Publ. Math. Debrecen
65/3-4 (2004), 421-428

Power classes of recurrence sequences

By KÁLMÁN LIPTAI (Eger) and LÁSZLÓ SZALAY (Sopron)

To the memory of Professor Béla Brindza

Abstract

A linear recursive sequence G of order k is defined by the integer initial terms $G_{0}, G_{1}, \ldots, G_{k-1}$, integer constants $A_{1}, A_{2}, \ldots, A_{k}$ and by the recursion $G_{n}=A_{1} G_{n-1}+\cdots+A_{k} G_{n-k}$ for $k \leq n$. In the case $k=2, G_{0}=0$, $G_{1}=1$ (when we denote the sequence by R) it is known that there are only finitely many perfect powers in such sequences. Ribenboim and McDaniel investigated the so called square-classes. We say that R_{m} and R_{n} is the same square-class if $R_{m} R_{n}=t^{2}$ for some integer t. They proved that every square-class is finite. For a general sequence we investigate a similar problem, we show that the equation $G_{x}^{r} G_{y}^{q-r}=w^{q}$, under some restrictions, has no (x, y, w, q) solutions if q is large enough depending on some parameters.

Let $R=R\left(A, B, R_{0}, R_{1}\right)$ be a second order linear recursive sequence defined by

$$
R_{n}=A R_{n-1}+B R_{n-2} \quad(n>1),
$$

where A, B, R_{0} and R_{1} are fixed rational integers. In the sequel we assume that the sequence is not a degenerate one, i.e. α / β is not a root of unity, where α and β denote the roots of the polynomial $x^{2}-A x-B$.

[^0]The special cases $R(1,1,0,1)$ and $R(2,1,0,1)$ of the sequence R is called Fibonacci and Pell sequence, respectively.

Many results are known about relationship of the sequences R and pure powers. For the Fibonacci sequence Cohn [2] and Wylie [24] showed that a Fibonacci number F_{n} is a square only when $n=0,1,2$ or 12 . Pethő [13] and furthermore LONDON and Finkelstein [10], [11] proved that F_{n} is full cube only if $n=0,1,2$ or 6 . From a result of LJUngGren [9] it follows that a Pell number is a square only if $n=0,1$ or 7 and Pethő [13] showed that these are the only perfect powers in the Pell sequence. Similar, but more general results was showed by McDaniel and Ribenboim [12], Robbins [20] [21], Cohn [3]-[5] and Pethő [16]. Shorey and Stewart [22] proved that any non degenerate binary recurrence sequence contains only finitely many pure powers which can be effectively determined. This results follows also from a result of PETHŐ [15].

Another type of problems was studied by Ribenboim and McDaniel. For a sequence R we say that the terms R_{m}, R_{n} are in the same squareclass if there exist non zero integers x, y such that

$$
R_{m} x^{2}=R_{n} y^{2}
$$

or equivalently

$$
R_{m} R_{n}=t^{2}
$$

where t is a positive rational integer.
A square-class is called trivial if it contains only one element. RIBENBIOM [17] proved that in the Fibonacci sequence the square-class of a Fibonacci number F_{m} is trivial, if $m \neq 1,2,3,6$ or 12 and for the Lucas sequence $L(1,1,2,1)$ the square-class of a Lucas number L_{m} is trivial if $m \neq 0,1,3$ or 6 . For more general sequences $R(A, B, 0,1)$, with $(A, B)=1$, Ribenboim and McDaniel [18] obtained that each square class is finite and its elements can be effectively computable (see also Ribenboim [19]).

Further on we shall study more general recursive sequences.
Let $G=G\left(A_{1}, \ldots, A_{k}, G_{0}, \ldots, G_{k-1}\right)$ be a $k^{\text {th }}$ order linear recursive sequence of rational integers defined by

$$
G_{n}=A_{1} G_{n-1}+A_{2} G_{n-2}+\cdots+A_{k} G_{n-k} \quad(n>k-1)
$$

where A_{1}, \ldots, A_{k} and G_{0}, \ldots, G_{k-1} are not all zero integers. Denote by $\alpha=\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ the distinct zeros of the polynomial $x^{k}-A_{1} x^{k-1}-$
$A_{2} x^{k-2}-\cdots-A_{k}$. Assume that $\alpha, \alpha_{2}, \ldots, \alpha_{s}$ has multiplicity $1, m_{2}, \ldots, m_{s}$ respectively and $|\alpha|>\left|\alpha_{i}\right|$ for $i=2, \ldots, s$. In this case, as it is known, the terms of the sequence can be written in the form

$$
\begin{equation*}
G_{n}=a \alpha^{n}+r_{2}(n) \alpha_{2}^{n}+\cdots+r_{s}(n) \alpha_{s}^{n} \quad(n \geq 0), \tag{1}
\end{equation*}
$$

where r_{i} 's $(i=2, \ldots, s)$ are polynomials of degree $m_{i}-1$ and the coefficients of the polynomials and a are elements of the algebraic number field $\mathbb{Q}\left(\alpha, \alpha_{2}, \ldots, \alpha_{s}\right)$. Shorey and Stewart [22] prowed that the sequence G does not contain $q^{\text {th }}$ powers if q is large enough. This result follows also from [7] and [23], where more general theorems was showed.

Kiss [6] generalize the square-class notion of Ribenboim and McDaniel. Let q and r be fixed natural numbers with the condition $0<r<q$ and $q \geq 2$. For a sequence G we say that the terms G_{m} and G_{n} are in the same (q, r) power-class if there is an integer w such that

$$
G_{n}^{r} G_{m}^{q-r}=w^{q} .
$$

It can be easily seen that this relation is an equivalence relation; it is reflexive, symmetric and transitive. In the above mentioned paper Kiss proved that the equation

$$
G_{n}^{r} G_{x}^{q-r}=w^{q}
$$

has no solutions x, w, q, r if $x>n$ and $q>q_{0}(n, G)$. In the followings we shall show a more general result.

Theorem. Let G be a $k^{\text {th }}$ order linear recursive sequence satisfying the above conditions. $\alpha \notin \mathbb{Z}$. Moreover we assume that $\frac{1}{K}<\frac{x}{y}<K$, $(q, r)=1$ and $\delta q \leq r<q$, where $K>1$ and $0<\delta<\frac{1}{2}$ are fixed numbers. Then there exists a number q_{0}, depending on G, K, δ, such that the equation

$$
\begin{equation*}
G_{x}^{r} G_{y}^{q-r}=w^{q} \tag{2}
\end{equation*}
$$

in positive integer x, y, w, q, r has no solution with $x \neq y, w>1$ and $q>q_{0}$.

We use the following results in the proof.
Lemma 1 (A. Baker [1]). Let $\gamma_{1}, \ldots, \gamma_{v}$ be non-zero algebraic numbers. Let M_{1}, \ldots, M_{v} be upper bounds for the heights of $\gamma_{1}, \ldots, \gamma_{v}$, respectively. We assume that M_{v} is at least 4. Further let b_{1}, \ldots, b_{v-1} be
rational integers with absolute values at most B and let b_{v} be a non-zero rational integer with absolute value at most B^{\prime}. We assume that B^{\prime} is at least three. Let L defined by

$$
L=b_{1} \log \gamma_{1}+\cdots+b_{v} \log \gamma_{v}
$$

where the logarithms are assumed to have their principal values. If $L \neq 0$, then

$$
|L|>\exp \left(-C\left(\log B^{\prime} \log M_{v}+B / B^{\prime}\right)\right)
$$

where C is an effectively computable positive number depending only on the numbers M_{1}, \ldots, M_{v-1}, and v (see Theorem 1 of [1] with $\delta=1 / B^{\prime}$).

Lemma 2 (P. Kiss [8]). Let G be a linear recurrence defined above satisfying the condition $G_{n} \neq a \alpha^{n}$ for $n \geq n_{0}$ If

$$
G_{x}^{r} G_{y}^{q-r}=w^{q}
$$

for positive integers x, y, q and r with the condition $(q, r)=1$ and $y<n_{1}$, then $q<q_{1}$, where q_{1} is a constant depending on G, n_{0} and n_{1}, but does not depend on r.

Proof. Proof the Theorem Lemma 2 implies the assertion of the Theorem if x or y is bounded. We can assume, without loss of generality, that the terms G_{n} are positive and the sequence is increasing. Since r and $q-r$ can be inverted in the Theorem and the symmetry is valid we can assume that $x>y$. Let c_{1}, c_{2}, \ldots be positive numbers which depend on G, K and δ. Because of (1), G_{n} can be written in the form:

$$
\begin{align*}
G_{n}=a \alpha^{n}(1 & +\frac{1}{a} r_{2}(n)\left(\frac{a l_{2}}{\alpha}\right)^{n}+\frac{1}{a} r_{3}(n)\left(\frac{\alpha_{3}}{\alpha}\right)^{n} \\
& \left.+\cdots+\frac{1}{a} r_{s}(n)\left(\frac{\alpha_{s}}{\alpha}\right)^{n}\right)=a \alpha^{n}\left(1+\varepsilon_{n}\right) \tag{3}
\end{align*}
$$

where $\lim _{n \rightarrow \infty} \varepsilon_{n}=0$ since $\left|\alpha_{i}\right|<|\alpha|$ for $2 \leq i \leq s$.
Let x, y, w, q, r be positive integers satisfying (2) with the above conditions. From (2)we get the equation

$$
G_{x}^{q}\left(\frac{G_{y}}{G_{x}}\right)^{q-r}=w^{q}
$$

By $x>y$ it is obvious that $G_{x}^{q}>w^{q}$ and so $G_{x}>w$. Using the previous inequality and (3) we have $\log w<c_{1} x$.

Similarly it follows that $G_{y}^{q}<w^{q}$ and $\log w>c_{2} y>c_{3} x$. In this way we obtain that

$$
\begin{equation*}
c_{3} x<\log w<c_{1} x \tag{4}
\end{equation*}
$$

The equation (2) can be written in the form

$$
\begin{equation*}
\left(\frac{G_{x}}{G_{y}}\right)^{r}=\left(\frac{w}{G_{y}}\right)^{q} . \tag{5}
\end{equation*}
$$

Since $(q, r)=1$ we obtain from (5) that

$$
\begin{equation*}
\frac{G_{x}}{G_{y}}=\left(\frac{v}{z}\right)^{q} \quad v, z \in \mathbb{Z} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\frac{v}{z}=\left(\frac{w}{G_{y}}\right)^{\frac{1}{r}} \tag{7}
\end{equation*}
$$

Using equations (3) and (6) we get

$$
\begin{equation*}
\frac{\alpha^{x-y} z^{q}}{v^{q}}=\frac{1+\varepsilon_{y}}{1+\varepsilon_{x}} . \tag{8}
\end{equation*}
$$

Recalling that $|\log (1+x)| \leq x$ and $|\log (1-x)| \leq 2 x$ for $0 \leq x<\frac{1}{2}$ and using our assumption that $\frac{x}{y}<K$ we find that

$$
\begin{equation*}
\left|\frac{1+\varepsilon_{y}}{1+\varepsilon_{x}}\right|<\exp \left(-c_{4} x\right) \tag{9}
\end{equation*}
$$

if x, y are sufficiently large.
Put

$$
L=\left|\log \frac{\alpha^{x-y} z^{q}}{v^{q}}\right|=\left|(x-y) \log \alpha-q \log \frac{v}{z}\right|
$$

and employ the Lemma with $v=2, B^{\prime}=q, B=x-y$ and $M_{2}=w^{\frac{1}{r}}$ since it follows from (7) that $\frac{v}{z}>1$ and $v=w^{\frac{1}{r}}$.

We suppose that

$$
\left(\frac{v}{z}\right)^{q}=\alpha^{x-y}
$$

moreover, we may assume that $\alpha \notin \mathbb{Z}$. Let $\alpha^{\prime} \neq \alpha$ be any conjugate of α and let φ be an automorphism of $\overline{\mathbb{Q}}$ with $\varphi(\alpha)=\alpha^{\prime}$. Then $\left|\alpha^{\prime}\right|<|\alpha|$, since α is a dominating root. We have

$$
\alpha^{x-y}=\varphi\left(\alpha^{x-y}\right) .
$$

Which is obviously impossible.
Hence $L \neq 0$ since $x \neq y$. Thus, by the lemma

$$
\begin{equation*}
L>\exp \left(-c_{5}\left(\log q \log w^{\frac{1}{r}}+\frac{x-y}{q}\right)\right) . \tag{10}
\end{equation*}
$$

Using (4), (9) and (10) we get the inequalities

$$
\begin{align*}
c_{4} x & <\frac{c_{5}}{r} \log q \log w+c_{5} \frac{x-y}{q}<\frac{c_{5}}{r} \log q \log w+c_{6} \frac{x}{q} \\
& <\frac{c_{5}}{r} \log q \log w+c_{7} \frac{\log w}{q}<\frac{c_{8}}{r} \log q \log w . \tag{11}
\end{align*}
$$

By (4) and (11) we obtain

$$
c_{9} r \log w<\log q \log w
$$

and by $r>\delta q$ we have

$$
c_{10} q<\log q,
$$

which is impossible if $q>q_{0}$.
Remark. In the theorem we suppose that $\alpha \notin \mathbb{Z}$. This condition is necessary. Imre Ruzsa gave the following example. If

$$
G_{2 n-1}=2^{2 n-1}+1, \quad G_{2 n}=2^{2 n}+2^{n},
$$

then the characteristic polynomial is $(x-2)\left(x^{2}-2\right)\left(x^{2}-1\right)$ and $\alpha=2$. We have

$$
\frac{G_{4 n-2}}{G_{2 n-1}}=2^{2 n-1}
$$

that is there are infinitely many q-th power in this case.
Acknowledgements. The authors are grateful to Professors Béla Brindza, Péter Kiss and Imre Ruzsa their valuable remarks.

References

[1] A. Baker, A sharpening of the bounds for linear forms in logarithms II, Acta Arithm. 24 (1973), 33-36.
[2] J. H. E. Cohn, On square Fibonacci numbers, J. London Math. Soc. 39 (1964), 537-540.
[3] J. H. E. Cohn, Squares in some recurrent sequences, Pacific J. Math. 41 (1972), 631-646.
[4] J. H. E. Cohn, Eight Diophantine equations, Proc. London Math. Soc. 16 (1966), 153-166.
[5] J. H. E. Cohn, Five Diophatine equations, Math. Scand. 21 (1967), 61-70.
[6] P. Kiss, Power classes in recurrence sequences, Acta Acad. Paed. Agriensis 22 (1994), 55-60.
[7] P. KISS, Differences of the terms of linear recurrences, Studia Sci. Math. Hungar. 20 (1985), 285-293.
[8] P. Kiss, On a problem concerning perfect powers in linear recurrences, Acta Acad. Paed. Agriensis, sect. Math. 26 (1999), 25-30.
[9] W. Ljunggren, Zur Theorie der Gleichung $x^{2}+1=D y^{4}$, Arh. Norske Vid Akad. Oslo 5 (1942).
[10] J. London and R. Finkelstein, On Fibonacci and Lucas numbers which are perfect powers, Fibonacci Quart. 7 (1969), 476-481, 487, Errata ibid 8 (1970) 248.
[11] J. London and R. Finkelstein, On Mordell's equation $y^{2}-k=x^{3}$, Bowling Green University Press, 1973.
[12] W. L. McDaniel and P. Ribenboim, Squares and double-squares in Lucas sequences, C. R. Math. Acad. Sci. Soc. R. Canada 14 (1992), 104-108.
[13] A. Pethő, Full cubes in the Fibonacci sequence, Publ. Math. Debrecen 30 (1983), 117-127.
[14] A. Pethő, The Pell sequence contains only trivial perfect powers, all Coll. Math. Soc. J. Bolyai, 60 sets, Graphs and Numbers, Budapest, 1991, 561-568.
[15] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory 15 (1982), 5-13.
[16] A. Pethő, Perfect powers in second order recurrences, Topics in Classical Number Theory, Akadémiai Kiadó, Budapest, 1981, 1217-1227.
[17] P. Ribenboim, Square classes of Fibonacci and Lucas numbers, Portugaliae Math. 46 (1989), 159-175.
[18] P. Ribenboim and W. L. McDaniel, Square classes of Fibonacci and Lucas sequences, Portugaliae Math. 48 (1991), 469-473.
[19] P. Ribenboim, Square classes of $\left(a^{n}-1\right) /(a-1)$ and $a^{n}+1$, Sichuan Daxue Xunebar. 26 (1989), 196-199.
[20] N. Robbins, On Fibonacci numbers of the form $p x^{2}$, where p is prime, Fibonacci Quart. 21 (1983), 266-271.
[21] N. Robbins, On Pell numbers of the form $P X^{2}$, where P is prime, all, Fibonacci Quart. 22 (1984), 340-348.
[22] T. N. Shorey and C. L. Stewart, On the Diophantine equation $a x^{2} t+b x^{t} y+c y^{2}=d$ and pure powers in recurrence sequences, Math. Scand. 52 (1983), 24-36.
[23] T. N. Shorey and C. L. Stewart, Pure powers in recurrence sequences and some related Diophantine equations, J. Number Theory 27 (1987), 324-352.
[24] O. Wylie, In the Fibonacci series $F_{1}=1, F_{2}=1, F_{n+1}=F_{n}+F_{n-1}$ the first, second and twelvth terms are squares, Amer. Math. Monthly 71 (1964), 220-222.

```
kÁlmÁN liptai
DEPARTMET OF MATHEMATICS
ESTERHÁZY KÁrOLY COLLEGE
LEÁNYKA ÚT 4, 3300 EGER
HUNGARY
E-mail: liptaik@gemini.ektf.hu
LÁSZLÓ SZALAY
INSTITUTE OF MATHEMATICS AND STATISTICS
UNIVERSITY OF WEST HUNGARY
ERzSÉbET U. 9, H-9400, SOPRON
HUNGARY
E-mail: laszalay@ktk.nyme.hu
```

(Received February 7, 2004)

[^0]: Mathematics Subject Classification: 11B37.
 Key words and phrases: linear recurrences, Baker-methods.
 Research of the first author supported by the Hungarian National Scientific Research Foundation, Operating Grant Number OTKA T 016 975, 020295.

