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Power classes of recurrence sequences
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Abstract. A linear recursive sequence G of order k is defined by the inte-
ger initial terms G0, G1, . . . , Gk−1, integer constants A1, A2, . . . , Ak and by the
recursion Gn = A1Gn−1 + · · · + AkGn−k for k ≤ n. In the case k = 2, G0 = 0,
G1 = 1 (when we denote the sequence by R) it is known that there are only finitely
many perfect powers in such sequences. Ribenboim and McDaniel investigated
the so called square-classes. We say that Rm and Rn is the same square-class if
RmRn = t2 for some integer t. They proved that every square-class is finite. For
a general sequence we investigate a similar problem, we show that the equation
Gr

xGq−r
y = wq, under some restrictions, has no (x, y, w, q) solutions if q is large

enough depending on some parameters.

Let R = R(A,B, R0, R1) be a second order linear recursive sequence
defined by

Rn = ARn−1 + BRn−2 (n > 1),

where A, B, R0 and R1 are fixed rational integers. In the sequel we assume
that the sequence is not a degenerate one, i.e. α/β is not a root of unity,
where α and β denote the roots of the polynomial x2 −Ax−B.
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The special cases R(1, 1, 0, 1) and R(2, 1, 0, 1) of the sequence R is
called Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and pure
powers. For the Fibonacci sequence Cohn [2] and Wylie [24] showed that
a Fibonacci number Fn is a square only when n = 0, 1, 2 or 12. Pethő

[13] and furthermore London and Finkelstein [10], [11] proved that Fn

is full cube only if n = 0, 1, 2 or 6. From a result of Ljunggren [9] it
follows that a Pell number is a square only if n = 0, 1 or 7 and Pethő [13]
showed that these are the only perfect powers in the Pell sequence. Similar,
but more general results was showed by McDaniel and Ribenboim [12],
Robbins [20] [21], Cohn [3]–[5] and Pethő [16]. Shorey and Stewart

[22] proved that any non degenerate binary recurrence sequence contains
only finitely many pure powers which can be effectively determined. This
results follows also from a result of Pethő [15].

Another type of problems was studied by Ribenboim and McDaniel.
For a sequence R we say that the terms Rm, Rn are in the same square-
class if there exist non zero integers x, y such that

Rmx2 = Rny2.

or equivalently
RmRn = t2,

where t is a positive rational integer.
A square-class is called trivial if it contains only one element. Riben-

biom [17] proved that in the Fibonacci sequence the square-class of a
Fibonacci number Fm is trivial, if m 6= 1, 2, 3, 6 or 12 and for the Lucas
sequence L(1, 1, 2, 1) the square-class of a Lucas number Lm is trivial if
m 6= 0, 1, 3 or 6. For more general sequences R(A, B, 0, 1), with (A,B) = 1,
Ribenboim and McDaniel [18] obtained that each square class is finite
and its elements can be effectively computable (see also Ribenboim [19]).

Further on we shall study more general recursive sequences.
Let G = G(A1, . . . , Ak, G0, . . . , Gk−1) be a kth order linear recursive

sequence of rational integers defined by

Gn = A1Gn−1 + A2Gn−2 + · · ·+ AkGn−k (n > k − 1),

where A1, . . . , Ak and G0, . . . , Gk−1 are not all zero integers. Denote by
α = α1, α2, . . . , αs the distinct zeros of the polynomial xk − A1x

k−1 −
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A2x
k−2−· · ·−Ak. Assume that α, α2, . . . , αs has multiplicity 1,m2, . . . ,ms

respectively and |α| > |αi| for i = 2, . . . , s. In this case, as it is known, the
terms of the sequence can be written in the form

Gn = aαn + r2(n)αn
2 + · · ·+ rs(n)αn

s (n ≥ 0), (1)

where ri’s (i = 2, . . . , s) are polynomials of degree mi − 1 and the coeffi-
cients of the polynomials and a are elements of the algebraic number field
Q(α, α2, . . . , αs). Shorey and Stewart [22] prowed that the sequence G

does not contain qth powers if q is large enough. This result follows also
from [7] and [23], where more general theorems was showed.

Kiss [6] generalize the square-class notion of Ribenboim and Mc-
Daniel. Let q and r be fixed natural numbers with the condition 0 < r < q

and q ≥ 2. For a sequence G we say that the terms Gm and Gn are in the
same (q, r) power-class if there is an integer w such that

Gr
nGq−r

m = wq.

It can be easily seen that this relation is an equivalence relation; it
is reflexive, symmetric and transitive. In the above mentioned paper Kiss
proved that the equation

Gr
nGq−r

x = wq

has no solutions x, w, q, r if x > n and q > q0(n,G). In the followings we
shall show a more general result.

Theorem. Let G be a kth order linear recursive sequence satisfying

the above conditions. α /∈ Z. Moreover we assume that 1
K < x

y < K,

(q, r) = 1 and δq ≤ r < q, where K > 1 and 0 < δ < 1
2 are fixed

numbers. Then there exists a number q0, depending on G, K, δ, such that

the equation

Gr
xGq−r

y = wq (2)

in positive integer x, y, w, q, r has no solution with x 6= y, w > 1 and

q > q0.

We use the following results in the proof.

Lemma 1 (A. Baker [1]). Let γ1, . . . , γv be non-zero algebraic num-

bers. Let M1, . . . , Mv be upper bounds for the heights of γ1, . . . , γv, re-

spectively. We assume that Mv is at least 4. Further let b1, . . . , bv−1 be
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rational integers with absolute values at most B and let bv be a non-zero

rational integer with absolute value at most B′. We assume that B′ is at

least three. Let L defined by

L = b1 log γ1 + · · ·+ bv log γv,

where the logarithms are assumed to have their principal values. If L 6= 0,

then

|L| > exp(−C(log B′ log Mv + B/B′)),

where C is an effectively computable positive number depending only on

the numbers M1, . . . ,Mv−1, and v (see Theorem 1 of [1] with δ = 1/B′).

Lemma 2 (P. Kiss [8]). Let G be a linear recurrence defined above

satisfying the condition Gn 6= aαn for n ≥ n0 If

Gr
xGq−r

y = wq

for positive integers x, y, q and r with the condition (q, r) = 1 and y < n1,

then q < q1, where q1 is a constant depending on G, n0 and n1, but does

not depend on r.

Proof. Proof the Theorem Lemma 2 implies the assertion of the The-
orem if x or y is bounded. We can assume, without loss of generality, that
the terms Gn are positive and the sequence is increasing. Since r and q−r

can be inverted in the Theorem and the symmetry is valid we can assume
that x > y. Let c1, c2, . . . be positive numbers which depend on G, K

and δ. Because of (1), Gn can be written in the form:

Gn = aαn

(
1 +

1
a
r2(n)

(
al2
α

)n

+
1
a
r3(n)

(
α3

α

)n

+ · · ·+ 1
a
rs(n)

(
αs

α

)n)
= aαn(1 + εn)

(3)

where limn→∞ εn = 0 since |αi| < |α| for 2 ≤ i ≤ s.
Let x, y, w, q, r be positive integers satisfying (2) with the above

conditions. From (2)we get the equation

Gq
x

(
Gy

Gx

)q−r

= wq.
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By x > y it is obvious that Gq
x > wq and so Gx > w. Using the previous

inequality and (3) we have log w < c1x.
Similarly it follows that Gq

y < wq and log w > c2y > c3x. In this way
we obtain that

c3x < log w < c1x. (4)

The equation (2) can be written in the form
(

Gx

Gy

)r

=
(

w

Gy

)q

. (5)

Since (q, r) = 1 we obtain from (5) that

Gx

Gy
=

(v

z

)q
v, z ∈ Z, (6)

where
v

z
=

(
w

Gy

) 1
r

. (7)

Using equations (3) and (6) we get

αx−yzq

vq
=

1 + εy

1 + εx
. (8)

Recalling that | log(1 + x)| ≤ x and | log(1 − x)| ≤ 2x for 0 ≤ x < 1
2 and

using our assumption that x
y < K we find that

∣∣∣∣
1 + εy

1 + εx

∣∣∣∣ < exp(−c4x). (9)

if x, y are sufficiently large.
Put

L =
∣∣∣∣log

αx−yzq

vq

∣∣∣∣ =
∣∣∣(x− y) log α− q log

v

z

∣∣∣

and employ the Lemma with v = 2, B′ = q, B = x−y and M2 = w
1
r since

it follows from (7) that v
z > 1 and v = w

1
r .

We suppose that (v

z

)q
= αx−y,
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moreover, we may assume that α /∈ Z. Let α′ 6= α be any conjugate of α

and let ϕ be an automorphism of Q with ϕ(α) = α′. Then |α′| < |α|, since
α is a dominating root. We have

αx−y = ϕ(αx−y).

Which is obviously impossible.
Hence L 6= 0 since x 6= y. Thus, by the lemma

L > exp
(
−c5

(
log q log w

1
r +

x− y

q

))
. (10)

Using (4), (9) and (10) we get the inequalities

c4x <
c5

r
log q log w + c5

x− y

q
<

c5

r
log q log w + c6

x

q

<
c5

r
log q log w + c7

log w

q
<

c8

r
log q log w.

(11)

By (4) and (11) we obtain

c9r log w < log q log w

and by r > δq we have
c10q < log q,

which is impossible if q > q0. ¤

Remark. In the theorem we suppose that α /∈ Z. This condition is
necessary. Imre Ruzsa gave the following example. If

G2n−1 = 22n−1 + 1, G2n = 22n + 2n,

then the characteristic polynomial is (x − 2)(x2 − 2)(x2 − 1) and α = 2.
We have

G4n−2

G2n−1
= 22n−1

that is there are infinitely many q-th power in this case.
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Theory, Akadémiai Kiadó, Budapest, 1981, 1217–1227.

[17] P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Portugaliae Math.
46 (1989), 159–175.

[18] P. Ribenboim and W. L. McDaniel, Square classes of Fibonacci and Lucas se-
quences, Portugaliae Math. 48 (1991), 469–473.

[19] P. Ribenboim, Square classes of (an − 1)/(a − 1) and an + 1, Sichuan Daxue
Xunebar. 26 (1989), 196–199.

[20] N. Robbins, On Fibonacci numbers of the form px2, where p is prime, Fibonacci
Quart. 21 (1983), 266–271.

[21] N. Robbins, On Pell numbers of the form PX2, where P is prime, all, Fibonacci
Quart. 22 (1984), 340–348.



428 K. Liptai and L. Szalay : Power classes of recurrence sequences

[22] T. N. Shorey and C. L. Stewart, On the Diophantine equation
ax2t + bxty + cy2 = d and pure powers in recurrence sequences, Math. Scand. 52
(1983), 24–36.

[23] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some
related Diophantine equations, J. Number Theory 27 (1987), 324–352.

[24] O. Wylie, In the Fibonacci series F1 = 1, F2 = 1, Fn+1 = Fn + Fn−1 the first,
second and twelvth terms are squares, Amer. Math. Monthly 71 (1964), 220–222.
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