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Self-inversive polynomials
whose zeros are on the unit circle
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Dedicated to the memory of Béla Brindza and Jenő Erdős

Abstract. We prove that all zeros of the self-inversive polynomial Pm(z) =∑m
k=0 Akzk ∈ C[z] of degree m ≥ 1 are on the unit circle if

|Am| ≥ 1
2

m−1∑

k=1

|Ak| .

If this inequality is strict the zeros eiul (l = 1, . . . , m) are simple and can be
arranged such that

2((l − 1)π − βm)
m

< ul <
2(lπ − βm)

m
(l = 1, . . . , m)

where βm = arg Am

(
Ā0
Am

) 1
2
.

If equality holds in the above inequality then double zeros may arise, we
discuss when this happens.
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1. Introduction

The first author [3] proved that all zeros of the real reciprocal polyno-
mial

Pm(z) =
m∑

k=0

Akz
k ∈ R[z] (1)

of degree m ≥ 2 (i.e. Ak ∈ R, Am 6= 0 and Ak = Am−k for all k =0,

. . . ,
[

m
2

]
) are on the unit circle, provided that

|Am| ≥
m−1∑

k=1

|Ak −Am|. (2)

Moreover if (2) holds, then all zeros eiuj (j = 1, 2, . . . , m) of Pm can be
arranged such that

∣∣εj − eiuj
∣∣ <

π

m + 1
(j = 1, . . . , m)

where εj = ei j
m+1

2π (j = 1, 2, . . . , m) are the (m + 1)st roots of unity
except 1.

A. Schinzel [8] generalized (the first part of) this result for self-
inversive polynomials. He proved that all zeros of the polynomial

Pm(z) =
m∑

k=0

Akz
k ∈ C[z]

satisfying

Ak ∈ C, Am 6= 0, Am−k = εAk (k = 0, . . . , m)

with a fixed ε ∈ C, |ε| = 1
(3)

are on the unit circle if

|Am| ≥ inf
c,d∈C
|d|=1

m∑

k=0

∣∣∣cAk − dm−kAm

∣∣∣ .

If the inequality is strict the zeros are simple.
Polynomials satisfying (3) are called self-inversive see e.g. [1], [2], [6].
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Lakatos and Losonczi [4] proved that for real reciprocal polynomials
of odd degree Lakatos’ result remains valid even if

|Am| ≥ cos2
π

2(m + 1)

m−1∑

k=1

|Ak −Am|

and conjectured that Schinzel’s result can also be extended similarly (by
inserting the corresponding cos factor, not cos2, in front of the inf sign in
Schinzels’ condition), i.e. for self-inversive polynomials of odd degree

|Am| ≥ cos
π

2(m + 1)
inf

c,d∈C
d|=1

m∑

k=0

|cAk − dm−kAm|

is sufficient for all zeros to lie on the unit circle.
This conjecture was recently proved by Losonczi and Schinzel [5].
We remark that by a classical result of Cohn [2] p. 121, see also The-

orem 2.1.6 of [6], a necessary and sufficient condition for all zeros of a
complex polynomial Pm of degree m to lie on the unit circle is that Pm is
self-inversive and all zeros of P ′

m lie on the closed unit disc.
The aim of this note is to prove a more natural sufficient condition

for a self-inversive polynomial to have all of its zeros on the unit circle.
We also discuss the location and multiplicity of these zeros. In view of
the mentioned Cohn’s result, our sufficient conditions can be reformulated
as sufficient conditions for all zeros of the derivative of a self-inversive
polynomial to lie on the closed unit disc.

2. The main result

Theorem 1. (i) If all zeros of the polynomial Pm(z) =
∑m

k=0 Akz
k ∈

C[z] of degree m ≥ 1 are on the unit circle then Pm is self-inversive.

(ii)-1 If Pm is self-inversive and

|Am| ≥ 1
2

m−1∑

k=1

|Ak| (4)

holds then all zeros of Pm are on the unit circle.
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Let

βm−l = arg Am−l

(
Ā0

Am

) 1
2 (

l = 0, . . . ,
[m

2

])
,

ϕl =
2(lπ − βm)

m
(l = 0, . . . , m),

where
[

m
2

]
denotes the integer part of m

2 .

(ii)-2 If the inequality (4) is strict then there are numbers ul

(l = 1, . . . ,m) such that

ϕl−1 < ul < ϕl (l = 1, . . . , m) (5)

and eiul (l = 1, . . . ,m) are simple zeros of Pm.

(ii)-3 If (4) holds with equality then double zeros may arise. If (4)
holds with equality then eiϕl (1 ≤ l ≤ m) is a zero of Pm if and only if the

coefficients of Pm satisfy the conditions

cos
(
βm−k +

(m

2
− k

)
ϕl

)
= (−1)l+1

for all k = 1, . . . ,
[m

2

]
for which Ak 6= 0.

(6)

If (6) holds then eiϕl is necessarily a double zero of Pm.

Proof. (i) follows from Cohn’s theorem cited in the introduction.
(ii)-1 If A1 = A2 = · · · = Am−1 = 0 then (4) is strict and

Pm(z) = Amzm + A0 = Am

(
zm − A0

Am

)
where

∣∣∣∣
A0

Am

∣∣∣∣ = 1

by the self-inversiveness condition Am = εA0. This shows that all zeros of
Pm are on the unit circle and they are simple.

If there is a subscript k ∈ {1, 2, . . . ,m − 1} such that Ak 6= 0 then
we prove that Pm has no zero inside the unit circle. Then Pm being self-
inversive cannot have any zero outside the unit circle, hence all zeros are
on the unit circle.

Assume on the contrary that Pm has a zero |z0| < 1. Then by an-
other result of Cohn [2] p. 113, Theorem IV, see also [1], Theorem I the
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polynomial

zm−1P ′
m

(
z−1

)
=

m∑

k=1

kAkz
m−k

has the same number of zeros inside the unit circle as Pm. Thus there is a
|z1| < 1 such that

m∑

k=1

kAkz
m−k
1 = 0.

Rearranging, and using (3) we get

2m |Am| =
∣∣∣∣∣2

m−1∑

k=1

kAkz
m−k
1

∣∣∣∣∣ =

∣∣∣∣∣
m−1∑

k=1

kAkz
m−k
1 +

m−1∑

k=1

kεAm−kz
m−k
1

∣∣∣∣∣

≤
m−1∑

k=1

k |Ak| |z1|m−k +
m−1∑

k=1

(m− k) |Ak| |z1|k < m

m−1∑

k=1

|Ak| ,

hence

2 |Am| <
m−1∑

k=1

|Ak|

which contradicts to (4).

(ii)-2 With ε = Am

A0
, Bk = ε−

1
2 Ak, we have Bk = Bm−k (k = 0, . . . , m).

If m = 2n + 1 is odd, z = eiϕ then

ε−
1
2 z−

m
2 Pm(z) =

n∑

k=0

(
Bm−kz

m
2
−k + Bm−kz

m
2
−k

)

=
n∑

k=0

2|Bm−k| cos
(
βm−k +

(m

2
− k

)
ϕ
)

,

where Bk = |Bk|eiβk (k = 0, . . . , m).
For even m = 2n we have

ε−
1
2 z−

m
2 Pm(z) =

n−1∑

k=0

2|Bm−k| cos
(
βm−k +

(m

2
− k

)
ϕ
)

+ |Bn| cosβn,

where βn = 0 or π as Bn is real.
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Denoting ε−
1
2

2|Bm|z
−m

2 Pm(z) at z = eiϕ by Fm(ϕ) we have

Fm(ϕ) = cos
(
βm +

m

2
ϕ
)

+ fm(ϕ),

where

fm(ϕ) =





n∑
k=1

∣∣∣∣
Bk

Bm

∣∣∣∣ cos
(
βm−k +

(m

2
− k

)
ϕ
)

if m = 2n + 1,

n−1∑
k=1

∣∣∣∣
Bk

Bm

∣∣∣∣ cos
(
βm−k +

(m

2
− k

)
ϕ
)

+
∣∣∣∣

Bn

2Bm

∣∣∣∣ cosβn

if m = 2n.

Parallel to this rewrite (4) as

1 ≥





n∑
k=1

∣∣∣∣
Bk

Bm

∣∣∣∣ if m = 2n + 1,

n−1∑
k=1

∣∣∣∣
Bk

Bm

∣∣∣∣ +
∣∣∣∣

Bn

2Bm

∣∣∣∣ if m = 2n.

(7)

It follows from (4) that |fm(ϕ)| ≤ 1 with strict inequality if (4) holds with
strict inequality.

Let us consider m + 1 numbers

ϕl =
2(lπ − βm)

m
(l = 0, . . . ,m)

satisfying
cos

(
βm +

m

2
ϕl

)
= (−1)l (l = 0, . . . ,m).

If (4) holds with strict inequality then |fm(ϕ)| < 1 hence for l = 0, . . . , m

Fm(ϕl) = (−1)l + fm(ϕl)
> 0 if l is even,

< 0 if l is odd.

By the intermediate value theorem each open interval ]ϕl−1, ϕl[ (l = 1,

. . . ,m) contains at least one zero ul of Fm, which means that eiul (l =
1, . . . ,m) are zeros of Pm. Clearly each open interval can contain only
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one simple zero, otherwise the sum of the multiplicities of all zeros would
exceed m. This proves (ii)-2 as

βm = arg Bm = arg Am

(
Ā0

Am

) 1
2

.

(ii)-3 Assume that equality holds in (4). Then equality holds in (7)
too. By (7) the equation

Fm(ϕl) = (−1)l + fm(ϕl) = 0 (8)

can be written as

Fm(ϕl) =
[m

2 ]∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣
[
cos

(
βm−k +

(m

2
− k

)
ϕl

)
+ (−1)l

]
= 0, (9)

provided that m = 2n+1 is odd. For the even case m = 2n the calculations
are similar and the conclusions are the same, thus in the sequel we restrict
ourselves to the case of odd degree. Since

cos
(
βm−k +

(m

2
− k

)
ϕl

)
+ (−1)l

≥ 0 if l is even,

≤ 0 if l is odd,

we conclude that ϕl (1 ≤ l ≤ m) is a zero of Fm (or eiϕl (1 ≤ l ≤ m) is a
zero of Pm, or (8), or (9) holds) if and only if

cos
(
βm−k +

(m

2
− k

)
ϕl

)
= (−1)l+1 for all k = 1, . . . ,

[m

2

]

for which Bk 6= 0 or Ak 6= 0.

(10)

If (10) holds then

F ′
m(ϕl) = −m

2
sin

(
βm +

m

2
ϕl

)

−
n∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣
(m

2
− k

)
sin

(
βm−k +

(m

2
− k

)
ϕl

)
= 0,
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F ′′
m(ϕl) = −

(m

2

)2
cos

(
βm +

m

2
ϕl

)

−
n∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣
(m

2
− k

)2
cos

(
βm−k +

(m

2
− k

)
ϕl

)

= −
(m

2

)2
(−1)l −

n∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣
(m

2
− k

)2
(−1)l+1

= (−1)l+1
n∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣
[(m

2

)2
−

(m

2
− k

)2
]

= (−1)l+1
n∑

k=1

∣∣∣∣
Bk

Bm

∣∣∣∣ (m− k)k 6= 0,

as by (7) there is at least one subscript k ∈ {1, . . . ,
[

m
2

]} with Bk 6= 0.
This implies that the multiplicity of the zero ϕl (1 ≤ l ≤ m) of Fm is two.
This completes the proof of (ii)-3. ¤

The next corollary of Theorem 1, statement (ii)-1 was communicated
to us by A. Schinzel and it appears here with his permission. For real
polynomials this is known, see [7], Lemma 14.

Corollary 1 (A. Schinzel). If P (z) =
∑m

k=0 Akz
k ∈ C[z] \ {0} and

|Am|+ |A0| ≥
m−1∑

k=1

|Ak| (11)

then all common zeros of P (z) and Q(z) =
∑m

k=0 Am−kz
k have modulus 1.

Proof. Without loss of generality we may assume that A0Am 6= 0.
Taking

ε =
|A0|Am

A0 |Am|
and applying Theorem 1 to the self-inversive polynomial P (z) + εQ(z) =
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∑m
k=0

(
Ak + εAm−k

)
zk we have by (11)

2
∣∣Am + εA0

∣∣ = 2 |Am|+ 2 |A0|

≥
m−1∑

k=1

(|Ak|+ |Am−k|) ≥
m−1∑

k=1

∣∣Ak + εAm−k

∣∣

hence by Theorem 1, P (z)+εQ(z) has all zeros on the unit circle and thus
all common zeros of P and Q have the same property. ¤

Remark 1. It is easy to check that for m = 2 condition (4) is not just
sufficient but also necessary for all zeros to lie on the unit circle.

Remark 2. The sufficient condition (4) is best possible in the following
sense. If m ≥ 2 ,am = a0 > 0, a1, . . . , am−1 ≤ 0 are given real numbers
such that

|am| < 1
2

m−1∑

k=1

|ak|

then for the polynomial pm(z) =
∑m

k=0 akz
k we have pm(0) > 0, pm(1) < 0

thus pm does not have all of its zeros on the unit circle.

3. Multiple zeros

From Theorem 1 it follows that multiple zeros are possible only if
equality holds in (4).

Lemma 1. Assume that (4) holds with equality. If eiϕl (1 ≤ l ≤ m)
is a (necessarily double) zero of Pm then eiϕl±1 cannot be a (necessarily

double) zero (where ϕm+1 = ϕ1 should be taken).

Proof. If m = 2 then Pm can have at most one double zero so our
claim clearly holds. Assuming that m > 2 and (10) holds for l, l ± 1 we
get

cos
(
βm−k +

(m

2
− k

)
ϕl

)
= (−1)l+1,

cos
(
βm−k +

(m

2
− k

)
ϕl±1

)
= (−1)l
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at least for one 1 ≤ k ≤ [
m
2

]
. Hence

(−1)l = cos
(
βm−k +

(m

2
− k

)
ϕl±1

)

= cos
(
βm−k +

(m

2
− k

)
ϕl

)
cos

2π

m
= (−1)l+1 cos

2π

m

i.e. cos 2π
m = −1 which contradicts to m > 2, completing the proof. ¤

Lemma 2. Assume that (4) holds with equality. If eiϕl , eiϕl±1 (1 ≤
l ≤ m) are not (double) zeros of Pm then there is at least one zero eiul of

Pm such that ul is strictly between ϕl and ϕl±1.

Proof. Namely in this case Fm(ϕl) 6= 0, Fm(ϕl±1) 6= 0 thus

Fm(ϕl) 6= 0 and (−1)lFm(ϕl) = 1 + (−1)lfm(ϕl) ≥ 0

imply that (−1)lFm(ϕl) > 0. Arguing similarly we get that
(−1)l±1Fm(ϕl±1) > 0 therefore

sgn Fm(ϕl) 6= sgn Fm(ϕl±1).

By the intermediate value theorem there is at least one zero ul of Fm

strictly between ϕl and ϕl±1 and eiul is a zero of Pm. ¤

Let J∗ denote the set of all subscripts l (1 ≤ l ≤ m) for which (10)
holds i.e. for which eiϕl (1 ≤ l ≤ m) is a (double) zero of Pm. Multiple
zeros can arise only if equality holds in (4) and J∗ in nonempty. In this
case two neighboring simple zeros pull together and become a double zero
at eiϕl with l ∈ J∗. To be more precise we have

Theorem 2. Assume that Pm(z) =
∑m

k=0 Akz
k ∈ C[z] is a self-

inversive polynomial of degree m ≥ 1 for which (4) holds with equality.

(j) If J∗ = ∅ then the zeros eiul (l = 1, . . . , m) of Pm are simple and

can be arranged such that

ϕl−1 < ul < ϕl (l = 1, . . . ,m).

(jj) If J∗ = {l1 < l2 < · · · < lp} (p ≥ 1) is nonempty then for p ≥ 2 we

have lj+1 − lj ≥ 2 (1 ≤ j ≤ p − 1), if l1 = 1 then lp 6= m, if lp = m then

l1 6= 1.
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Each closed arc Arcj = { eiϕ | ϕ ∈ [ϕlj−1, ϕlj+1] } (j = 1, . . . , p) of the

unit circle contains the double zero e
iϕlj (j = 1, . . . , p) as its midpoint.

All those open arcs { eiϕ | ϕ ∈ ]ϕj−1, ϕj [ } (j = 1, . . . ,m) which have

no common points with any arcs Arcj contain one simple zero eiuj .

There are no other zeros of Pm than those listed above.

Proof. (j) follows from Lemma 2 taking eiϕl−1 , eiϕl (1 ≤ l ≤ m)
which are not (double) zeros of Pm.

The first statement of (jj) follows from Lemma 1, the existence of the
zeros eiuj follows from Lemma 2 as eiϕj−1 , eiϕj (j = 1, . . . , m) cannot be
zeros of Pm.

Each open arc contains just one simple zero eiuj , otherwise the sum
of the multiplicities of all zeros would exceed m. Since the sum of the
multiplicities of the double and simple zeros described in (jj) is m, no
other zeros are possible. ¤

Remark 3. We can get a new proof of Theorem 1 (ii)-1 in the following
way. Assume that (4) holds. Then the proof of (ii)-2, (ii)-3 (of Theorem 1)
and (j), (jj) (of Theorem 2) remains valid. Counting the zeros (with mul-
tiplicities) on the unit circle we get m, thus all zeros of Pm have to be on
the unit circle.
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