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Warped product contact CR-submanifolds
of Sasakian space forms

By MARIAN-IOAN MUNTEANU (Iaşi)

Abstract. In this paper we study contact CR products and contact CR-
warped products (in the sense of B. Y. Chen [19]) in Sasakian manifolds. We
show that a contact CR submanifold M of a Sasakian manifold with ξ ∈ D and
with parallel f -structure P is a CR-product of an integral curve of ξ and a φ-anti-
invariant submanifold of M̃ . If M is a strictly proper contact CR-product in S7

with ‖B‖ =
√

6, then M is the Riemannian product between S3 and S1 and up to
a rigid transformation of R8 the embedding is given by r : S3×S1 −→ S7 ↪→ R8,
r(x1, y1, x2, y2, u, v) = (x1u, y1u,−y1v, x1v, x2u, y2u,−y2v, x2v). Then we prove
that if M = N⊥ ×f N

T is a warped product contact CR-submanifold such that
N⊥ is φ-anti-invariant and NT is φ-invariant, then M is a CR-product. Next, we
define a contact CR-warped product and we show that the second fundamental
form of a contact CR warped product of a Sasakian space form satisfies a “good”
inequality, namely ‖B‖2 ≥ 2p

[
‖∇ ln f‖2 − ∆ ln f + c+3

2 s+ 1
]
.

1. Introduction

A submanifold M of a Hermitian manifold (M̃, J, g̃) is a CR subman-
ifold if it carries a holomorphic distribution D i.e. Jx(Dx) = Dx, for any
x ∈ M , such that the orthogonal complement (with respect to g = j∗g̃)

Mathematics Subject Classification: 53C25, 53C40, 53C42, 53B20.
Key words and phrases: Sasakian manifold, (contact) CR-submanifold, warped product.
Beneficiary of the CNR-NATO fellowship n. 220490, at Dipartimento di Matematica,
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D⊥ of D in T (M) is anti-invariant, i.e. Jx(D⊥
x ) ⊆ T (M)⊥x , for any x ∈M ,

where T (M)⊥ is the normal bundle (of the given immersion j : M ⊂ M̃).
CR-submanifolds were first considered by A. Bejancu, [6], in an effort
to unify notions such as complex (D⊥ = (0)), anti-invariant (D = (0)),
totally real (T (M)∩ JT (M) = (0)), or generic (JD⊥ = T (M)⊥) submani-
folds. Although it had been known for some time (cf. A. Andreotti and
C. D. Hill, [3]) that real analytic CR manifolds are at least locally embe-
dable, it appears that the notion of a CR submanifold was introduced in-
dependently of the theory of CR manifolds (cf. e.g. S. Greenfield, [29]),
and it was not until the result by D. E. Blair and B-Y. Chen, [13], that
CR submanifolds (M,D) where recognized to posses an (integrable) CR
structure T1,0(M) = {X −

√
−1JX : X ∈ D} (provided they are proper,

i.e. D 
= (0) and D⊥ 
= (0)). Also, the study of CR submanifolds was
confined to Kählerian ambient spaces (cf. also B-Y. Chen, [19]). Subse-
quently, the theory of CR submanifolds was developed to include ambient
spaces such as locally conformal Kähler manifolds (cf. e.g. D. E. Blair and
S. Dragomir, [14], S. Dragomir and L. Ornea, [27], N. Papaghiuc,
[38], M. H. Shahid, [42]), quasi and nearly Kähler manifolds (cf. e.g.
S. H. Kon and S. L. Tan, [33], T. Sasahara, [41]), or quaternionic
Kähler manifolds (cf. e.g. B. J. Papantoniou and M. H. Shahid, [40]).
Another line of thought, similar to that concerning Sasakian geometry as
an odd dimensional version of Kählerian geometry (cf. D. E. Blair, [11]),
led to the concept of a contact CR-submanifold, that is a submanifoldM of
an almost contact Riemannian manifold (M̃, (φ, ξ, η̃, g̃)) carrying an invari-
ant distribution D, i.e. φxDx ⊆ Dx, for any x ∈ M , such that the orthog-
onal complement D⊥ of D in T (M) is anti-invariant, i.e. φxD⊥

x ⊆ T (M)⊥x ,
for any x ∈M . This notion was already used by A. Bejancu and N. Pa-

paghiuc in [8] by using the terminology of semi-invariant submanifold.
It is customary to require that ξ be tangent to M (cf. K. Yano and
M. Kon, [49]), rather than normal which is too restrictive (by Prop. 1.1
in [49], p. 43, M must be anti-invariant, i.e. φxTx(M) ⊆ T (M)⊥x , x ∈M),
or oblique (which leads to highly complicated embedding equations). Al-
though a formal analogue to the notion of a CR-submanifold to start with,
contact CR-submanifolds turn out to have a precise geometric meaning by
combining a result by S. Ianuş, [31] (according to which any normal al-
most contact Riemannian manifold is actually a CR-manifold, with the
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CR structure T1,0(M̃) = {X −
√
−1φX : X ∈ Ker(η)}) and the obser-

vation that a contact CR-manifold is a CR-manifold (with the induced
CR-structure T1,0(M) = [T (M)⊗C]∩T1,0(M̃)). Any hypersurface M of a
Sasakian manifold M̃ is a contact CR-submanifold and a nondegenerated
CR-manifold of CR codimension two. Of course, the inclusion j : M → M̃

is a CR immersion, i.e. an immersion and a CR map. A theory of CR
immersions, related to certain aspects of analysis in complex variables, has
been started by S. Webster, [48]. There one is interested in rigidity of
CR submanifolds j : M ⊂ S2n+1 (up to a fractional linear transformation
of S2n+1), the ambient Levi–Civita connection appearing in the theory
of Riemannian immersions (cf. [18]) is replaced by the Tanaka–Webster
connection of S2n+1 (cf. [47] and S. Dragomir, [26]) thus producing
CR, or pseudohermitian, analogs to the Gauss–Weingarten and Gauss–
Ricci–Codazzi equations, and the relationship between the resulting the-
ory (of CR and pseudohermitian immersions, cf. also E. Barletta and
S. Dragomir, [4], S. Dragomir, [25]) and the geometry of the second
fundamental form of j is perhaps not sufficiently clear, at the present state
of research. Given a contact CR submanifold M of a Sasakian manifold,
M̃ either ξ ∈ D, or ξ ∈ D⊥. Therefore, the tangent space at each point
decomposes orthogonally as

T (M) = H(M) ⊕ Rξ ⊕ E(M),

where φH(M) = H(M) and φ2 = −I along H(M) (H(M) is the Levi,
or maximally complex, distribution of M) and φE(M) ⊆ T (M)⊥. While
both D := H(M) and D := H(M) ⊕ Rξ organize M as a contact CR
submanifold, it should be remarked that H(M) is never integrable (cf.
e.g. [17], p. 170), i.e. (M,T1,0(M)) is never Levi flat. This appears as
a basic difference between the complex and contact case (Chen’s CR or
warped CR products are always Levi flat). Therefore, to formulate a
contact analog of the notion of warped CR product one assumes that
M = NT × N⊥ where i) NT is a φ-invariant submanifold of M̃ tangent
to ξ, ii) N⊥ is a φ-anti-invariant submanifold of M̃ , and iii) the induced
metric g = j∗g̃, j : M ⊂ M̃ , is a warped product metric (in the sense of
R. L. Bishop and B. O’Neill, [10]). Then, of course, H(M) ⊕ Rξ is
integrable and NT is one of its leaves.
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To give a brief description of our findings let us consider CR-products
in Sasakian manifolds. We give a tensorial characterization, namely we
prove the following result: Let M be a contact CR-submanifold of a Sa-
sakian manifold M̃ , with ξ ∈ D. Then M is a contact CR product if and
only if P satisfies (∇UP )V = −g(UD, V )ξ + η(V )UD for all U, V tangent
to M . When the ambient is a Sasakian space form we classified the contact
CR products as follows: Let M be a complete, generic, simply connected
contact CR submanifold of a complete, simply connected Sasakian space
form M̃2m+1(c). If M is a contact CR product then either c 
= −3 and M
is a φ anti-invariant submanifold of M̃ case in which M is locally a Rie-
mannian product of an integral curve of ξ and a totally real submanifold
N⊥ of M̃ , or c = −3 and M is locally a Riemannian product of R2s+1 and
N⊥ where R2s+1 is endowed with the usual Sasakian structure and N⊥ is
a totally real submanifold of R2m+1 (with the usual Sasakian structure).
[Here 2s = dimH(M).] Our purpose was to introduce and to study an
analog of B.Y. Chen’s CR warped products suitable for use in Sasakian
geometry. As we have mentioned in the Abstract we may consider only
warped products CR-submanifolds of the form NT ×f N

⊥. Our next re-
sult characterizes contact CR warped products in Sasakian manifolds: A
strictly proper CR submanifold M of a Sasakian manifold M̃ , and tangent
to the structure vector field ξ is locally a contact CR warped product if and
only if AφZX = (η(X) − (φX)(µ)) Z, X ∈ D, Z ∈ D⊥ for some func-
tion µ on M satisfying Wµ = 0 for all W ∈ D⊥. This characterization
is similar to that of B.Y. Chen (for warped CR products) and a natural
generalization of his.

Among other results, we obtain an analog of B. Y. Chen’s inequal-
ity (satisfied by the norm of the second fundamental form): Let M =
NT ×f N

⊥ be a contact CR warped product of a Sasakian space form
M̃2m+1(c) and let h = 2s + 1 = dimNT and p = dimN⊥. Then the
second fundamental form of M satisfies the following inequality

‖B‖2 ≥ 2p
[
‖∇ ln f‖2 − ∆ ln f +

c+ 3
2

s+ 1
]
. (a)

If the ambient space is but a Sasakian manifold (and not necessarily a
Sasakian space form) we obtain a weaker inequality

‖B‖2 ≥ 2p
(
‖∇ ln f‖2 + 1

)
. (b)



Warped product contact CR-submanifolds 79

Here, if equality holds, then NT is totally geodesic (in M̃), while N⊥

is totally umbilical. Moreover, M is minimal in M̃ and if M̃ = R2m+1

(endowed with the standard Sasakian structure) then ln f is a harmonic
function. Finally, we were able to give an example of a contact CR warped
product in R2m+1(−3) satisfying the inequality (a), yet not satisfying the
inequality (b).

Acknowledgements. I wish to thank CNR (Consiglio Nazionale
delle Ricerche) who offered me the possibility to stay at University of Basi-
licata (Potenza), Italy. I would like to express my gratitude to Prof. Sorin

Dragomir for his hospitality, for the suggesting the subject and for several
usefully discussions during the preparation of this paper.

2. Contact CR products

Let M̃ be a (2m+ 1)-dimensional Sasakian manifold with the contact
metric structure (φ, ξ, η, g̃) i.e. φ ∈ T 1

1 (M̃), ξ ∈ χ(M̃ ) and η ∈ Λ1(M̃ )
with the following properties: φ2 = −I + η ⊗ ξ, φξ = 0, η ◦ φ = 0,
η(ξ) = 1, dη(X,Y ) = g̃(X,φY ) (the contact condition) and g̃(φX,φY ) =
g̃(X,Y )− η(X)η(Y ) (the compatibility condition). If ∇̃ denotes its Levi–
Civita connection the following relation

(∇̃Uφ)V = −g̃(U, V )ξ + η(V )U, U, V ∈ χ(M̃), (1)

holds on M̃ and actually characterizes Sasakian manifolds among almost
contact Riemannian manifolds. A plane section σ ⊂ Tx(M̃) is a φ-section
if σ is spanned by {v, φxv}, for some v ∈ Tx(M̃). The restriction kφ to φ-
planes of the Riemannian sectional curvature (of (M̃ , g̃)) is the φ-sectional
curvature. A Sasakian space form is a Sasakian manifold of constant φ-
sectional curvature and if this is the case the Riemannian curvature tensor
field R̃ is given by

R̃(X,Y )Z =
c+3
4

{
g̃(Y,Z)X − g̃(X,Z)Y

}
− c−1

4
{
η(Z)[η(Y )X − η(X)Y ]

+ [g̃(Y,Z)η(X)g̃(X,Z)η(Y )]ξ − g̃(φY,Z)φX + g̃(φX,Z)φY

+ 2g̃(φX, Y )φZ
}
, (2)
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for any X,Y,Z ∈ χ(M̃) (actually, by the Schur-like result in [11], p. 97,
it suffices that kφ be a point function; then kφ is constant and R̃ is given
by (2)).

Let M be a real m-dimensional submanifold of M̃ , tangent to the
contact vector ξ. We shall need the Gauss and Weingarten formulae

∇̃XY = ∇XY +B(X,Y ), ∇̃XN = −ANX + ∇⊥
XN, (3)

for any X,Y ∈ χ(M), and N ∈ Γ∞(T (M)⊥). Here T (M)⊥ is the normal
bundle of the given immersion. Also, ∇ is the induced connection, ∇⊥ is
the normal connection (a connection in the normal bundle), B is the second
fundamental form (of the given immersion), and AN is the Weingarten
operator (corresponding to the normal section N). Cf. e.g. [18]. Then

g(ANX,Y ) = g̃(N,B(X,Y )). (4)

For any X ∈ χ(M) we set PX = tan(φX) and FX = nor(φX), where
tanx and norx are the natural projections associated to the direct sum
decomposition

Tx(M̃) = Tx(M) ⊕ T (M)⊥x , x ∈M.

Then P is an endomorphism of the tangent bundle T (M) of and F is a
normal bundle valued 1-form on M . Since ξ is tangent to M we get

Pξ = 0, F ξ = 0, ∇Xξ = PX, B(X, ξ) = FX. (5)

Similarly, for a normal vector field N , we put tN = tan(φN) and fN =
nor(φN) for the tangential and the normal part of φN , respectively.

The Riemannian curvature tensor R of M is given by

RXY Z =
c+ 3

4
{g(Y,Z)X − g(X,Z)Y }

− c− 1
4

{
η(Y )η(Z)X − η(X)η(Z)Y + g(Y,Z)η(X)ξ

− g(X,Z)η(Y )ξ − g(PY,Z)PX + g(PX,Z)PY

+ 2g(PX,Y )PZ
}

+AB(Z,Y )X −AB(Z,X)Y

(6)

for all X, Y , Z vector fields on M . We recall the equation of Gauss

g̃(R̃XY Z,W ) = g(RXY Z,W ) − g̃(B(X,W ), B(Y,Z))

+ g̃(B(Y,W ), B(X,Z))
(7)
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and the equation of Codazzi

(∇XB)(Y,Z) − (∇YB)(X,Z)

=
c− 1

4
{g(PY,Z)FX − g(PX,Z)FY − 2g(PX,Y )FZ}

(8)

where

(∇XB)(Y,Z) = ∇⊥
XB(Y,Z) −B(∇XY,Z) −B(Y,∇XZ). (9)

The second fundamental form B satisfies the classical Codazzi equation
(according to [7], [32]) if

(∇XB)(Y,Z) = (∇YB)(X,Z). (10)

Lemma 2.1.LetM be a submanifold of Sasakian space form M̃2m+1(c)
with c 
= 1 and tangent to the structure vector field ξ. If the second fun-

damental form B of M satisfies the classical Codazzi equation then M is

φ invariant or φ anti-invariant.

Proof. By using (8) and (10) one gets

g(PY,Z)FX − g(PX,Z)FY − 2g(PX,Y )FZ = 0,

∀X,Y,Z ∈ T (M).
(11)

We will give the proof by contradiction. Suppose that there exists Ux ∈
Tx(M) such that PUx 
= 0 and FUx 
= 0. From (11) we deduce
3gx(PUx, PUx) FUx = 0, false. Therefore, for Ux ∈ Tx(M) we have either
PUx = 0 or FUx = 0. It can also be proved that we cannot have Ux, Vx ∈
Tx(M) such that PUx 
= 0, FUx = 0, PVx = 0 and FVx 
= 0. Consequently
P = 0 or F = 0 which means that M is a φ-invariant manifold (if F = 0)
or M is a φ-anti-invariant manifold (if P = 0). �

Putting

(∇UP )V = ∇U (PV ) − P∇UV, (∇UF )V = ∇⊥
U (FV ) − F∇UV (12)

for U, V ∈ χ(M) we have (cf. [49])

(∇UP )V = AFV U + tB(U, V ) − g(U, V )ξ + η(V )U (13)
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(∇UF )V = −B(U,PV ) + fB(U, V ). (14)

We set dimM = n+ 1, dimD = h and dimD⊥ = p.
It is known the following remarkable result (cf. e.g. [49] p. 55): In order

for a submanifold M , tangent to the structure vector field ξ, of a Sasakian
manifold M̃ to be a contact CR submanifold, it is necessary and sufficient
that FP = 0.

Lemma 2.2. Let M be a contact CR submanifold of a Sasakian

manifold M̃ . Then for any Z,W ∈ D⊥ we have

AFZW −AFWZ = η(W )Z − η(Z)W (15)

(∇WP )Z = (∇ZP )W. (16)

In [49] it is proved that the distribution D⊥ is always completely in-
tegrable. The idea of the proof is to show that φ[Z,W ] = F [Z,W ] for all
Z,W ∈ D⊥.

In the following we will suppose that ξ ∈ D.

Lemma 2.3. Let M be a contact CR submanifold of a Sasakian man-

ifold M̃ with ξ ∈ D. Then the following three statements are equivalent.

(i) B(X,PY ) = B(PX,Y ) ∀X,Y ∈ D
(ii) g̃(B(X,PY ), φZ) = g̃(B(PX,Y ), φZ) ∀X,Y ∈ D, ∀Z ∈ D⊥

(iii) D is completely integrable.

Proof. We will sketch out only the implication (ii) ⇒ (iii).
SinceB(X,PY )−B(PX,Y ) = (∇Y F )X−(∇XF )Y it follows that [X,Y ] ∈
D for all X,Y ∈ D. (For details see also [9].) �

Let now N⊥ be a leaf of anti-invariant distribution D⊥. We may state
the following

Proposition 2.1. A necessary and sufficient condition for the sub-

manifold N⊥ to be totally geodesic in M is that

g̃
(
B(H(M),D⊥), φD⊥

)
= 0. (17)

Proof. Denote by
(2)

∇ the Levi–Civita connection on N⊥. Denote
also by σ2 the second fundamental form of N⊥ in M and let Z,W ∈ D⊥
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(i.e. tangent to N⊥). The Gauss formula is ∇ZW =
(2)

∇ZW + σ2(Z,W ).
With X ∈ D we can write

g(σ2(Z,W ),X) = g(∇ZW −
(2)

∇ZW,X) = g(∇ZW,X) = −g(W,∇ZX).

⇒: Suppose N⊥ is totally geodesic in M (i.e. σ2 = 0) and thus,
g(∇ZX,W ) = 0, for all X ∈ D and Z,W ∈ D⊥. Since D is invariant we
can replace in the equality above X by φX. One obtains

0 = g(∇Z(φX),W ) = g̃(∇̃Z(φX) −B(Z, φX),W ) = −g̃(B(Z,X), φW )

i.e. (17).
⇐: Conversely, suppose we have g̃(B(X,Z), φW ) = 0 for all X ∈ H(M)
and for all Z,W ∈ D⊥. Doing the computation in the same manner as
above one obtains

g(∇Z(φX),W ) = 0, ∀X ∈ H(M), ∀Z,W ∈ D⊥.

Replacing X by φX and taking into account that H(M) ⊂ ker η one
has g(σ2(Z,W ),X) = 0. The component of σ2(Z,W ) along ξ vanishes
since η(σ2(Z,W )) = −g(W,∇Zξ) = −g(W,FZ) = 0. It follows that
σ2(Z,W ) = 0, ∀Z,W ∈ D⊥ which means that N⊥ is totally geodesic
in M . �

A contact CR submanifold M in a Sasakian manifold M̃ (with ξ ∈ D)
is called strictly proper if dimH(M) > 0 and dimD⊥ > 0.

Proposition 2.2. Let M be a strictly proper contact CR submanifold

of a Sasakian space form M̃2m+1(c). If the second fundamental form of M

satisfies the classical Codazzi equation then c = 1.

Proof. The proof follows easily from Lemma 1. �

We give the following definition: A contact CR submanifold M of a
Sasakian manifold M̃ is called contact CR product if it is locally a Rie-
mannian product of a φ-invariant submanifold NT tangent to ξ and a
totally real submanifold N⊥ of M̃ , i.e. N⊥ is φ anti-invariant submanifold
of M̃ .
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Let us remark that in [36] N.Papaghiuc used the notion of semi-
invariant product, according to the terminology semi-invariant subman-
ifolds in Sasakian manifolds (for further details we refer to [8], [9], [37]).

Let ν be the complementary orthogonal subbundle of φD⊥ in the nor-
mal bundle T (M)⊥. Thus we have the following direct sum decomposition

T (M)⊥ = φD⊥ ⊕ ν. (18)

Lemma 2.4. Let M be a contact CR submanifold in a Sasakian

manifold M̃ with ξ ∈ D. Then for all X,Y ∈ D we have φB(X,Y ) ∈
D⊥ ⊕ ν.

Proof. The proof is based on the remark that φν = ν. Since B is
normal to M and η(D⊥) = 0 we easily get the statement. �

In view of B. Y. Chen’s characterization of CR-products in Kählerian
manifolds (cf. [19], I, theorem 4.1: A CR-submanifold of a Kählerian man-
ifold M̃ is a CR-product if and only if P is parallel, i.e. ∇P = 0) it is
natural to study the contact CR-submanifolds M in Sasakian manifolds
M̃ (with ξ ∈ D) satisfying ∇P = 0.

First of all suppose that the distribution D contains another vector
field except ξ, non zero and belonging to ker η; call it X0. Let us take
U, V ∈ D ∩ ker η. It follows that

0 = (∇UP )V = t B(U, V ) − g(U, V )ξ.

As we have already seen φB(U, V ) ∈ D⊥ ⊕ ν and thus t B(U, V ) belongs
to D⊥ while f B(U, V ) belongs to ν. We get g(U, V )ξ ∈ D⊥ for all U, V ∈
D ∩ ker η. If we take U = V = X0 we obtain a contradiction (because
g(X0,X0) 
= 0 and ξ ∈ D). The conclusion is that we cannot have this
situation. Consequently, D = span [ξ] and thus D is completely integrable.
Moreover, H(M) is empty and the condition (17) is automatically fulfilled
which yields to the totally geodesy of the orthogonal distribution (more
precisely of its integral manifold N⊥). Since NT (the integral curve of ξ) is
obvious totally geodesic in M it follows that M is (locally) a Riemannian
product between NT and N⊥. We can state now the following theorem.

Theorem 2.1. Let M be a contact CR-submanifold of a Sasakian

manifold M̃ with ξ ∈ D and ∇P = 0. Then M is a contact CR-product
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between an integral curve of ξ and a φ-anti-invariant submanifold N⊥

of M̃ .

In the sequel we give a tensorial characterization for a contact CR
submanifold to be a contact CR product. Thus, we prove the following

Theorem 2.2. Let M be a contact CR submanifold of a Sasakian

manifold M̃ and set ξ ∈ D. Then M is a contact CR product if and only

if P satisfies

(∇UP )V = −g(UD, V )ξ + η(V )UD (19)

for all U, V tangent to M where UD is the D-component of U .

Proof. ⇒: Since φ ≡ P on NT the Gauss formula becomes
(∇̃Xφ)Y = (∇XP )Y + B(X,PY ) − φB(X,Y ) with X,Y ∈ NT . Due to
the Sasakian structure of M̃ we obtain (∇XP )Y = −g(X,Y )ξ+ η(Y )X +
φB(X,Y ) −B(X,PY ). Taking the component in D one gets

(∇XP )Y = −g(X,Y )ξ + η(Y )X. (20)

Consider now Z ∈ N⊥ and Y ∈ NT . Making similar computations as
above we can prove

(∇ZP )Y = 0. (21)
As consequence

B(Z,PY ) = φB(Z, Y ) + η(Y )Z, ∀ Y ∈ NT , Z ∈ N⊥. (22)

Now it is easy to show that (∇UP )Z = 0 for all U ∈ χ(M), Z ∈ D⊥ and
hence the conclusion.

⇐: Let us prove the converse, i.e. suppose we have satisfied (19) and
prove that M is a contact CR product. Consider U = X, V = Z with
X ∈ D and Z ∈ D⊥. The relation (19) becomes (∇XP )Z = 0 and by
using (13) we obtain tB(X,Z) = −AFZX. Considering U = Z, V = X

(with X,Z as above) we obtain (∇ZP )X = 0. Using again (13) we obtain
tB(Z,X) = −η(X)Z. Thus one gets

AFZX = η(X)Z (23)

for allX ∈D and Z ∈ D⊥. After the computations we obtain g̃(B(X,PY )−
B(PX,Y ), φZ) = 0. From Lemma 2.3 it follows that the distribution
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D is completely integrable. Denote by NT and N⊥ the leaves of two
distributions D and D⊥, respectively (the orthogonal distribution D⊥ is
always completely integrable). Let X ∈ H(M), Z,W ∈ D⊥. Due to (23)
we have

g̃(B(X,Z), φW ) = g̃(AφWX,Z) = g̃(η(X)W,Z) = η(X)g(W,Z) = 0.

Thus, by virtue of the Proposition 2.1, N⊥ is totally geodesic in M . Let
now X,Y ∈ D (i.e. tangent to NT ). From (13) and (19) we obtain
tB(X,Y ) = 0. If Z ∈ D⊥ we have

0 = g̃(tB(X,Y ), Z) = −g̃(∇̃XY, φZ)

= g̃(Y, (∇̃Xφ)Z) + g̃(Y, φ∇̃XZ) = −g(φY,∇XZ).

Replacing Y by φY (since D is invariant by φ) one obtains 0 = g(Y,∇XZ)−
η(Y )g(ξ,∇XZ). But g(ξ,∇XZ) = 0, so g(Y,∇XZ) = 0 for all X,Y ∈ D
and Z ∈ D⊥. It follows that g(∇XY,Z) = 0 which means that NT is also
totally geodesic in M . We may conclude that M is a contact CR product
in M̃ . �

Remark 2.1. A similar calculus as in Lemma 2.4 leads to B(X,Y ) ∈ ν

and φB(X,Y ) = B(X,PY ) for all X,Y tangent to NT . On NT we have
an induced Sasakian structure.

It can be proved, independently of the previous theorem the following

Proposition 2.3. Let M be a contact CR-submanifold in a Sasakian

manifold M̃2m+1 with ξ ∈ D. Then M is a contact CR product if and

only if

AφZX = η(X)Z (24)
for all X ∈ D and Z ∈ D⊥.

Proof. First we shall prove the converse. Suppose that (24) holds.
We have

g̃(B(X,Z), φW ) = g(AφWX,Z) = η(X)g(Z,W ) = 0,

∀X ∈ H(M), ∀Z,W ∈ D⊥.

From Proposition 2.1 we get that N⊥ (the integral manifold of D⊥) is
totally geodesic in M .
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Consider now X,Y ∈ D and Z ∈ D⊥. We have g̃(B(X,φY ), φZ) =
g̃(AφZX,φY ) = g̃(η(X)Z, φY ) = 0. Similarly g̃(B(Y, φX), φZ) = 0 and
by Lemma 2.3 it follows that D is completely integrable. To prove that
NT (the integral manifold of D) is totally geodesic in M we will prove that
∇XY belongs to NT for all X,Y tangent to NT . We have g(∇XY,Z) =
−g(Y,∇XZ). On the other hand, from the hypothesis g̃(B(X,Y ), φZ) = 0.
Then

g̃(B(X,Y ), φZ) = −g̃(Y, ∇̃X(φZ)) = g̃(φY, ∇̃XZ) = g̃(φY,∇XZ).

So, we obtain g(φY,∇XZ) = 0, ∀X,Y ∈ D, ∀Z ∈ D⊥. But g(ξ,∇XZ) = 0
and hence g(Y,∇XZ) = 0. We may conclude now that ∇XY ∈ NT for all
X,Y ∈ NT . Therefore the two integral manifolds NT and N⊥ are both
totally geodesic in M . Consequently, M is locally a Riemannian product
of NT and N⊥.

To prove the direct implication we have to take into account the totally
geodesy of NT and N⊥. Using the Gauss formula we get g̃(∇̃XY, φZ) =
g̃(B(X,Y ), φZ) with X,Y ∈ D and Z ∈ D⊥. The right side is exactly
g(AφZX,Y ) while the left side equals to

X(g̃(Y, φZ)) − g̃(Y, ∇̃X(φZ)) = g̃(φY, ∇̃XZ) = −g(∇X(φY ), Z) = 0.

It follows that AφZX ∈ D⊥. Again by using the Gauss formula we obtain
after the computations

η(X)g(Z,W ) = g̃(AφZX,W ).

Taking into account that AφZX ∈ D⊥ it follows AφZX = η(X)Z. This
completes the proof. �

The next result is a geometric description of contact CR products in
Sasakian space forms.

Theorem 2.3. Let M be a complete, generic, simply connected con-

tact CR submanifold of a complete, simply connected Sasakian space form

M̃2m+1(c). If M is a contact CR product then either c 
= −3 and M is a

φ anti-invariant submanifold of M̃ case in which M is locally a Riemann-

ian product of an integral curve of ξ and a totally real submanifold N⊥

of M̃ , or c = −3 and M is locally a Riemannian product of R2s+1 and
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N⊥ where R2s+1 is endowed with the usual Sasakian structure and N⊥ is

a totally real submanifold of R2m+1 (with the usual Sasakian structure).
[Here 2s = dimH(M).]

Proof. Since M is generic it follows that ξ ∈ D. By Remark 2.1
we have B(X,Y ) = 0 (for all X,Y ∈ D) and AFZX = η(X)Z (for all
X ∈ D and Z ∈ D⊥). Since T (M)⊥ = φD⊥ and B ∈ T (M)⊥ by us-
ing the Weingarten formula we immediately see that g(B(X,Z), φW ) =
g(AφWX,Z) = η(X)g(W,Z). Consequently B(X,Z) = η(X)φZ for all
X ∈ D and Z ∈ D⊥. By using similar arguments we can show that
B(U,PV ) = 0 for all U, V ∈ T (M).

By making use of (9) we obtain for X,U, V ∈ T (M):

(∇XB)(U,PV ) = −B(U, (∇XP )V + P∇XV )

= g(XD, V )B(U, ξ) − η(V )B(U,XD)

= [g(XD, VD) − η(VD)η(XD)] FU.

Thus
(∇XB)(U,PV ) = g(PX,PV ) FU (25)

for all X,U, V ∈ T (M). Substitute in (8) Z by PZ (with Z ∈ T (M)
arbitrary) the following identity holds:

(∇XB)(Y, PZ)−(∇YB)(X,PZ)=
c−1
4

{g(PY,PZ)FX−g(PX,PZ) FY }.

Combining with (25) the relation above yields to

g(PX,PZ)FY −g(PY,PZ)FX =
c− 1

4
{g(PY,PZ)FX−g(PX,PZ)FY }

which is equivalent to

c+ 3
4

{g(PY,PZ)FX − g(PX,PZ)FY } = 0, ∀X,Y,Z ∈ T (M). (26)

Now we have to discuss two situations: c 
= −3 and c = −3.

Case 1. From the equation (26) we obtain
g(PY,PZ)FX − g(PX,PZ)FY = 0, ∀ X,Y,Z ∈ T (M). Since M is
generic we have F 
= 0 and it is not difficult to prove that P = 0. Thus
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M is φ-anti-invariant. Moreover, by Theorem 2.2 we can say that M is
a contact CR product between an integral curve of ξ and a totally real
submanifold N⊥ of M̃ .

Case 2. From [11] we know that M̃2m+1 is equivalent to R2m+1 with the
usual Sasakian structure (see for details [35]). M is a contact CR product
of the invariant submanifold NT and the anti-invariant submanifold N⊥.
Since NT is totally geodesic in M and B(X,Y ) = 0 for all X,Y ∈ D then
NT is totally geodesic in M̃ . Thus, from [49], Theorem 1.3, p. 49 it follows
that M has constant φ sectional curvature c = −3. Since M is simply
connected and since M is the Riemannian product of NT and N⊥ it follows
that NT is simply connected. It is also known that the completeness of
the product manifold inherits the completeness of the two factors. Thus,
from [11] it follows that NT is equivalent to Rh where h = 2s + 1, with
2s = dimH(M). So, M is locally a Riemannian product of R2s+1 and
N⊥, where N⊥ is a φ-anti-invariant submanifold of R2m+1. �

The notion of holomorphic bisectional curvature on Kählerian man-
ifolds (see [28]) was extended to φ holomorphic bisectional curvature in
Sasakian manifolds. Let H̃B(U, V ) be the φ-holomorphic bisectional cur-
vature of the plane U ∧ V , i.e.

H̃B(U, V ) = R̃(φU,U, φV, V ) for U, V ∈ T (M̃). (27)

For later use we give the following

Lemma 2.5. Let M be a contact CR product of a Sasakian manifold

M̃2m+1. Then, for any unit vector fields X ∈ D and Z ∈ D⊥ we have

H̃B(X,Z) = 2
(
‖B(X,Z)‖2 − 1

)
. (28)

Proof. We have H̃B(X,Z) = g̃(φZ, (R̃φX,XZ)⊥). Using the equation
of Codazzi and the definition of ∇B we get:

H̃B(X,Z) = g̃(φZ,∇⊥
φXB(X,Z) −B(∇φXX,Z) −B(X,∇φXZ))

− g̃(φZ,∇⊥
XB(φX,Z) −B(∇X(φX), Z) −B(φX,∇XZ)).

Since NT is parallel and by using the relation g̃(φW,B(X,Z)) =
η(X)g(W,Z), ∀ X ∈ D, ∀ Z,W ∈ D⊥ (obtained in the proof of Theo-
rem 2.2) we deduce

H̃B(X,Z) = g̃(φZ,∇⊥
φXB(X,Z)) − g̃(φZ,∇⊥

XB(φX,Z)) + η([X,φX]).
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After some computations one obtains

H̃B(X,Z) = (φX)(η(X)) + η([X,φX]) − 2g̃(φB(φX,Z), B(X,Z)).

Due to the Sasakian structure of M̃ we have

1 = g̃(X,X) = dη(X,φX) + η(X)2

= −1
2
{(φX)(η(X)) + η([X,φX])} + η(X)2

and hence

(φX)(η(X)) + η([X,φX]) = −2
(
1 − η(X)2

)
. (29)

In order to compute g̃(φB(φX,Z), B(X,Z)) we find firstly that the normal
component of φB(φX,Z) is η(X)φZ −B(Z,X). Consequently
g̃(φB(φX,Z), B(X,Z)) = η(X)2 − ‖B(X,Z)‖2 which ends the proof. �

Notice that H̃B(U, ξ) = 0 and B(U, ξ) = FU . So, when we will refer to
the φ-holomorphic bisectional curvature of the plane U ∧V we intend that
this plane is orthogonal to ξ. Thus for X in the above lemma we can sup-
pose that it belongs to H(M). Moreover, since the φ-holomorphic planes
(X,φX) and (Z, φZ) in Tx(M̃ ), x ∈M , are orthogonal, then HB(X,Z) is
called φ-holomorphic special bisectional curvature (cf. e.g. [34], [45]).

Theorem 2.4. Let M̃ be a Sasakian manifold with the φ holomor-

phic bisectional curvature less strictly than −2. Then every contact CR

product M in M̃ is either an invariant submanifold or an anti-invariant

submanifold, case in which M is (locally) a Riemannian product of an

integral curve of ξ and a φ-anti-invariant submanifold of M̃ .

Proof. If dim H(M) > 0 then, by taking X ∈ H(M) and Z ∈ D⊥,
from the previous lemma we get a contradiction. So, either dimH(M) = 0
or dimD⊥ = 0. The second part of the theorem follows from Theorem 2.2.

�

Proposition 2.4. a) Let M̃2m+1(c) be a Sasakian space form and let

X,Z be two unit vector fields orthogonal to ξ. Then the φ-holomorphic

bisectional curvature of the plane X ∧ Z is given by

H̃B(X,Z) =
c− 1

2
+
c+ 1

2
g̃(φX,Z)2. (30)
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b) Let M be a contact CR submanifold of a Sasakian space form

M̃2m+1(c). Then the φ-holomorphic bisectional curvature of the plane

X ∧ Z, where X ∈ H(M) and Z ∈ D⊥ are unit vector fields, is given by

the formula

H̃B(X,Z) =
c− 1

2
. (31)

Consequently, if c = −3 then H̃B(X,Z) = −2. In this case it follows that

B(X,Z) = 0 for all X ∈ H(M) and Z ∈ D⊥.

Proof. Direct calculations. �
Corollary 2.1. Let M̃2m+1(c), c < −3 be a Sasakian space form.

Then there exists no strictly proper contact CR product in M̃ .

Corollary 2.2. Let M̃2m+1 be a Sasakian manifold with H̃B > −2
and letM be a strictly proper contact CR product in M̃ . ThenB(D,D⊥)
=0
and hence M is never totally geodesic in M̃ .

We prove now a inequality satisfied by the norm of the second funda-
mental form of a contact CR product in Sasakian space form. So we give
the following theorem.

Theorem 2.5. Let M̃2m+1(c) be a Sasakian space form and let M =
NT × N⊥ be a contact CR product in M̃ . Then the norm of the second

fundamental form of M satisfies the inequality

‖B‖2 ≥ p ((c+ 3)s+ 2) . (32)

The equality sign holds if and only if both NT and N⊥ are totally geodesic

in M̃ .

Proof. For X ∈ H(M) and Z ∈ D⊥ we have ‖B(X,Z)‖2 = c+3
4 .

Thus

‖B‖2 = ‖B(D,D)‖2 + ‖B(D⊥,D⊥)‖2 + 2‖B(D,D⊥)‖2 ≥ 2‖B(D,D⊥)‖2

= 2

(
2s∑

i=1

p∑
α=1

‖B(Xi, Zα)‖2 +
p∑

α=1

‖B(ξ, Zα)‖2

)
= 2p

(
c+ 3

2
s+ 1

)
where {Xi} and {Zα} are orthonormal basis in H(M) and D⊥ respectively.
The equality sign holds if and only if B(D,D) = 0 and B(D⊥,D⊥) = 0,
which is equivalent to the totally geodesy of NT and N⊥. �
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In the following we will give an example in which the equality sign
holds.

Consider the odd spheres S2s+1 and S2p+1 naturally embedded in Eu-
clidian spaces R2(s+1) and R2(p+1) respectively. Take the Riemannian
product S2s+1 × S2p+1 and the application r : S2s+1 × S2p+1 −→ S2m+1

given as follows

(x0, y0, . . . , xs, ys;u0, v0, . . . , up, vp)
r�−→ (. . . , xjuα − yjvα, xjvα + yjuα, . . .)

where m = sp + s + p. Here the sphere S2m+1 is also embedded in the
Euclidian space R2(m+1). On these spheres we have the usual Sasakian
structures and the map r has the property that it is an isometric immer-
sion and maps the Sasakian structure of each sphere component into the
Sasakian structure of S2m+1. It is known the fact that the natural almost
complex structure on the product manifold is integrable since the contact
structures on spheres are normal. Moreover the Hermitian structure is not
Kählerian (cf. e.g. [11]).

Let now L be a linear subspace of dimension p + 1 in R2(p+1) and
passing by the origin such that JL is orthogonal to L (here J is the natu-
ral complex structure of R2(p+1)). We also know that the structure vector
field is obtained by multiplication with J of the position vector field. So
we obtain (as intersection of L with the sphere S2p+1) a p dimensional
sphere which is normal to the structure vector field (see [11]). Now, ap-
plying Proposition 1.1, p. 43 from [49] we get that Sp is φ-anti-invariant
submanifold.

Consider now M = S2s+1 × Sp −→ S2s+1 × S2p+1 r−→ S2m+1. We
obtain a contact CR product in S2m+1 and we have that S2s+1 and Sp are
totally geodesic in S2m+1. Consequently the equality holds.

In the end of this section we obtain the smallest dimension for a Sa-
sakian space form M̃2m+1(c) which admits a contact CR product. The
above example will show us that this estimation for the dimension is the
best possible. First we prove the following proposition.

Proposition 2.5. Let M = NT ×N⊥ be a contact CR submanifold

in a Sasakian space form M̃2m+1(c).
a) If X,Y are unitary and orthogonal belonging to H(M) and Z is

unitary in D⊥ then

〈B(X,Z), B(Y,Z)〉 = 0.
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b) If {X,Y } and {Z,W} are two pairs of unitary and orthogonal vector

fields belonging to H(M) and D⊥ respectively, then

〈B(X,Z), B(Y,W )〉 = 0.

Proof. Easy calculation. �

Let M be a strictly proper contact CR product. From Proposition 2.1
we know that B(H(M),D⊥) ∈ ν. If dimD⊥ = p = 1 then let {Xj}j=1,...,2s

be an orthonormal basis in H(M) and let Z be a unitary vector field
in D⊥. From the statement a) in the proposition above we have that
〈B(Xj , Z), B(Xk, Z)〉 = 0 which show that, if c 
= −3, {B(Xj , Z)} is an
orthogonal system. Thus dim ν ≥ 2s.

If dimD⊥ = p ≥ 2, let {Xj}j=1,...,2s and {Zα}α=1,...,p be orthonormal
basis in H(M) and D⊥ respectively. From statement b), with similar
arguments, {B(Xj , Zα)} is an orthogonal system in ν. We deduce that
dim ν ≥ 2sp. But this is still available even in the first case.

We establish:

Theorem 2.6. Let M be a strictly proper contact CR product in a

Sasakian space form M̃2m+1(c), with c 
= −3. Then

m ≥ sp+ s+ p. (33)

Proof. We know: {B(Xj , Zα)}, i = 1, . . . , 2s, α = 1, . . . , p is a lin-
early independent system in ν and B(ξ, Zα) = φZα ∈ φD⊥. Counting the
dimensions we obtain (33). �

Let us remark that since the example S2s+1 × Sp −→ S2m+1 with
m = sp+ s+ p satisfies the equality case it follows that the estimation in
(33) is the best possible.

A particular example is the product of spheres S3 and S1. The last
one is obtained by S3 ⊂ R4 intersected with the 2-plane L spanned by
{(1, 0, 0, 0), (0, 0, 0, 1)} which has the property that JL is orthogonal to L.
So we obtain the sphere S1 = {(u, 0, 0, v) ∈ R4 : u2 + v2 = 1}. The vector
field Z = (−v, 0, 0, u) is a generator for the tangent space of S1 at an



94 Marian-Ioan Munteanu

arbitrary point. The isometric immersion is given by

r : S3 × S1 −→ S7

r(x1, y1, x2, y2, u, v) = (x1u, y1u,−y1v, x1v, x2u, y2u,−y2v, x2v).

It is easy to check that r∗ξ1 = ξ (where ξ1 and ξ are the structure vector
fields on S3 and S7 respectively, as Sasakian manifolds). We also can verify
that r∗H(M) is orthogonal to r∗Z and φr∗Z is normal to r(S3 × S1). So
we have a contact CR product in S7.

We will see that this example is quite important. First we will give a
kind of converse of Theorem 2.5. Hence we give the following

Theorem 2.7. Let M = NT × N⊥ be a contact CR product in a

Sasakian space form M̃2m+1(c), c 
= −3. Let dimNT = 2s+1, dimN⊥ = p

and suppose thatm = sp+s+p. ThenNT is a totally geodesic submanifold

in M̃ .

Proof. The idea of the proof is to apply again the equation of Gauss.
A basic calculus leads us to

〈B(X,W ), B(Y,U)〉 = 〈B(Y,W ), B(X,U)〉 (∗)

for any X,Y,U tangent to NT and W tangent to N⊥. In the sequel we
consider X,U ∈ H(M). We have

〈B(φX,W ), B(X,U)〉 = 〈B(X,W ), B(φX,U)〉 = −〈φB(X,W ), B(X,U)〉.

For any X tangent to NT (including ξ) and W tangent to N⊥ we easily
observe that

B(φX,W ) = η(X)W + φB(X,W ).

So 〈φB(X,U), B(X,W )〉 vanishes for all X,U ∈ D, W ∈ D⊥. Conse-
quently 〈B(X,φU), B(X,W )〉 vanishes too, and hence, according to (∗)
one gets

〈B(X,U), B(Y,W )〉 = 0, ∀X,Y,U ∈ H(M), ∀W ∈ D⊥. (∗∗)

Consider orthonormal basis {Xj} and {Zα} in H(M) and D⊥ respectively,
and since m = sp+ s+p then {B(Xj , Zα)} form a basis in ν. The relation
(∗∗) yields to B(X,U) = 0 for all X,U ∈ H(M). But B(ξ, U) = FU = 0
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for U ∈ D and since NT is totally geodesic in M it follows that NT is also
totally geodesic in M̃ . �

Corollary 2.3. Let M = NT ×N⊥ be a strictly proper contact CR

product in S7. Then M is a Riemannian product between the sphere

S3 and a curve. Moreover, if the norm of the second fundamental form

of M satisfies the equality case in the inequality we have that M is the

Riemannian product between S3 and S1.

Proof. We have sp + s + p ≤ 3 so s = p = 1 and we are in the
case of the ‘minimum dimension’. Thus NT is totally geodesic in S7 and
having dimension 3 is the sphere S3. The φ anti-invariant manifold N⊥

has dimension 1, so it is a curve. If the equality case is satisfied then
both NT and N⊥ are totally geodesic in S7 and thus M is a Riemannian
product between S3 and S1. In this situation ‖B‖ =

√
6. �

We end this section with the following

Theorem 2.8. Let M = NT × N⊥ be a strictly proper contact CR

product in S7 whose second fundamental form has the norm
√

6. Then M

is the Riemannian product between S3 and S1 and, up to a rigid transfor-

mation of R8 the embedding is given by

r : S3 × S1 −→ S7 (34)

r(x1, y1, x2, y2, u, v) = (x1u, y1u,−y1v, x1v, x2u, y2u,−y2v, x2v).

Proof. We are interested to find the equations of the isometrical
immersion

S3 × S1 r−→ S7 (x, y, z; t) �→ (X1,X2, . . . ,X8)

where S7 is thought to be embedded in R8 and thus we have
∑8

I=1 X 2
I = 1.

The Levi–Civita connection on the sphere S7 is ∇̃ = tan(
0
∇) where

0
∇

is the flat connection on the Euclidian space R8 and tan denotes the pro-
jection operator on the tangent bundle of the sphere. Notice that (x, y, z)
and t are the spherical coordinates on the two spheres S3 and S1 respec-

tively. If
1
∇ and

2
∇ are the Levi–Civita connections on the two spheres,
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we have

1
∇ ∂

∂x

∂

∂x
= 0,

1
∇ ∂

∂x

∂

∂y
= −tgx

∂

∂y
,

1
∇ ∂

∂x

∂

∂z
= −tgx

∂

∂z

1
∇ ∂

∂y

∂

∂y
= sinx cos x

∂

∂x
,

1
∇ ∂

∂y

∂

∂z
= −tg y

∂

∂z

1
∇ ∂

∂z

∂

∂z
= sinx cos x cos2 y

∂

∂x
+ sin y cos y

∂

∂y

(35)

2
∇ ∂

∂t

∂

∂t
= 0. (36)

Then ∇̃r∗ ∂
∂t
r∗ ∂

∂t=
(

∂2XI
∂t2 −XI

∑
J XJ

∂2XJ
∂t2

)
∂

∂XI
and from the totally geodesy

of S1 in S7 we get

∂2XI

∂t2
−XI

∑
J

XJ
∂2XJ

∂t2
= 0. (37)

The isometry condition yields to

∑
J

(
∂XJ

∂t

)2

= 1 (38)

and consequently one gets
∑

J XJ
∂2XJ
∂t2

= −1. Thus we obtain the following
PDE equation system:

∂2XI

∂t2
+ XI = 0 (39)

with the solution
XI = αI cos t+ βI sin t, (40)

where αI , βI are smooth functions on S3. From (38) we have∑
I

(
α2

I sin2 t+ β2
I cos2 t− 2αIβI sin t cos t

)
= 1 for all t.

Consequently we obtain∑
α2

I = 1,
∑

β2
I = 1,

∑
αIβI = 0. (41)
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By using the totally geodesy of the sphere S3 in S7 Gauss equation

∇̃r∗ ∂
∂x
r∗ ∂

∂x = r∗
1
∇ ∂

∂x

∂
∂x = 0 yields to ∂2XI

∂x2 + XI = 0. From (40) one gets

αI = aI cos x+ bI sinx, βI = cI cos x+ dI sinx (42)

where aI , bI , cI , dI are smooth functions on S3 depending on y and z.
Hence

XI = (aI cos x+ bI sinx) cos t+ (cI cos x+ dI sinx) sin t. (43)

By (41) the following relations hold:∑
a2

I =
∑
b2I = 1,

∑
c2I =

∑
d2

I = 1,
∑
aIbI =

∑
cIdI = 0∑

aIcI =
∑
bIdI = 0 ,

∑
(aIdI + bIcI) = 0.

]
(44)

From the isometry condition 〈r∗ ∂
∂y , r∗

∂
∂y 〉 = 〈 ∂

∂y ,
∂
∂y 〉 = cos2 x we obtain

∑
I

(
∂XI

∂y

)2

= cos2 x. (45)

In the same way, Gauss equation ∇̃r∗ ∂
∂y
r∗ ∂

∂y = r∗
1
∇ ∂

∂y

∂
∂y yields to the

following PDE system

∂2XI

∂y2
+ cos2 x XI = sinx cos x

∂XI

∂x
. (46)

Replacing (43) in (46) and taking into account that sin and cos are inde-
pendently functions we obtain

∂2aI

∂y2
+ aI = 0,

∂bI
∂y2

= 0,

∂2cI
∂y2

+ cI = 0,
∂dI

∂y2
= 0

(47)

with the solution

aI = AI cos y +BI sin y, bI = CIy +DI ,

cI = EI cos y + FI sin y, dI = GIy +HI

(48)
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where AI , BI , CI , DI , EI , FI , GI , HI are C∞ functions depending on z

and satisfying

CI = GI = 0,∑
D2

I =
∑

H2
I =

∑
A2

I =
∑

B2
I =

∑
E2

I =
∑

F 2
I = 1∑

AIBI =
∑

EIFI =
∑

AIDI =
∑

BIDI =
∑

EIHI

=
∑

FIHI =
∑

AIEI = 0∑
BIFI =

∑
DIHI = 0,∑

(AIFI +BIEI) =
∑

(AIHI + EIDI)

=
∑

(BIHI + FIDI) = 0.



(49)

Thus we have
XI = [(AI cos y +BI sin y) cos x+DI sinx] cos t

+ [(EI cos y + FI sin y) cos x+HI sinx] sin t.
(50)

Finally, using the isometry condition 〈r∗ ∂
∂z , r∗

∂
∂z 〉 = 〈 ∂

∂z ,
∂
∂z 〉 = cos2 x cos2 y

we get ∑(
∂XI

∂z

)2

= cos2 x cos2 y.

Similarly as above we use the Gauss equation ∇̃r∗ ∂
∂z
r∗ ∂

∂z = r∗
1
∇ ∂

∂z

∂
∂z and

obtain the equation

∂2XI

∂z2
+ cos2 x cos2 y XI = sinx cos x cos2 y

∂XI

∂x
+ sin y cos y

∂XI

∂y
. (51)

Replacing (50) in (51), after straightforward computations we obtain the
following PDE system

AI
′′ +AI = 0, BI

′′ = 0, DI
′′ = 0, EI

′′ +EI = 0, FI
′′ = 0, HI

′′ = 0. (52)

The solution of this system is given byAI = λI cos z + µI sin z, BI = ψIz + τI , DI = εIz + ρI

EI = λ̃I cos z + µ̃I sin z, FI = ψ̃Iz + τ̃I , HI = ε̃Iz + ρ̃I

(53)
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where λI , µI , ψI , τI , εI , ρI , λ̃I , µ̃I , ψ̃I , τ̃I , ε̃I , ρ̃I are some real constants.
Moreover, we have

ψI = εI = ψ̃I = ε̃I = 0,∑
τ2
I =

∑
ρ2

I =
∑

τ̃2
I =

∑
ρ̃2

I =
∑

λ2
I =

∑
µ2

I

=
∑

λ̃2
I =

∑
µ̃2

I = 1∑
λIµI =

∑
λ̃I µ̃I =

∑
λIτI =

∑
µIτI =

∑
λ̃I τ̃I =

∑
µ̃I τ̃I

=
∑

λIρI =
∑

µIρI = 0∑
τIρI =

∑
λ̃I ρ̃I =

∑
µ̃I ρ̃I =

∑
τ̃I ρ̃I =

∑
λI λ̃I =

∑
µI µ̃I

=
∑

τI τ̃I =
∑

ρI ρ̃I = 0∑
(λI µ̃I + λ̃IµI) =

∑
(λI τ̃I + λ̃IτI) =

∑
(µI τ̃I + µ̃IτI)

=
∑

(λI ρ̃I + λ̃IρI) = 0∑
(µI ρ̃I + µ̃IρI) =

∑
(τI ρ̃I + τ̃IρI) = 0.



(54)

We can write at this moment the expression of the immersion r

XI = {[(λI cos z + µI sin z) cos y + τI sin y] cos x+ ρI sinx} cos t

+ {[(λ̃I cos z + µ̃I sin z) cos y + τ̃I sin y] cos x+ ρ̃I sinx} sin t.
(55)

Now we use the coordinates of the Euclidian spaces in which the two
spheres are embedded, namely x1 = cosx cos y cos z, y1 = cos x cos y sin z,
x2 = cos x sin y, y2 = sinx; u = cos t, v = sin t . Consequently, the
immersion r can be written as

XI = (λIx1 + µIy1 + τIx2 + ρIy2)u+ (λ̃Ix1 + µ̃Iy1 + τ̃Ix2 + ρ̃Iy2)v. (56)

We ask r∗ξ1 = ξ (in any point of S3), where ξ1 and ξ are the structure
vector fields of the Sasakian structures on S3 and S7, respectively. We
have

r∗ξ1 =
[
y1(λIu+ λ̃Iv)−x1(µIu+ µ̃Iv)+y2(τIu+ τ̃Iv)−x2(ρIu+ ρ̃Iv)

] ∂

∂XI
.
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Identifying with the components of ξ one obtains

λ2k−1 = µ2k, λ̃2k−1 = µ̃2k, µ2k−1 = −λ2k, µ̃2k−1 = −λ̃2k

τ2k−1 = ρ2k, τ̃2k−1 = ρ̃2k, ρ2k−1 = −τ2k, ρ̃2k−1 = −τ̃2k

(57)

for k = 1, 2, 3, 4. Now we impose the initial conditions.

1. Let p0 = (1, 0, 0, 0; 1, 0) ∈ S3 × S1 and let q0 = (1, 0, . . . , 0) ∈ S7. In
order to have r(p0) = q0 we use (56) and we obtain

λ1 = 1 and λ2 = . . . = λ8 = 0. (58)

By virtue of (57) one gets

µ2 = 1 and µ1 = µ3 = . . . = µ8 = 0. (59)

2. Let X1 = (−x2, y2, x1, −y1) ∈ χ(S3).

We ask r∗,p0X1,p0 = (0, 0, 0, 0, 1, 0, 0, 0). (Remark that this vector is tan-
gent to the sphere S7 in q0.) We obtain

τ5 = 0 and τ1 = . . . = τ4 = τ6 = τ7 = τ8 = 0. (60)

and consequently,

ρ6 = 1 and ρ1 = . . . = ρ5 = ρ7 = ρ8 = 0. (61)

3. Consider now Z = (−v, u) ∈ χ(S1).

In p0 we set r∗,p0Zp0 = (0, 0, 0, 1, 0, 0, 0, 0) ∈ Tq0S
7. Hence, we get

λ̃4 = 1 and λ̃1 = λ̃2 = λ̃3 = λ̃5 = . . . = λ̃8 = 0 (62)

and using (57) we have also

µ̃3 = −1 and µ̃1 = µ̃2 = µ̃4 = . . . = µ̃8 = 0. (63)

We shall use the relations (54). First, we get τ̃4 = 0 and τ̃3 = 0 and
as consequence ρ̃4 = 0 and ρ̃3 = 0. Then we can prove that τ̃5 = 0,
ρ̃6 = 0, τ̃1 = 0, τ̃2 = 0, ρ̃1 = 0 and ρ̃2 = 0. The orthogonality condition
r∗,pZp ⊥ ξr(p) (for all p ∈ S3 × S1) yields to τ̃6 = 0 and ρ̃5 = 0. Denote
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τ̃7 = ρ̃8 = A and τ̃8 = −ρ̃7 = B, where A, B are real constants which
verify A2 +B2 = 1. Finally, the immersion r is given by

r(x1, y1, x2, y2, u, v) = (x1u, y1u,−y1v, x1v, x2u, y2u,Ax2v

−By2v,Bx2v +Ay2v).
(64)

Thus, after a rigid transformation (the rotation
(

A
−B

B
A

)
applied to the last

two components in R8) we get the conclusion. �

3. CR warped product submanifolds
in Sasakian manifolds

The main purpose of this section is devoted to the presentation of
some properties of warped product contact CR submanifolds in Sasakian
manifolds. The notion of warped product (or, more generally warped bun-
dle) was introduced by Bishop and O’Neill in [10] in order to construct
a large variety of manifolds of negative curvature. For example, negative
space forms can easily be constructed in this way from flat space forms.
Along the years the interest was to find an analogous of classical de Rham
theorem to warped products. A result was proved by Hiepko and we used
it in order to give a characterization of warped product contact CR sub-
manifolds in Sasakian manifolds.

Let B,F be two Riemannian manifolds with Riemannian metrics gB

and gF respectively. Let f > 0 be a smooth positive function on B and
consider B × F the product manifold. Let π1 : B × F −→ B and π2 :
B×F −→ F be the canonical projections. We give the following definition:
the manifold M = B ×f F is called warped product if it is equipped with
the Riemannian structure such that

‖X‖2 = ‖π1,∗(X)‖2 + f2(π1(x))‖π2,∗(X)‖2 (65)

for all X ∈ Tx(M), x ∈M , or, equivalently,

g = gB + f2 gF (66)

with the usual meaning. In this case, f is called the warped function on
the warped product.
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By following an idea of B. Y. Chen we give

Theorem 3.1. Let M̃ be a Sasakian manifold and let M = N⊥ ×f

NT be a warped product CR submanifold such that N⊥ is a totally real

submanifold and NT is φ holomorphic (invariant) of M̃ . Then M is a CR

product.

Proof. Let X be tangent to NT and let Z be a vector field tangent
to N⊥. From the Levi–Civita formula we find that ∇XZ = (Z ln f) X.
Now we distinguish two cases:

Case 1 : ξ is tangent to N⊥. Take Z = ξ. Since ∇Xξ = PX = φX it
follows φX = (ξ ln f) X. But this is impossible if dim NT 
= 0.

Case 2 : ξ is tangent to NT . Take X = ξ. Since ∇Zξ = PZ = 0 and
∇Zξ = ∇ξZ (ξ is tangent to NT while Z is tangent to N⊥) one gets
0 = Z(ln f)ξ and hence Z(ln f) = 0 for all Z tangent to N⊥. Consequently
f is constant and thus the warped product above is nothing but a product
N⊥ ×NT

f where NT
f is the manifold NT with the metric f2gNT which is

homothetic with the original metric. �

The previous theorem shows that do not exist warped product contact
CR submanifolds in the form N⊥ ×f N

T other than contact CR products
such that NT is a φ-invariant submanifold and N⊥ is a totally real sub-
manifold of M̃ . This is the reason that from now on we will consider
warped product contact CR submanifolds in the form NT ×f N

⊥. We
give the following definition: A contact CR submanifold M of a Sasakian
manifold M̃ , tangent to the structure vector field ξ is called a contact CR
warped product if it is the warped product NT ×f N

⊥ of an invariant sub-
manifold NT , tangent to ξ and a totally real submanifold N⊥ of M̃ (where
f is the warped function).

Sometimes we will use 〈 , 〉 for all three metrics g, gNT , gN⊥ (when
there is no confusion).

Lemma 3.1. Let M be a contact CR submanifold in Sasakian man-

ifold M̃2m+1 such that ξ ∈ D. Then we have

g(∇UZ,X) = g̃(φAφZU,X), ∀X ∈ D, ∀Z ∈ D⊥, ∀U ∈ T (M); (67)

AφZW = AφWZ, ∀Z,W ∈ D⊥; (68)
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AφµX +Aµ(φX) = 0, ∀X ∈ D, ∀µ ∈ ν. (69)

Proof. Let us prove the first formula. We have

g̃(φAφZU,X) = g̃(∇̃U (φZ) −∇⊥
U(φZ), φX)

= g̃(−g̃(U,Z)ξ + η(Z)U, φX) + g̃(φ∇̃UZ, φX)

= g̃(∇̃UZ,X) − η(∇̃UZ)η(X)

= g̃(∇UZ,X) − η(X)(Ug̃(Z, ξ) − g̃(Z, ∇̃U ξ))

= g(∇UZ,X) + η(X)g̃(Z, φU) = g(∇UZ,X).

In order to prove the formula (68) let us take U ∈ T (M). We have

g(AφZW,U) = g(W,Z)η(U) + g̃(∇̃WZ, φU).

Hence g(AφZW − AφWZ,U) = g̃([W,Z], φU). Due to the integrability
of D⊥, [Z,W ] ∈ D⊥ while φU ∈ D ⊕ φD⊥. It follows that g(AφZW −
AφWZ,U) = 0 for all U tangent to M . From here we have the formula.

For the proof of (69) we have g(AφµX,U) = −g̃(µ, φ∇̃XU) and
g(Aµ(φX), U) = g̃(µ, φ∇̃UX), with U ∈ T (M). It follows that g(AφµX +
Aµ(φX), U) = 0 so, AφµX +Aµ(φX) = 0, ∀X ∈ D, ∀µ ∈ ν. �

Lemma 3.2. If M = NT ×f N
⊥ is a contact CR warped product

in a Sasakian manifold M̃ then

〈B(D,D), φD⊥〉 = 0 (70)

∇XZ = ∇ZX = X(ln f)Z (71)

for X tangent to NT and Z tangent to N⊥;

ξ(f) = 0 (72)

〈B(φX,Z), φW 〉 = (X ln f)〈Z,W 〉 (73)

for X tangent to NT and Z,W tangent to N⊥.

Proof. Consider X,Y ∈ D and Z ∈ D⊥. Then

〈B(X,Y ), φZ〉 = 〈∇̃XY, φZ〉 = 〈φY, ∇̃XZ〉 = −〈∇X(φY ), Z)〉 = 0.
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Take now X tangent to NT and Z tangent to N⊥. We have that
〈∇XZ, Y 〉 = 0 for all Y tangent to NT so, ∇XZ is tangent to N⊥. By
using Levi–Civita formula and the orthogonality of the two distributions
one gets 2g(∇XZ,W ) = X(f2gN⊥(Z,W )). But gN⊥ depends only of the
points of N⊥ so we obtain

2g(∇XZ,W ) = 2f X(f)gN⊥(Z,W ) = 2X(ln f)g(Z,W ).

Recall that ∇Uξ = PU . It follows that ∇Zξ = 0 for all Z tangent to N⊥.
Combining with (71) one gets ξ(f) = 0.

To prove the last statement we will use (67):

〈B(φX,Z), φW 〉 = 〈AφWZ, φX〉 = −〈∇ZW,X〉 = X(ln f)〈Z,W 〉.

This ends the proof of this lemma. �

In the following we give a characterization of the contact CR warped
product in Sasakian manifold, an analogue of Proposition 2.3. We have the
following result of S. Hiepko (cf. e.g. [30]): Let F be a vector subbundle in
the tangent bundle of a Riemannian manifold M and let F⊥ be its normal
bundle. Assume that the two distributions are both involutive and the inte-
gral manifold of F (resp. F⊥) are extrinsic spheres (resp. totally geodesic).
Then M is locally isometric to a warped product N1 ×f N2. Moreover, if
M is simply connected and complete there exists a global isometry of M
with a warped product.

Theorem 3.2 (of characterization). A strictly proper CR subman-

ifold M of a Sasakian manifold M̃ , and tangent to the structure vector

field ξ is locally a contact CR warped product if and only if

AφZX = (η(X) − (φX)(µ)) Z, X ∈ D, Z ∈ D⊥ (74)

for some function µ on M satisfying Wµ = 0 for all W ∈ D⊥.

Proof. “=⇒:” Let M = NT ×fN
⊥ be a (locally) contact CR warped

product and letX ∈D, Z ∈D⊥. It can be easily proved that g(AφZX,Y )= 0
for all Y ∈ D which shows that AφZX belongs to D⊥. Take W ∈ D⊥. We
get

g(AφZX,W ) = [η(X) − (φX)(ln f)] g(W,Z)
from which we obtain the conclusion where µ = ln f .
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“⇐=:” Let us prove now the converse. Suppose that AφZX = (η(X)−
(φX)(µ))Z. We get easily that

g̃ (B(X,Y ), φZ) = 0 and g̃ (B(X,W ), φZ) = (η(X)− (φX)(µ)) g(Z,W )

where X,Y ∈ D and Z,W ∈ D⊥. In the second equality replacing X by
φX (since D is φ invariant) we obtain

g̃(B(φX,W ), φZ) = (X(µ) − η(X)ξ(µ)) g(Z,W ).

So if X ∈ H(M) we get g̃(B(φX,W ), φZ) = X(µ)g(Z,W ) (∗)
and if X = ξ we obtain a trivial identity. From now on we will consider
X ∈ H(M).

From the proof of the Proposition 2.3 we have that the distribution D
is integrable and the integral manifold NT is totally geodesic in M . On
the other hand by Lemma 2.6 and (∗) we obtain

g(∇ZX,W ) = −g̃(φAφWZ,X) = g̃(B(φX,Z), φW ) = X(µ)g(Z,W ). (∗∗)

Let N⊥ be the integral manifold of D⊥. Let σ2 be the second fundamental
form of N⊥ in M . Computing g(∇ZW,X) in two ways one gets

σ2(Z,W ) = −(grad µ)gN⊥(Z,W )

(since the action of a vector from D⊥ to µ vanishes). Thus D⊥ is totally
umbilical in M . The spherical condition (see e.g. [24]) is fulfilled

g(∇Z(grad µ),X) = 0, ∀Z ∈ D⊥, X ∈ D.

So, we conclude that D⊥ is an extrinsic sphere. Now we apply the result
of S. Hiepko and obtain that M is locally isometric to a warped product
NT ×f N

⊥. �

If M is simply connected and complete then the result of previous
theorem is globally.

3.1. A good geometric inequality for contact CR-warped product
in Sasakian space form.

For M a Riemannian manifold of dimension k and a a smooth function
on M we recall
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1. ∇a, the gradient of a is defined by

〈∇a,X〉 = X(a), ∀X ∈ χ(M) (75)

2. ∆a, the laplacian of a is defined by

∆a =
k∑

j=1

{
(∇ejej)a− ejej(a)

}
= −div∇a (76)

where ∇ is the Levi–Civita connection on M and {e1, . . . , ek} is an or-
thonormal frame on M .

As consequence, we have

‖∇a‖2 =
k∑

j=1

(ej(a))
2 . (77)

Theorem 3.3. Let M = NT ×f N
⊥ be a contact CR warped product

of a Sasakian space form M̃2m+1(c) and let h = 2s+ 1 = dimNT and p =
dimN⊥. Then the second fundamental form of M satisfies the following

inequality

‖B‖2 ≥ 2p
[
‖∇ ln f‖2 − ∆ ln f +

c+ 3
2

s+ 1
]
. (78)

Proof. We have

‖B(D,D⊥)‖2 =
2s+1∑
j=1

p∑
α=1

‖B(Xj , Zα)‖2 (79)

where {Xj}j=1,2s+1 and {Zα}α=1,p are (local) orthonormal frames on NT

and N⊥, respectively. On NT we will consider a φ-adapted orthonormal
frame, namely {ej , φej , ξ}j=1,s.

We have to evaluate ‖B(X,Z)‖2 with X ∈ D and Z ∈ D⊥. The second
fundamental form B(X,Y ) is normal to M so, it splits into two orthogonal
components

B(X,Z) = BφD⊥(X,Z) +Bν(X,Z) (80)

where BφD⊥(X,Z) ∈ φD⊥ and Bν(X,Z) ∈ ν. So

‖B(X,Z)‖2 = ‖BφD⊥(X,Z)‖2 + ‖Bν(X,Z)‖2. (81)
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If X = ξ we have B(ξ, Z) = FZ = φZ. Hence

BφD⊥(ξ, Z) = φZ, Bν(ξ, Z) = 0. (82)

Consider now X ∈ H(M) and let us compute the norm of the φD⊥-com-
ponent of B(X,Z). We have

‖BφD⊥(X,Z)‖2 = 〈BφD⊥(X,Z), B(X,Z)〉.

By using relation (73), after the computations, we obtain

‖BφD⊥(X,Z)‖2 = − [(φX)(ln f)] 〈φZ,B(X,Z)〉 = [(φX)(ln f)]2 〈Z,Z〉.

So
‖BφD⊥(ej , Zα)‖2 = ((φej)(ln f))2 ,

‖BφD⊥(φej , Zα)‖2 = (ej(ln f))2.
(83)

On the other hand, from (77) we have

‖∇ ln f‖2 =
s∑

j=1

(ej ln f)2 +
s∑

j=1

[(φej)(ln f)]2 (84)

since ξ(ln f) = 0. Finally we can compute the norm ‖BφD⊥(D,D⊥)‖2.
Thus

‖BφD⊥(D,D⊥)‖2 =
∑
j=1,s
α=1,p

{
‖BφD⊥(ej , Zα)‖2 + ‖BφD⊥(φej , Zα)‖2

}

+
p∑

α=1

‖BφD⊥(ξ, Zα)‖2 =
p∑

α=1

‖∇ ln f‖2 +
p∑

α=1

‖φZα‖2.

Since ‖φZα‖2 = 1 we can conclude that

‖BφD⊥(D,D⊥)‖2 = p
{
‖∇ ln f‖2 + 1

}
(85)

Let us compute now the norm of the ν-component of B(X,Z). We have

‖Bν(X,Z)‖2 = 〈Bν(X,Z), B(X,Z)〉 = 〈ABν(X,Z)X,Z〉.

By using formula (69) we can write ABν(X,Z)X = AφBν(X,Z)(φX) so,

‖Bν(X,Z)‖2 = 〈φB(X,Z) − φBφD⊥(X,Z), B(φX,Z)〉.
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Since φBφD⊥(X,Z) belongs to D⊥ we obtain

‖Bν(X,Z)‖2 = g̃(φB(X,Z), B(φX,Z)), X ∈ H(M), Z ∈ D⊥. (86)

Consider the tensor field H̃B. As we already have seen

H̃B(X,Z) = 〈(∇φXB)(X,Z)−(∇XB)(φX,Z), φZ〉, X∈H(M), Z∈D⊥.

Using the definition of ∇B, developing the expression above we obtain six
terms:

T1 : = 〈∇⊥
φXB(X,Z), φZ〉 T2 := −〈B(∇φXX,Z), φZ〉

T3 : = −〈B(X,∇φXZ), φZ〉 T4 := −〈∇⊥
XB(φX,Z), φZ〉

T5 : = 〈B(∇X(φX), Z), φZ〉 T6 := 〈B(φX,∇XZ), φZ〉.

We will write the expressions of all these terms.
In order to compute T2 we remark first that η(∇φXX) = ‖X‖2 and

after the computations we get

T2 = ‖Z‖2
{
(φ∇φXX)(ln f) − ‖X‖2

}
. (87)

Then, it is not difficult to show that we have

T3 = [(φX)(ln f)]2‖Z‖2 and T6 = (X ln f)2‖Z‖2. (88)

As above, we write down firstly η(∇X(φX)) = −‖X‖2. It follows

T5 = −‖Z‖2
{
(φ∇X(φX))(ln f) + ‖X‖2

}
. (89)

We direct our attention to the first and the fourth terms:

T1 = g̃(∇̃φXB(X,Z), φZ)

= −(φX)
(
(φX)(ln f)‖Z‖2

)
− g̃

(
B(X,Z), ∇̃φX(φZ)

)
T4 = g̃(−∇̃φXB(X,Z), φZ)

= −X
(
(X ln f)‖Z‖2

)
+ g̃(B(φX,Z), ∇̃X (φZ)).

We also have(φX)((φX)(ln f)‖Z‖2) = ‖Z‖2
{
(φX)2(ln f) + 2[(φX)(ln f)]2

}
X((X ln f)‖Z‖2) = ‖Z‖2

{
X2(ln f) + 2(X ln f)2

}
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andg̃(B(X,Z), ∇̃φX (φZ))= − [(φX)(ln f)]2‖Z‖2−〈φB(X,Z), B(φX,Z)〉

g̃(B(φX,Z), ∇̃X (φZ)) = (X ln f)2‖Z‖2 + 〈B(φX,Z), φB(X,Z)〉.

Let us sum now T1 and T4; we obtain

T1 + T4 = −‖Z‖2{(φX)2(ln f) +X2(ln f)

+ [(φX)(ln f)]2 + (X ln f)2} + 2〈B(φX,Z), φB(X,Z)〉.

If we sum the third and the sixth terms we get

T3 + T6 = ‖Z‖2
{
[(φX)(ln f)]2 + (X ln f)2

}
.

In the same way we have

T2 + T5 = ‖Z‖2
{
(φ∇φXX)(ln f) − (φ∇X(φX))(ln f)− 2‖X‖2

}
.

Consequently

H̃B(X,Z) = ‖Z‖2
{
(φ∇φXX)(ln f) − (φ∇X(φX))(ln f)

− (φX)2(ln f) −X2(ln f) − 2‖X‖2
}

+ 2〈B(φX,Z), φB(X,Z)〉.
(90)

It is not difficult to prove

(φ∇φXX)(ln f) = (∇φX(φX))(ln f),

φ∇X(φX))(ln f) = −(∇XX)(ln f).
(91)

Using (86) and (91) the expression of H̃B(X,Z) becomes

H̃B(X,Z) = ‖Z‖2
{
(∇φX(φX))(ln f) + (∇XX)(ln f)− (φX)2(ln f)

−X2(ln f) − 2‖X‖2
}

+ 2‖Bν(X,Z)‖2.
(92)

It is time to work with orthonormal frames. Thus
H̃B(ej , Zα) = (∇φej

(φej))(ln f) + (∇ejej)(ln f) − (φej)2(ln f)

− e2j(ln f) − 2 + 2‖Bν(ej , Zα)‖2H̃B(φej , Zα)

= (∇ejej)(ln f) + (∇φej
(φej))(ln f) − e2j (ln f)

− (φej)2(ln f) − 2 + 2‖Bν(φej , Zα)‖2.

(93)
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On the other hand we have

∆(ln f) =
s∑

j=1

(
(∇ejej)(ln f) − e2j (ln f)

)
+

s∑
j=1

(
(∇φej

(φej))(ln f) − (φej)2(ln f)
)

since ξ(ln f) = 0. Taking the sum in the two relations of (93) one gets

2
s∑

j=1

p∑
α=1

‖Bν(ej , Zα)‖2 =
s∑

j=1

p∑
α=1

H̃B(ej , Zα)

− p∆(ln f) + 2sp

2
s∑

j=1

p∑
α=1

‖Bν(φej , Zα)‖2 =
s∑

j=1

p∑
α=1

H̃B(φej , Zα)

− p∆(ln f) + 2sp.

(94)

Using (31) we can write that

2
s∑

j=1

p∑
α=1

{
‖Bν(ej , Zα)‖2 + ‖Bν(φej , Zα)‖2

}
= (c+ 3)sp − 2p∆(ln f).

Finally we conclude that B satisfies the inequality. �

Corollary 3.1. Let M = NT ×f N
⊥ be a contact CR warped prod-

uct in a Sasakian space form M̃2m+1(c) and suppose NT to be compact.

Denote by dvT and vol (NT ) the volume element and the volume on NT .

Let λ1 be the first non zero eigenvalue of the Laplacian on NT . Then∫
NT

‖B‖2dvT ≥ ( 2p+ (c+ 3)sp ) vol (NT ) + 2pλ1

∫
NT

(ln f)2dvT . (95)

Proof. From the minimum principle we have∫
NT

‖∇ ln f‖2dvT ≥ λ1

∫
NT

(ln f)2dvT . (96)

Now we have to integrate on NT the inequality satisfied by the norm of B
and obtain immediately the formula (95). �
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Corollary 3.2. Suppose that M̃(c) is a Sasakian space form of type 3,

i.e. it is a product between R and a simply connected bounded domain

Bm in Cm endowed with a Kähler structure with constant holomorphic

sectional curvature k < 0. Then the function ln f is subharmonic, i.e.

∆ ln f ≤ 0.

Proof. From the proof of Theorem 3.3 we have the following relation

2
s∑

j=1

p∑
α=1

{
‖Bν(ej , Zα)‖2 + ‖Bν(φej , Zα)‖2

}
= (c+ 3)sp− 2p ∆(ln f).

Since the left side of the equality is greater than zero and c = k − 3 one
gets ksp − 2p ∆ ln f ≥ 0. Hence ∆ ln f ≤ ks

2 ≤ 0 which completes the
proof. �

Corollary 3.3. Suppose that M̃(c) is a Sasakian space form of type 2,

i.e. M̃ = R2m+1 with the usual Sasakian structure with constant φ-

sectional curvature c = −3. Then we have

(a) The function ln f is a subharmonic function, i.e. ∆ ln f ≤ 0

(b) The function ln f is harmonic if and only if B(D,D⊥) ⊂ φD⊥.

Proof. We use the same relation as in Corollary 2.2 and the state-
ment (a) follows immediately. The harmonicity of the function ln f is
equivalent with Bν(ej , Zα) = 0, Bν(φej , Zα) = 0 for all j = 1, . . . , s and
α = 1, . . . , p. This means that Bν(D,D⊥) = 0, i.e. B(D,D⊥) ⊂ φD⊥. �

Suppose that in previous two corollaries the manifold NT is compact.
It follows easily that f is a constant function and M becomes a contact
CR product.

In the following we will prove a general inequality satisfied by the
norm of the second fundamental form B of a contact CR warped product
in Sasakian manifolds (which are not necessary Sasakian space forms).

Theorem 3.4. Let M = NT ×f N
⊥ be a contact CR warped product

in a Sasakian manifold M̃ . We have

(1) The norm of the second fundamental form of M satisfies

‖B‖2 ≥ 2p
(
‖∇ ln f‖2 + 1

)
(97)

where ∇ ln f is the gradient of ln f and p = dimN⊥.
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(2) If the equality sign in (97) holds identically, then NT is a totally

geodesic submanifold and N⊥ is a totally umbilical submanifold of M̃ .

The product manifold M is a minimal submanifold in M̃ . Moreover if

M̃ = R2m+1 with the usual Sasakian structure then ln f is a superharmonic

function, i.e. ∆ ln f ≥ 0.

(3) The case TM⊥ = φD⊥. If p > 1 then the equality sign in (97)
holds identically if and only if N⊥ is a totally umbilical submanifold of M̃ .

(4) If p = 1 then the equality sign in (97) holds identically if and only

if the characteristic vector field φµ of M satisfies Aµφµ = −φ∇ ln f − ξ.

(Notice that in this case, M is a hypersurface in M̃ with the unitary normal
vector field denoted by µ.)

Proof. (1) As in the proof of the previous theorem we can write

‖B‖2 = ‖B(D,D)‖2 + 2
(
‖BφD⊥(D,D⊥)‖2 + ‖Bν(D,D⊥)‖2

)
+ ‖B(D⊥,D⊥)‖2.

We have already proved that ‖BφD⊥(D,D⊥)‖2 = p
{
‖∇ ln f‖2 + 1

}
. Hence

we obtain the inequality. (We mention here that even if in the theorem
used the manifold M̃ was a Sasakian space form, the equality is still valid.)

(2) Assume now the equality sign holds identically. It follows

B(D,D) = 0, B(D⊥,D⊥) = 0, Bν(D,D⊥) = 0. (98)

Since NT is totally geodesic in M , the first condition in (98) shows that
NT is totally geodesic in M̃ . Denote by σ2 the second fundamental forms
of N⊥ in M . We have g(∇ZW,X) = g(σ2(Z,W ),X) for X tangent to NT .
On the other hand g(∇ZW,X) = −g(W,X(ln f)Z) = −g(Z,W )X(ln f).
Next, one gets σ2(Z,W )=−g(Z,W )∇(ln f) (because σ2 is tangent toNT ).
It follows that N⊥ is totally umbilical in M . By using Gauss formula it
follows that N⊥ is also totally umbilical in M̃ .

Finally, since B(D,D) = 0 and B(D⊥,D⊥) = 0 it follows that the
mean curvature of M vanishes, so M is minimal in M̃ .

When M̃ = R2m+1 we get easily the result from the Theorem 3.3 (if
the manifold NT is compact then f is a constant).
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(3) If the equality sign holds identically, the statement follows from
(2). We must prove the converse, i.e. N⊥ totally umbilical in M̃ implies
the equality sign.

We have from Lemma 3.2 that 〈B(D,D), φD⊥〉 = 0. So, since
T (M)⊥ = φD⊥ and B(D,D) ⊂ T (M)⊥ it follows that B(D,D) = 0.

If N⊥ is totally umbilical in M̃ , then there exists a vector field H̃,
normal to N⊥ (in M̃) such that the second fundamental form σ̃2 of N⊥

in M̃ satisfies σ̃2(Z,W ) = gN⊥(Z,W )H̃ . Since σ̃2(Z,W ) = σ2(Z,W ) +
B(Z,W ) and since N⊥ is totally umbilical in M = NT ×f N

⊥ (and hence
σ2(Z,W ) = gN⊥(Z,W )H2 for some H2 normal to N⊥ in M) it follows
that there exists a vector field N , normal to M (in M̃ obviously) such
that B(Z,W ) = gN⊥(Z,W )N . Take Z,W in D⊥ unitary and orthogonal
(in N⊥) (we can do this since p > 1). Applying Lemma 2.1, statement 2,
we deduce 〈N,φW 〉 = 〈AφZW,Z〉 = 0 (since Z,W are orthogonal). But
N ∈T (M)⊥ =φD⊥. Taking W = −φN we get N = 0, so B(Z,W )= 0 for all
Z,W ∈ D⊥ and hence B(D⊥,D⊥) = 0. The third condition (B(D,D⊥) ⊂
φD⊥) which assures our conclusion is automatically satisfied.

(4) If p = 1 we have dim(Tx(M))⊥ = 1 for all x ∈ M ; thus M it is
a hypersurface in M̃ . Let µ the unit normal vector field of M (in M̃).
It follows that Z = φµ is tangent to M and unitary. Moreover we have
D⊥ = span [Z].

Suppose B(D⊥,D⊥) = 0; this means B(Z,Z) = 0. Thus we have
〈AµZ,Z〉=0. It follows that AµZ ∈ D. Let X ∈ D. We have

〈AµZ,X〉 = 〈∇̃ZX,−φZ〉 = 〈∇̃Z(φX) − η(X)Z,Z〉 = (φX)(ln f) − η(X).

Consider an adapted frame on D : {ei, φei, ξ}. We can write AµZ =∑
αiei +

∑
βiφei + γξ and so φAµZ =

∑
αiφei +

∑
(−βi)ei. We have

αi = 〈φAµZ, φei〉 = 〈∇(ln f), φei〉, −βi = 〈φAµZ, ei〉 = 〈∇(ln f), ei〉

It follows that φAµZ = ∇ ln f . Consequently AµZ = −φ∇ ln f+η(AµZ)ξ.
But η(AµZ) = 〈AµZ, ξ〉 = −η(ξ) = −1.

Conversely one has that AµZ belongs to D and so 〈AµZ,Z〉 = 0 which
is equivalent to B(Z,Z) = 0. �

For contact CR warped products in Sasakian space forms we have the
following



114 Marian-Ioan Munteanu

Proposition 3.1. Let M = NT ×f N
⊥ be a non-trivial (i.e. f non

constant) complete, simply connected, contact CR warped product those

second fundamental form satisfies ‖B‖2 = 2p
(
‖∇ ln f‖2 + 1

)
in a Sasakian

space form M̃2m+1(c). We have

(1) NT is a totally geodesic Sasakian submanifold of M̃2m+1(c). Thus

NT is a Sasakian space form NT 2s+1(c).

(2) N⊥ is a totally umbilical totally real submanifold of M̃2m+1(c).
Hence, N⊥ is a real space form of constant sectional curvature. Denote it

by ε.

(3) If p > 1, the function f satisfies

‖∇f‖2 = ε− c+ 3
4

f2. (99)

Proof. (1) From the theorem above we have that NT is totally geo-
desic submanifold in M̃2m+1(c). By using Proposition 1.3, p. 49 from [49],
it follows that NT is of constant φ-sectional curvature c.

(2) Also from the above theorem we have that N⊥ is totally umbilical
submanifold in M̃2m+1(c). Denoting by

H = −∇(ln f) (100)

we remark that the second fundamental form of N⊥ in M̃ can be written
as σ̃2(Z,W ) = g(Z,W ) H.

As f is C∞ on NT and g|NT ≡ gNT let us remark that ‖∇ ln f‖2 ∈
C∞(NT ).

The curvature tensor of Sasakian space form M̃ is given by

R̃V WZ =
c+ 3

4
(g̃(W,Z)V − g̃(V,Z)W )

since η|N⊥ vanishes and N⊥ is φ-anti-invariant (here V,W,Z are tangent
to N⊥). Now, taking into account that g̃(V,Z) = g(V,Z) = f2gN⊥(V,Z)
for all V,Z tangent to N⊥ we can write

R̃V WZ =
c+ 3

4
f2 (gN⊥(W,Z)V − gN⊥(V,Z)W ) . (101)

On the other hand it can be easily proved

R̃V WZ = RN⊥
V WZ + f2 {gN⊥(Z,W )∇V H − gN⊥(V,Z)∇WH}
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+ f2 {gN⊥(Z,W )B(V,H) − gN⊥(V,Z)B(W,H)} .

But V,W ∈ N⊥, H ∈ NT so ∇VH = H(ln f)V and ∇VH = H(ln f)V .
We also have H(ln f) = −‖H‖2. Hence,

R̃V WZ = RN⊥
V WZ − f2‖H‖2 {gN⊥(Z,W )V − gN⊥(V,Z)W}

+ f2 {gN⊥(Z,W )B(V,H) − gN⊥(V,Z)B(W,H)} .

From (101) we have that R̃V WZ is tangent to M so one obtains

R̃V WZ = RN⊥
V WZ − f2‖∇(ln f)‖2 {gN⊥(Z,W )V − gN⊥(V,Z)W} (102)

and
gN⊥(Z,W )B(V,H) = gN⊥(V,Z)B(W,H)

for all V,Z,W tangent to N⊥.
(103)

The relations (101) and (102) yield to

RN⊥
V WZ = f2

(
c+ 3

4
+ ‖∇(ln f)‖2

)
{gN⊥(Z,W )V − gN⊥(V,Z)W} .

The coefficient depends on the points of NT so, it is a constant (with
respect to N⊥). It follows that N⊥ is of constant sectional curvature.
Denoting it by ε we have

ε = f2

(
c+ 3

4
+ ‖∇ ln f‖2

)
. (104)

Since f is not constant (and so ∇ ln f 
= 0) it follows that ε > f2 c+3
4 .

(3) The statement follows easily from (104). We know that ∇ ln f =
1
f ∇f so, ε = f2 c+3

4 + ‖∇f‖2. �

In the case that M̃2m+1 = R2m+1 with the usual Sasakian structure,
then c = −3 and thus ε = ‖∇f‖2 which means that N⊥ is a space form
with positive curvature.
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3.2. An example of contact CR-warped product in R2m+1

satisfying the “good” equality which does not satisfy
‖B‖2 = 2p

(‖∇(ln f)‖2 + 1
)
.

Let R2s+1 be the Sasakian space form of φ sectional curvature −3
(cf. [35]). Let Sp ⊂ Rp+1 be the unit sphere immersed in the Euclidian
space Rp+1. Let R2m+1 be also the Sasakian space form where m = ph+s

with h a positive integer, 1 < h ≤ s.
Consider the map r : R2s+1 × Sp −→ R2m+1 defined by

r(x1, y1, . . . , xs, ys, z, w
0, w1, . . . , wp) = (w0x1, w

0y1, . . . , w
px1, w

py1, . . .

. . . , w0xh, w
0yh, . . . , w

pxh, w
pyh, xh+1, yh+1, . . . , xs, ys, z)

where (w0)2 + (w1)2 + . . .+ (wp)2 = 1. On R2m+1 we consider the (local)
coordinates

{Xα
j , Y

α
j ,Xa, Ya, Z}, α = 0, . . . , p, j = 1, . . . , h, a = h+ 1, . . . , s.

With this notation the equations of the map r are given by

r :

{
Xα

i = wαxi, Y α
i = wαyi,

Xa = xa, Ya = ya, Z = z.

Proposition 3.2. We have

(1) r is an isometric immersion between the warped product R2s+1×f

Sp and R2m+1. The warped function is f = 1
2

√∑h
i=1(x

2
i + y2

i ).

(2) R2s+1 is a φ̃ invariant submanifold in R2m+1, i.e. φ̃(r∗T (R2s+1)) ⊂
r∗T (R2s+1) (we put ˜ for structures on R2m+1).

(3) Sp is a φ̃ anti-invariant submanifold in R2m+1, i.e. φ̃(r∗T (Sp)) ⊂
(r∗T (Sp))⊥.

Proof. (1) An ordinary exercise shows that r is an immersion and
g̃(r∗X, r∗Y ) ◦ r = g(X,Y ) for X,Y tangent to R2s+1. A vector field
Z = Zα ∂

∂wα is tangent to Sp if and only if
∑

αw
αZα = 0. Doing the com-

putations one gets that g̃(r∗Z, r∗W ) = 1
4

∑h
i=1(x

2
i +y

2
i ) (

∑p
α=0 Z

αWα) =
f2gRp+1(Z,W ) where Z,W are vector fields tangent to the sphere Sp.
Then, it is easy to prove that g̃(r∗X, r∗Z) vanishes for all X tangent to
R2s+1 and Z tangent to Sp. Thus we have the statement.
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(2) Let us remark that φ̃(r∗X) = r∗(φX) which means that φ =
φ̃|R2s+1 .

(3) Let Z be a tangent vector field on Sp ⊂ Rp+1 given by Z =∑
Zα ∂

∂wα with the tangency condition
∑
wαZα = 0. We have φ̃(r∗Z) =∑

i,α Z
α
(
xi

∂
∂Y α

i
− yi

∂
∂Xα

i

)
. Making the computations we obtain that

g̃(r∗X, φ̃(r∗Z)) and g̃(r∗W, φ̃(r∗Z)) vanish (X is tangent to R2s+1 andW is
tangent to the sphere). This means that φ̃(r∗Z) is normal to r(R2s+1×fS

p)
and hence Sp is φ̃-anti-invariant submanifold in R2m+1. �

Proposition 3.3. The second fundamental form of the warped prod-

uct R2s+1 ×f S
p in R2m+1 satisfies

‖B‖2 = 2p
{
‖∇ ln f‖2 − ∆ ln f + 1

}
.

Proof. On R2m+1 we will consider the vector fields
Aα

i = 2
(

∂
∂Xα

i
+ Y α

i
∂

∂Z

)
, Bα

i = 2 ∂
∂Y α

i
for α = 1, . . . , p and i = 1, . . . , s and

similarly Aa, Ba for a = h+ 1, . . . ,m. Denote by ξ̃ = 2 ∂
∂Z . We have

r∗Ai=
∑
α

wαAα
i , r∗Bi=

∑
α

wαBα
i , r∗Aa=Aa, r∗Ba = Ba, r∗ξ=ξ̃

(we denote with the same letters the vector fields Aa and Ba on R2s+1 and
R2m+1 respectively). Let Z be a vector field tangent to the sphere Sp. We
have

∇Z
∂

∂xi
=

xi

4f2
Z, ∇Z

∂

∂yi
=

yi

4f2
Z, ∇Z

∂

∂xa
= 0,

∇Z
∂

∂ya
= 0, ∇Z

∂

∂z
= 0.

Since r∗Z = 1
2

∑
α,i Z

α (xiA
α
i + yiB

α
i ) we obtain by using the Gauss for-

mula ∇̃r∗Zr∗Ai =
∑

α Z
aAα

i and ∇̃r∗Zr∗Bi =
∑

α Z
aBα

i . HenceB(Z,Ai) =
∑

α,j Z
α
[(
δij − xixj

4f2

)
Aα

j − xixj

4f2 B
α
j

]
B(Z,Bi) =

∑
α,j Z

α
[
−xixj

4f2 A
α
j +

(
δij − xixj

4f2

)
Bα

j

]
.

Let us take Z unitary (on the product manifold). We get

‖B(Z,Ai)‖2 =
1
f2

(
1 − x2

i

4f2

)
, ‖B(Z,Bi)‖2 =

1
f2

(
1 − y2

i

4f2

)
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‖B(Z, ξ)‖2 = 1, ‖B(Z,Aa)‖2 = ‖B(Z,Ba)‖2 = 0.

So, ‖B(D,D⊥)‖2 = p
2f2 (2h−1)+p. But B(D,D) = 0 and B(D⊥,D⊥) = 0.

It follows that ‖B‖2 =2p
(

2h−1
f2 + 1

)
. Note that ∇ ln f= 1

2f2

h∑
i=1

(
xiAi+yiBi

)
and thus ‖∇ ln f‖2 = 1

f2 . Making the usual computations we obtain
∆ ln f = 2

f2 (1 − h). This ends the proof. �
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