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Computing small solutions of unit equations
in three variables II:

Applications to resultant form equations

By ISTVÁN JÁRÁSI (Debrecen)

Dedicated to the memory of Professor Béla Brindza

Abstract. In [7] we described a method to compute small solutions of unit
equations in three unknowns. In this paper we apply this method to a type
of resultant form equations. We also detail several further improvements of the
method. These improvements are essential, because without them it is hopeless
to perform the numerical computations in reasonable time.

1. Introduction

Resultant form equations are special, but important decomposable
form equations. There are two different types of resultant form equations.
To obtain the first type, we fix an irreducible polynomial P ∈ Z[x] and a
non-zero integer a and we search for a polynomials Q ∈ Z[x] such that

Res(P,Q) = a and 2 deg(Q) < deg(P ) (1)

where Res(P, Q) denotes the resultant of P and Q. E. Wirsing [10],
W. M. Schmidt [9], H. P. Schlickewei [8] and K. Győry [5], [6]
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obtained finiteness results for equation (1). Recently I. Gaál [2] gave
a numerical method to determine the solutions of (1) when P is a given
irreducible polynomial with degree at least 3 and the unknown Q-s are
monic quadratic polynomials.

In this paper we consider the following problem. Let K be a fixed
algebraic number field and a ∈ Z, a 6= 0 is also fixed. Find all polynomials
P, Q ∈ Z[x] with common splitting field K such that

Res(P, Q) = a. (2)

It is easy to see that if (P (x), Q(x)) is a solution to (2) then for any b ∈ Z
(P1(x), Q1(x)) = (P (x + b), Q(x + b)) is also a solution to (2). In this case
the pairs (P (x), Q(x)) and (P1(x), Q1(x)) are called Z-equivalent. This
shows that solving (2), one should restrict to some Z-equivalence classes
of polynomials.

It was shown by K. Győry [4] that there exist only finitely many Z-
equivalence classes of polynomials (P,Q) satisfying (2) such that deg(P )≥2,
deg(Q) ≥ 2, deg(P )+deg(Q) ≥ 5 and both P and Q has simple roots from
a fixed splitting field . He also showed that the same assertion is valid if Z
is replaced by any finitely generated and integrally closed domain over Z.
In [3] Győry gave an explicit upper bound for the degrees of P and Q

and for the number of solutions (P,Q).
The purpose of this paper is to determine the “small” solutions of (2)

such that P and Q have roots generating the fixed number fields M1 and
M2, respectively. This is a special case of the above problem when P and
Q have common splitting field K which is the normal closure of M1M2.

We reduce the problem to unit equations in three unknowns and we
use the method of [7] to handle such equations. Since the direct application
of that method would require far too much CPU time, we have developed
two essential improvements which enables us to perform the computations
within feasible CPU time.
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2. Resultant form equations

We will solve the following problem:
Let M1 and M2 be cubic algebraic number fields. Let K = M1M2 be

the composite of M1 and M2. Assume that the degree of K is 9, and denote
by r its unit rank. Our purpose is to determine the “small” solutions of
the equation

Res(f1, f2) = ±1 (3)

in monic cubic polynomials f1, f2 with integer coefficients, such that a root
of fi generates Mi (i = 1, 2). We note that our method can be applied
without significant changes to the same problem with a given integer a in
place of ±1 on the right hand side, i.e. to the equation

Res(f1, f2) = a.

Let α(i) and β(i) (i = 1, 2, 3) denote the roots of f1 and f2, respectively.
Then

Res(f1, f2) =
3∏

i=1

3∏

j=1

(α(i) − β(j))

holds. For any γ ∈ K denote by γ(ij) its conjugate corresponding to α(i),
β(j) (1 ≤ i, j ≤ 3). Then we can write

α(i) − β(j) = ±
(
η

(ij)
1

)a1 · · · · ·
(
η(ij)

r

)ar

where η
(ij)
k is a system of fundamental units of K and ak ∈ Z (k = 1, . . . , r).

As an analogue of Siegel’s identity in our case we have:

(α(i) − β(k)) + (α(j) − β(l))− (α(i) − β(l))− (α(j) − β(k)) = 0.

That is

µ(ij) + µ(kl) − µ(il) − µ(jk) = 0 (4)

with µ(mn) = α(m)− β(n). Since the µ(mn) are the conjugates of a suitable
unit of ZK , (4) is a unit equation in three variables (in homogeneous form)
for which we can apply our method described in [7].
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3. Our method to compute the small solutions
of unit equations in three variables

In the following we summarize how one can apply the method of [7]
to compute the “small” solutions of (4) which corresponds to the “small”
solutions of (3). As indicated in the Introduction, the direct application is
not enough strong to determine the “small” solutions.

We call a solution (f1, f2) of (3) “small” if max(H(f1), H(f2)) ≤ H0,
where H(f) is the maximum of the absolute values of the coefficients of f

and H0 is a given constant. In our numerical example we set H0 = 1085.
Clearly, in this case searching directly for the “small” solutions is hopeless.

Let K be an algebraic number field of degree d.
Our purpose is to find all “small” units u in ZK such that

u(1) + u(2) + u(3) + u(4) = 0 (5)

where u(i) is the i-th conjugate of u.
A unit u is called “small” if its exponents corresponding to a given

system of fundamental units are “small”, that is

max
1≤i≤r

(|ai|) ≤ A0, u = ζηa1
1 · · · · · ηar

r ,

where A0 is a given positive number, η1, . . . , ηr is a system of fundamental
units in K and ζ is a root of unity.

Fix an integer g with 1 ≤ g ≤ r and fix g embeddings of K into C.
Then from each g embedding of (5) equation choose 3 terms. Take one of
these embeddings, say i, and consider the equation

(u(1))(i) + (u(2))(i) + (u(3))(i) + (u(4))(i) = 0

obtained from (5) by using the i-th embedding of K. Then fix (u(1))(i),
(u(2))(i), (u(3))(i) where (u(j))(i) denotes the image of u(j) under the i-th
conjugation. With these 3 terms construct a semi-orbit O

(
(u(1))(i)

(u(2))(i)
, (u(3))(i)

(u(2))(i)

)

(A semi-orbit O(x, y) is defined by O(x, y) = {x, y, 1
x , 1

y ,−x
y ,− y

x} where
x, y are nonzero complex numbers. The semi-orbit is called enumerable if
for all u ∈ O(x, y) there is a v ∈ O(x, y) such that |u + v| ≤ 2 and u

v ∈
O(x, y). In this case it is denoted by O2. For more details see [7].) Collect
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the semi-orbits corresponding to different equations into an enumerable
set O (which is the union of enumerable semi-orbits):

O =
g⋃

i=1

O

(
(u(ji))(i)

(u(ki))(i)
,
(u(li))(i)

(u(ki))(i)

)
.

This must be done in all the
(
4
3

)g
= 4g possible cases.

For each of these 4g enumerable sets now one can apply the enumera-
tion lemma from [7]:

Lemma 1. Let S and s be positive numbers with S > s > 2. Let O

be an enumerable set and suppose that for every u ∈ O we have

1
S
≤ |u| ≤ S.

Then

(1) either for all u ∈ O
1
s
≤ |u| ≤ s

(2) or there is a u ∈ O such that

| log |u| | ≤ 2
s− 2

.

To apply this lemma one needs an initial bound S = S0. This can be
derived using the actual definition of “small” units. Practically we have
a bound A0 on the absolute values of the exponents of the fundamental
units representing a “small” unit. Using this bound one can derive the
expected S0 (for details see [7]).

4. Improvements of the method

4.1. Decreasing the number of enumerable sets. First let us see
what it means if we fix an enumerable semi-orbit using Corollary 1 of [7].
For this purpose let u be a solution of (5), that is

−u(1)

u(4)
− u(2)

u(4)
− u(3)

u(4)
= 1.
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We apply Corollary 2.2 of [7] to this equation with

xi = −u(i)

u(4)
(i = 1, 2, 3).

We obtain that one of the four pairs
(
−u(2)

u(1)
,−u(3)

u(1)

)
,

(
−u(2)

u(4)
,−u(3)

u(4)

)
,

(
−u(1)

u(3)
,−u(4)

u(3)

)
,

(
−u(1)

u(2)
,−u(4)

u(2)

)

say (−u(2)

u(1) ,−u(3)

u(1) ), generates an enumerable semi-orbit. This property is
equivalent to

∣∣∣∣∣−
u(1)

u(3)

∣∣∣∣∣ ≥ 1,

∣∣∣∣∣−
u(2)

u(3)

∣∣∣∣∣ ≥ 1,

∣∣∣∣∣−
u(4)

u(3)

∣∣∣∣∣ ≥ 1

or ∣∣∣u(1)
∣∣∣ ≥

∣∣∣u(3)
∣∣∣ ,

∣∣∣u(2)
∣∣∣ ≥

∣∣∣u(3)
∣∣∣ ,

∣∣∣u(4)
∣∣∣ ≥

∣∣∣u(3)
∣∣∣ . (6)

In other words, fixing a primitive pair is equivalent to fixing an u(i) with
the least absolute value.

In our method we use enumerable sets which are the unions of enu-
merable semi-orbits corresponding to different conjugates of equation (5).
Let O be such an enumerable set:

O =
g⋃

i=1

O2

(
−u(ji)

u(ki)
,− u(li)

u(ki)

)
.

By the above formulas, fixing an enumerable set is equivalent to choos-
ing the unit with smallest absolute value from {(u(1))(i), (u(2))(i), (u(3))(i),
(u(4))(i)} for each i = 1, . . . , g. For every fixed conjugation we obtain a
system of inequalities similar to (6). After combining these inequalities,
we may obtain two conjugates of u – say u(i) and u(j) – appearing in the
same equation

u(i) + u(j) + u(k) + u(l) = 0. (7)
Here

|u(i)| ≥ |u(j)| and |u(j)| ≥ |u(i)|

hold, whence
|u(i)| = |u(j)|.
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Let ε = u(i)

u(j) . Then ε is a unit in ZK (K is the normal closure of K) with
|ε| = 1, so it is a root of unity. However, this means that (7) can be written
as

(1 + ε)u(i) + u(k) + u(l) = 0

which is a unit equation in two unknowns (in homogeneous form). When
u(i) and u(j) are real units then ε = ±1 so (7) reduces either to u(k)+u(l) =
0 or to 2u(j) + u(k) + u(l) = 0. Hence none of these equations can be a
conjugate of (5), so we have a contradiction. This means this O can be
dropped. In Section 5 we detail a numerical example and there one can see
that using this consideration we dropped quarter of the enumerable sets.

4.2. Enumerable sets with small rank. In Section 4 of [7] we defined
the rank of an enumerable set. Let O be a set containing some nontrivial
quotients of the units, that is

O =

{
u(i)

u(j)
|(i, j) ∈ ΓO

}

where ΓO = {(il, jl) | l = 1, . . . , t} is a suitable index set. We shall call ΓO

the index set corresponding to O.

Definition 1. Let O be an enumerable set with corresponding index
set ΓO = {(il, jl) | l = 1, . . . , t}. By the rank of O we mean the dimension
of the vector space spanned by the vectors

ek =




log
∣∣∣∣
ε
(i1)
k

ε
(j1)
k

∣∣∣∣
...

log
∣∣∣∣
ε
(it)
k

ε
(jt)
k

∣∣∣∣




(k = 1, . . . , r).

In that paper the numerical example illustrated what can be expected:
the smaller the rank is, the longer the running time is.

In the following we show how one can substitute a given enumerable
set with four new enumerable sets of rank which is greater than or equal to
the original one’s rank. If all of the four new enumerable sets have greater
ranks then there is a better chance to enumerate the possible solutions in
them in reasonable time.
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Lemma 2. Let u be a solution to (5). Using the first d1 < d conjugates

of (5) construct the 4d1 enumerable sets as in Theorem 4.2 in [7]. Let O

be one of them. Then there are enumerable sets O1, O2, O3, O4 such that

O ⊂
4⋃

i=1

Oi

and Oi has rank greater than or equal to the rank of O for i = 1, . . . , 4.

Proof. Construct the four enumerable semi-orbits by the help of one
of the remaining d − d1 conjugates of equation (5) using Theorem 4.2 of
[7] for a g ∈ {d1 +1, . . . , d}. Let these semi-orbits be O2

1, O
2
2, O

2
3, O

2
4. Then

put

O1 = O ∪O2
1, O2 = O ∪O2

2, O3 = O ∪O2
3, O4 = O ∪O2

4.

It is easy to see that

O ⊂
4⋃

i=1

Oi.

Since in each Oi there are more elements than in O so their ranks are
greater than or equal to the rank of O. ¤

5. A numerical example

We take M1 to be generated by a root of x3 − x2 − 6x + 5 and M2 to
be generated by a root of x3− 9x + 6. One can check that M1 and M2 are
totally real cubic fields, so their unit rank r = 8.

Using the improvements of the method, we computed the “small” so-
lutions of the equation Res(f1, f2) = ±1 where the fi-s are monic polyno-
mials with integer coefficients such that a root of fi generates Mi (i = 1, 2),
and

max(H(f1),H(f2)) ≤ 1085. (8)

As we explained in Section 2, our problem can be reduced to finding the
“small” solutions of the equation

µ(ij) + µ(kl) − µ(il) − µ(jk) = 0



Computing small solutions of unit equations in three variables II 407

with µ(mn) = α(m) − β(n) ∈ (M1)(m)(M2)(n). Since the µ(mn) are conju-
gates of a suitable unit from ZK , this equation is a unit equation in three
variables (in homogeneous form). Thus we obtain

α(i) − β(j) = ±
(
η

(ij)
1

)a1 · · · · ·
(
η

(ij)
8

)a8

where η
(ij)
k is a system of fundamental units of K and ak ∈ Z (k = 1, . . . , 8).

Using standard tools from (8) one can get a bound A0 such that

max
i=1,...,8

(|ai|) ≤ A0.

In this case we have A0 = 200 which is a typical bound in the case of
unit equations in two variables obtained by the help of Baker’s theory and
LLL-reduction due to de Weger. For details see [1].

Now we apply the method as described in Section 3. We take four con-
jugates of the unit equation. This yields 256 enumerable set. In the follow-
ing table we summarize the number of enumerable sets without the recent
improvements (second row), applying the first improvement (Section 4.1,
third row) and applying both improvements of this paper (Sections 4.1
and 4.2, fourth row).

# of e. s. # of e. s. # of e. s. # of e. s. Total Total
of rank 8 of rank 7 of rank 6 of rank 5 # of e. s. CPU
(18m) (36 m) (23 h 20 m) (∞) Time

none 30 145 74 7 256 ∞
4.1 12 109 68 7 196 ∞

4.1+4.2 12 125 70 0 207 72 days

In the first row in the brackets one can find the average CPU time on a
700 MHz Xeon processor of a single enumerable set of the corresponding
rank (∞ stands for too much CPU time), and “e. s.” stands for enumerable
sets.

In the second row one can find the number of enumerable sets using
the method of [7] of the corresponding rank. In the third row one can find
the number of enumerable sets using our first improvement (Section 4.1).
The last row contains the number of enumerable sets using both new im-
provements (Sections 4.1 and 4.2). It is clear from the table that our
improvements are really essential.

We have found two solutions: (f(x), g(x)) = (x3 + x2 − 6x − 5, x3 −
9x + 6) and (x3 + 2x2 − 9x + 5, x3 − 9x + 6).
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INSTITUTE OF MATHEMATICS

UNIVERSITY OF DEBRECEN

H-4010 DEBRECEN, P.O. BOX 12

HUNGARY

E-mail: ijarasi@math.klte.hu

(Received May 5, 2004; revised August 18, 2004)


