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Irreducible polynomials in arithmetic progressions
and a problem of Szegedy

By LAJOS HAJDU (Debrecen)

To the memory of Professor B. Brindza

Abstract. In this paper we show that under certain assumptions, every suf-
ficiently long arithmetic progression of polynomials in Z[x] contains an irreducible
polynomial. Our result is effective, and can be considered as an extension of a
result of Győry on a problem of Szegedy concerning irreducible polynomials. We
also derive a lower bound for the constant C1(m) occurring in Szegedy’s problem.
Finally, we provide some numerical results, and propose a quantitative version of
this problem.

1. Introduction

In 1984 M. Szegedy proposed the following problem (cf. e.g. [3]):

Does there exist a constant C1(m) depending only on m such that for any
P ∈ Z[x] of degree m, P (x) + b is irreducible over Q for some b ∈ Z with
|b| ≤ C1(m)?

Under an extra condition, this problem was solved by K. Győry [3],
who proved the following
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Theorem A. Let P ∈ Z[x] be a polynomial of degree m with leading

coefficient a0 and let ω(a0) denote the number of distinct prime divisors

of a0. There exist an effectively computable constant C2 depending only

on m and ω(a0) and an integer b with |b| ≤ C2 for which P (x) + b is

irreducible over Q.

If P is monic, then ω(a0) = 0. Thus in this case the above deep result
of Győry provides an affirmative answer to Szegedy’s problem. We also
note that in [3] the constant C2 is given explicitly.

In the above problem of Szegedy one is allowed to change only the
constant term of P in order to obtain an irreducible polynomial. In 1962
P. Turán proposed a similar problem where one is allowed to change each
coefficient of P (cf. [4]). To formulate Turán’s problem, for P ∈ Z[x]
denote by |P | the length of P , i.e. the sum of the absolute values of the
coefficients of P . By the distance of two polynomials P, Q ∈ Z[x] we mean
|P −Q|. Turán asked the following:

Does there exist an absolute constant C3 such that for every P (x) ∈ Z[x] of
degree m, there is a polynomial Q(x) ∈ Z[x] irreducible over Q, satisfying
deg (Q) ≤ m and |P −Q| ≤ C3?

This question is also very deep and hard. On omitting the condition
for the degree of the irreducible polynomial Q, A. Schinzel [5] provided
a positive answer to this problem. More precisely, he proved the following
nice result.

Theorem B. For every P ∈ Z[x] of degree m there are infinitely

many irreducible Q ∈ Z[x] such that

|P −Q| ≤
{

2, if P (0) 6= 0,

3, otherwise.

Further, one of these irreducible polynomials Q satisfies

deg (Q) ≤ e(5m+7)(|P |2+3).

We note that the results of A. Bérczes and L. Hajdu [1], [2] imply
that C3 ≥ 2 and that for polynomials of degree ≤ 24 we have C3 ≤ 5.

Theorem A can be interpreted as follows: for any P ∈ Z[x] of degree m

the arithmetic progression P (x) + b (b ∈ Z) contains an irreducible poly-
nomial with |b| ≤ C2. In this paper we extend this result to the case of
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any arithmetic progression of polynomials of the form P (x)+bQ(x), where
P, Q ∈ Z[x] with deg (P ) > deg (Q) and gcd(P,Q) = 1 in Q[x]. By finding
suitable “extremal” polynomials, we also give an explicit lower bound for
the Szegedy constant C1(m). Finally, we present some numerical results
which might indicate that the answer to Szegedy’s problem is affirmative,
with a very good value of C1(m). Based upon our results, we propose a
quantitative version of Szegedy’s problem.

2. Notation and results

To formulate our results we need some notation. As usual, for any
non-zero integer u let ω(u) denote the number of distinct prime divisors
of u, with the agreement that ω(±1) = 0. If P, Q ∈ Q[x] then we will
write Res(P, Q) for the resultant of P and Q. In case of P (x) =

∑n
i=0 aix

i

define the height of P by H(P ) = maxi=0,...,n |ai|.
The following result is an extension of Theorem A of Győry to the

case of arithmetic progressions of polynomials, where the difference is not
necessarily a constant.

Theorem 1. Suppose that P, Q ∈ Z[x] are relatively prime polyno-

mials in Q[x], and that m = deg(P ) > deg(Q). Let a0 denote the leading

coefficient of P . Then there exists an integer b with 0 ≤ b ≤ c1 for which

P (x) + bQ(x) is irreducible over Q. Here c1 = c1(m,ω(a0Res(P,Q))) is an

effectively computable constant depending only on m and ω(a0Res(P,Q)).

Remark 1. If we further assume that P has only simple zeros, the above
statement easily follows from Theorem 7 of Győry [3]. We also mention
that as Res(P, 1) = 1, Theorem 1 can be considered as a generalization of
Theorem A of Győry indeed.

Remark 2. We derive Theorem 1 from two lemmas. One of them
(Lemma 2) is a variant of the above mentioned Theorem 7 of Győry [3],
which uses Schmidt’s well-known subspace theorem. So we can say that
our Theorem 1 ultimately relies on this deep result of number theory.

The next theorem provides an explicit lower bound for the value of
C1(m), provided that this constant exists.
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Theorem 2. Let m be an integer with m ≥ 2, and suppose that the

assertion of the problem of Szegedy holds true for this m. Then we have

C1(m) > m/2.

Remark 3. It was noted by Győry [3] that the constant C1(2) exists,
and C1(2) = 2 holds. This follows from the fact that four distinct squares
cannot form an arithmetic progression.

In the following statement we give an upper bound for C1(m), for
polynomials of small degree and height. As the number of polynomials
to be considered rapidly grows with the degree and the height, we could
cover only a little set. The aim of the forthcoming theorem is to get some
impression about how far the lower bound m/2 obtained for C1(m) in
Theorem 2 can be from the real value.

Theorem 3. Let m be an integer with 3 ≤ m ≤ 5, and write H(3) =
50, H(4) = 25 and H(5) = 10. Then for every polynomial P ∈ Z[x] of

degree m and of height at most H(m) there exists an integer b with |b| ≤ 3
such that P (x) + b is irreducible over Q.

Remark 4. The polynomials 4x3 − 5x, 4x4 + 6x3 + 2x2 + x − 1, and
x5 − x4 − 5x3 + 2x2 + 6x + 2 show that the bound for |b| in Theorem 3
cannot be improved.

In the following theorem we allow to modify both the constant and
the leading coefficients of the polynomials. The reason why we do so is
that this statement is proved via reducing the polynomials modulo p for
the appropriate prime p. To handle degenerate cases, i.e. when the leading
coefficient a0 is divisible by p, it is helpful if we can modify a0. Moreover,
letting a0 being changed simplifies the situation considerably, and makes
it possible to investigate more cases.

Theorem 4. Let m be an integer with 3 ≤ m ≤ 6, and write

(Am, Bm) = (1, 2), (2, 2), (2, 11), (5, 11) for m = 3, 4, 5, 6, respectively.

Then for every polynomial P ∈ Z[x] of degree m there exist integers a and

b with |a| ≤ Am and |b| ≤ Bm such that P (x) + axm + b is irreducible

over Q. Moreover, if m = 3 and we further assume that the leading co-

efficient of P is not divisible by 7, then P (x) + b is irreducible over Q for

some integer b with |b| ≤ 3.
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Using Theorem 3, Remark 4, and Theorem 4 we obtain the following
simple

Corollary. For every polynomial P (x) of degree 3 with leading coef-

ficient not divisible by 7 there exists an integer b with |b| ≤ 3 for which

P (x) + b is irreducible over Q. Moreover, this bound for |b| cannot be

improved.

Based upon Theorem 2 and our numerical results we propose the fol-
lowing quantitative form of the problem of Szegedy:

Is it true that for any P ∈ Z[x] of degree m, P (x) + b is irreducible over Q
for some b ∈ Z with |b| ≤ C1(m), where C1(m) is a linear function of m?

We note that Theorem A of Győry was proved with the value

C2 = exp exp
{
(ω(a0) + 1)6219(m+1)!

}
.

It was also mentioned in [3] that using a result of Evertse this value could
be reduced to

C2 = exp
{
(ω(a0) + 1) log(ω(a0) + 2)(217m)m3}

.

So the above formulation of Szegedy’s problem predicts a huge improve-
ment in C2.

3. Proofs

To prove Theorem 1, we need two lemmas. The first one is new, while
the second one is due to Győry [3].

Lemma 1. Let P, Q be relatively prime polynomials in C[x] with

deg(P ) = m, deg(Q) = n, m+n > 0. Then there exists an integer b0 with

0 ≤ b0 ≤ m + n− 1 for which P (x) + b0Q(x) has only simple zeros.

Proof. If P (x) + bQ(x) has a multiple zero x0, then

P (x0) + bQ(x0) = P ′(x0) + bQ′(x0) = 0, (1)

hence P (x0)Q′(x0) − P ′(x0)Q(x0) = 0. However, since gcd (P, Q) = 1,
m + n > 0, the polynomial PQ′ − P ′Q is not identically zero, of degree at
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most m+n−1. Thus the number of x0’s satisfying (1) is at most m+n−1.
For every such x0 we have Q(x0) 6= 0, otherwise P (x0) = 0, contrary to
gcd(P, Q) = 1. Hence to every x0 there corresponds exactly one b and the
number of admissible b’s is at most m+n−1. Since the number of integer
b’s satisfying 0 ≤ b ≤ m + n− 1 is m + n, the lemma follows. ¤

Lemma 2. Let P,Q, a0 and m be as in Theorem 1, with the further

assumption that P has only simple zeros. Then the number of non-negative

integers α for which P (x) + 2αQ(x) is reducible is bounded by an effec-

tively computable constant c2(m,ω(a0Res(P, Q))), depending only on m

and ω(a0Res(P,Q)).

Proof. The statement is a straightforward consequence of Theorem 7
of Győry [3]. ¤

Proof of Theorem 1. Let P and Q be fixed. By Lemma 1 there
exists an integer b0 with 0 ≤ b0 ≤ 2m − 1 such that the polynomial
P (x) + b0Q(x) has only distinct zeros. Fix such a b0 and put P0(x) =
P (x) + b0Q(x). Note that the leading coefficient of P0 is a0 and that
Res(P0, Q) = Res(P,Q).

By Lemma 2 we obtain that for some α0 with

0 ≤ α0 ≤ c2(m,ω(a0Res(P0, Q)))

the polynomial P0(x) + 2α0Q(x) is irreducible over Q. Now in view of
Res(P0, Q) = Res(P,Q) and 0 ≤ b0 ≤ 2m − 1, the theorem follows with
c1 = 2m− 1 + 2c2(m,ω(a0Res(P,Q))). ¤

Remark 5. Note that using a more sophisticated approach, it is possi-
ble to derive a better constant than our c1 in Theorem 1. For this purpose
one can follow the proof of Theorem 1 of Győry [3].

Proof of Theorem 2. Define the polynomials fm(x) in the follow-
ing way. Put f0(x) = 1, and if fm−1(x) is already defined for some integer
m with m ≥ 1 then write

fm(x) = (1− (m + 1)x)fm−1(x) + m + 1.

One can easily check by induction that for every m ∈ N and
i ∈ {1, . . . ,m + 1} we have fm(1/i) = i. Write

gm(x) = fm(x)− [m/2]− 1.
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Then for each m with m ≥ 2 and for every integer b with |b| ≤ m/2 we
have that gm(x) + b has a rational zero, hence it is reducible. As clearly
gm(x) is a polynomial of degree m with integer coefficients, the theorem
follows. ¤

Proof of Theorem 3. To prove the statement we simply checked
all the polynomials in question, using the program package maple. (Note
that in view of the Corollary of Theorem 4, for m = 3 it is sufficient to
consider only polynomials with leading coefficient divisible by 7.) ¤

Proof of Theorem 4. As is well-known, if Q ∈ Z[x] and p is a
prime such that p does not divide the leading coefficient of Q, then the
irreducibility of Q modulo p implies the irreducibility of Q over Q.

To prove the statement for m = 3 and 4 we simply used the above
observation, and by the help of maple we checked all the polynomials
modulo 7 and 5, respectively.

In case of m = 5 we worked modulo 11. A computation with maple

yielded the statement with (A5, B5) = (2, 2), except for polynomials of the
shape P (x) = a0x

5 +11a1x
4 +11a2x

3 +11a3x
2 +11a4x+a5. However, for

such polynomials the assertion trivally holds by the irreducibility criterion
of Eisenstein.

When m = 6, we worked with p = 11 again. By a preliminary compu-
tation we obtained the statement with (A6, B6) = (5, 5), except for poly-
nomials of the form P (x) = a0x

6 + 11a1x
5 + 11a2x

4 + 11a3x
3 + 11a4x

2 +
11a5x + a6. Using again Eisenstein’s criterion, the theorem follows also in
this case. ¤
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[1] A. Bérczes and L. Hajdu, Computational experiences on the distances of polyno-
mials to irreducible polynomials, Math. Comp. 66 (1997), 391–398.
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