≤ i ≤ n − 1 and d(j) = 0 for j > 1, then

tL(KG) = 2 + (p − 1)
n−1∑
i=0

pi = 1 + pn = |G′| + 1.

In order to prove the other implication, we preliminarily remark that∑
m≥2

d(m) = n (2)

that is an immediate consequence of the definition of d(j)’s. Now we sup-
pose that there exists 0 ≤ j ≤ n − 1 such that d(pj+1) = 0. Let s be the
minimal integer for which d(ps+1) = 0. From (1) it follows at once that
s �= 0 and by (1) of Lemma 1 we have that D(ps+1)(G) = 1 and so d(r) = 0
for every r ≥ ps + 1. It is immediate by (2) that α =

∑s−1
i=0d(pi+1) ≤ n.

Let us consider the following two cases: α = n and α < n. If α = n, then,
according to Lemma 2, we have that

tL(KG) = 2 + (p − 1)
s−1∑
i=0

pid(pi+1) < 2 + (p − 1)
n−1∑
i=0

pi = |G′| + 1.

If α < n by (2) there exists at least one j > 1 such that d(j) �= 0 and
j �= pi + 1. Suppose that d(j1), . . . , d(jk) are all of such d(j)’s, where j1 <

· · · < jk. Clearly, jk ≤ ps. According to Lemma 2 for the case α > s, we
obtain that

tL(KG) = 2 + (p − 1)
s−1∑
i=0

pid(pi+1) + (p − 1)
k∑

i=1

(ji − 1)d(ji)
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≤ 2 + (p − 1)
α−1∑
i=0

pi + (p − 1)(jk − 1)(n − α)

< 2 + (p − 1)
α−1∑
i=0

pi + (p − 1)ps(n − α)

< 2 + (p − 1)
α−1∑
i=0

pi + (p − 1)
n−1∑
i=α

pi = |G′| + 1.

So, if tL(KG) is maximal, then d(pj+1) > 0 for each 0 ≤ j ≤ n− 1 and, by
(2), the lemma is proved. �

Corollary 2. Let K be a field with char(K) = p > 0 and G a nilpotent

group with |G′| = pn. If tL(KG) = |G′| + 1, then |D(pi+1)(G)| = pn−i, for

0 ≤ i ≤ n.

Proof. By Lemma 3, it is easy to check that

D(p0+1)(G) ⊃ D(p1+1)(G) ⊃ D(p1+2)(G) = · · ·
· · · = D(pi+1)(G) ⊃ D(pi+2)(G) = · · ·
· · · = D(ps+1)(G) ⊃ D(ps+2)(G) = 1

for some s ∈ N. Clearly, |D(ps+1)(G)| = p, |D(ps−1+1)(G)| = p2 and
|D(pi+1)(G)| = ps−i+1, so |D(p0+1)(G)| = ps+1 = pn and s = n − 1. �

Lemma 4. Let K be a field with char(K) = p > 0 and G a nilpotent

group with G′ a finite p-group such that tL(KG) = |G′| + 1.

(1) If p > 2 then G′ is cyclic.

(2) If p = 2 then G′ has at most two generators.

Proof. Assume that |G′| = pn. Let us prove that

|Φ(G′)| ≥
{

pn−1 if p �= 2;

2n−2 if p = 2.
(3)

First, set p �= 2, 1 < a < p and suppose that |Φ(G′)| ≤ pn−2, where n ≥ 2.
Since exp(G′/Φ(G′)) = p, we have that exp(G′) = pk ≤ pn−1 for some k.
By Lemma 3, we get d(apn−2+1) = 0 and pk−1 divides pn−2. Then, by (2)
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of Lemma 1, we obtain that D(apn−2+1)(G) = 1. But apn−2 < pn−1 and
D(pn−1+1)(G) �= 1, which is a contradiction.

Now, set p = 2 and we suppose that |Φ(G′)| ≤ 2n−3, where n ≥ 3. By
Lemma 3 we have that d(3·2n−3+1) = 0. Since 3 · 2n−3 < 2n−1, by (2) of
Lemma 1 we get that D(3·2n−3+1)(G) = 1 and D(2n−1+1)(G) �= 1, which is
a contradiction either. �

Lemma 5. Let K be a field with char(K) = 2, G a nilpotent group

such that G′ is a 2-generated finite 2-group and let tL(KG) = |G′| + 1.
If either γ2(G)2 ⊂ γ3(G) or γ3(G) ∩ γ2(G)2 = 1 then |γ3(G)| = 2 and

γ2(G) ∼= C2 × C2.

Proof. Assume that |G′| = 2n. Let G be nilpotent of class cl(G) =
t ≤ n+1 and γ2(G)2 ⊂ γ3(G). Then, by Theorem III.2.13 ([6], p. 266), we
have that γk(G)2 ⊆ γk+1(G) for every k ≥ 2. Let us prove by induction
on i that D(2i+1)(G) = γi+2(G). It follows at once that D(2)(G) = γ2(G)
and D(3)(G) = γ3(G). According to Lemma 3 we have that

D(2i+1+1)(G) = D(2i+2)(G)

=
(
D(2i+1)(G), G

) · D(�2i−1+ 1
2
�+1)(G)2

=
(
γi+2(G), G

) · D(2i−1+2)(G)2

= γi+3(G) · D(2i−1+2)(G)2

= γi+3(G) · D(2i+1)(G)2

= γi+3(G) · γi+2(G)2 = γi+3(G).

It follows that D(2t−1+1)(G) = γt+1(G) = 1, but by Lemma 3 we have that
D(2n−1+1)(G) �= 1, so t > n and t = n + 1.

Obviously, for i ≥ 1

D(2i+2)(G) =
(
D(2i+1)(G), G

) · D(2i−1+2)(G)2

= γi+3(G) · D(2i+1)(G)2

= γi+3(G) · γi+2(G)2 = γi+3(G);

D(2i+3)(G) =
(
D(2i+2)(G), G

) · D(2i−1+2)(G)2

= γi+4(G) · γi+2(G)2.
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Since D(2i+2)(G) = D(2i+3)(G) for i ≥ 1 we get that

γi+3(G) = γi+4(G) · γi+2(G)2.

According to γ3(G)2 ⊃ γ4(G)2 ⊃ · · · it follows that

γ4(G) = γ3(G)2 · γ4(G)2 · γ5(G)2 · · · γt(G)2 = γ3(G)2.

Since Φ(γ3(G)) = γ3(G)2 we have that

[γ3(G) : Φ(γ3(G))] = [γ3(G) : γ4(G)] = 2,

so γ3(G) is cyclic. According to Theorem 12.5.1 in [5], the 2-generated
group γ2(G) with cyclic subgroup of index 2 is one of the following groups:
Q2n , D2n , SD2n , MD2n , or C2 × C2n−1 , and therefore γ2(G)2 = γ4(G).

Moreover, γ3(G)2 ⊆ γ5(G). Indeed, the elements of the form (x, y),
where x ∈ γ2(G) and y ∈ G are generators of γ3(G), so we have to prove
that (x, y)2 ∈ γ5(G). Evidently,

(x2, y) = (x, y)(x, y, x)(x, y) = (x, y)2(x, y, x)(x,y)

and (x2, y), (x, y, x)(x,y) ∈ γ5(G), so (x, y)2 ∈ γ5(G) and γ3(G)2 ⊆ γ5(G).
Using the fact that exp(γ3(G)

/
γ5(G))=2, since γ3(G) is cyclic, we obtain

that |γ3(G)|=2 and γ2(G) ∼= C2 × C2.
Now, let γ3(G) ∩ γ2(G)2 = 1. By (1) we have that D(2)(G) = γ2(G),

D(3)(G) = γ2(G)2 · γ3(G) and

D(2)(G)/D(3)(G) = γ2(G)/
[
γ2(G)2 · γ3(G)

] ∼= [
γ2(G)/γ2(G)2

]/
γ3(G).

Since |D(2)(G)/D(3)(G)| = 2 and |γ2(G)/γ2(G)2| = 4, from the last equal-
ity it follows that |γ3(G)| = 2 and γ4(G) = 1.

Obviously, (γ2(G), γ2(G)) ⊆ γ4(G) = 1, so γ2(G) is abelian and

D(4)(G) = D(5)(G) =
(
γ2(G)2 · γ3(G), G

)
(γ2(G)2 · γ3(G))2

= γ2(G)4 · γ3(G)2 = γ2(G)4.

It is easy to check that

Φ(γ2(G)2 · γ3(G)) = (γ2(G)2 · γ3(G))2 = γ2(G)4 = D(5)(G).
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Therefore γ2(G)2 · γ3(G) is a cyclic subgroup of index 2 in γ2(G) and

γ2(G) = 〈a〉 × 〈b〉 ∼= C2n−1 × C2 (|a| = 2n−1, |b| = 2).

Clearly, γ2(G)2 = 〈a2〉 and either γ3(G) = 〈b〉 or γ3(G) = 〈a2n−2
b〉. Now,

let us compute the weak complement of γ3(G) in G′ (see [3], p. 34). It is
easy to see that ν(b) = ν(a2n−2

b) = 2 and the weak complement will be
A = 〈a〉. Since G is of class 3, by (ii) of Theorem 3.3 of [3] we have that

tL(KG) = tL(KG) = 2n + 1 = t(γ2(G)) + t(γ2(G)/A) = 2n−1 + 3,

so n = 2 and γ2(G) ∼= C2 × C2. �

3. Proof of Theorem 1

Let KG be a Lie nilpotent group algebra with char(K) = p > 0 and
let tL(KG) = |G′| + 1. By Lemma 4 is either p > 2 and γ2(G) is cyclic or
p = 2 and γ2(G) has at most 2 generators.

Now, let p = 2 and γ2(G) a 2-generated group. Let us prove that
either γ2(G)2 ⊂ γ3(G) or γ3(G) ∩ γ2(G)2 = 1.

First, suppose that γ3(G) ⊆ γ2(G)2. It is easy to see that

D(2)(G) = γ2(G), D(3)(G) = γ2(G)2

and

D(2)(G)/D(3)(G) = γ2(G)/γ2(G)2 ∼= γ2(G)/Φ(γ2(G)) ∼= C2

which contradicts to the fact that γ2(G) is a 2-generated group.
Finally, suppose γ3(G) ∩ γ2(G)2 �= 1 and γ2(G)2 �⊂ γ3(G). Clearly,

D(2)(G) = γ2(G); D(3)(G) = γ2(G)2 · γ3(G);

D(2i+1)(G) ≡ γ3(G)2
i−1 · γ2(G)2

i
(mod γ4(G)) (i ≥ 2).

Since D(4)(G) ≡ D(5)(G) (mod γ4(G)), it follows that

2 = [D(3)(G) : D(4)(G)]

≡ [γ2(G)2 · γ3(G) : (γ2(G)2 · γ3(G))2]
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≡ [(γ2(G)2 · γ3(G)) : Φ(γ2(G)2 · γ3(G))] (mod γ4(G))

and L ≡ γ2(G)2 · γ3(G) (mod γ4(G)) is a cyclic group. Set L = 〈a〉.
Since [γ2(G) : γ2(G)2] = 4, we get that L is a subgroup of index 2 in
γ2(G)/γ4(G). Thus, by Theorem 12.5.1 of [5], we have that

γ2(G)/γ4(G) =
〈
a, b | a2n−1

= 1, b2 ∈ 〈a〉〉
is one of the following groups: C2n , C2n−1 ×C2, Q2n , D2n , SD2n or MD2n .
But in these cases γ2(G)2/γ4(G) = 〈a2〉 and from

L ≡ γ2(G)2 · γ3(G) (mod γ4(G))

it follows that 〈a〉 ≡ 〈a2〉 · γ3(G) (mod γ4(G)), so a ∈ γ3(G)/γ4(G) and
γ2(G)2 ⊂ γ3(G) (mod γ4(G)), a contradiction. Therefore, by Lemma 5,
we have that |γ3(G)| = 2 and γ2(G) ∼= C2 × C2.

Conversely, let p ≥ 2 and γ2(G) a cyclic group. By (ii) of Theorem 3.1
of [3] we get that tL(KG) = tL(KG) = |G′|+1. Now, let p = 2 and G′ the
noncyclic group of order 4 and γ3(G) �= 1. Again, by (ii) of Theorem 3.3
of [3], we obtain that

tL(KG) = tL(KG) = t(G′) + t(G′/A) = |G′| + 1,

where A is the weak complement of γ3(G) in G′ and the proof is complete.
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