Title: Parameter-independent structure in periodic orbits of an iterated function system on the real line

Author(s): Dixon J. Jones

For the iterated function system on \(\mathbb{R} \) comprising the maps \(f(x) = ax + 1 \) and \(g(x) = bx \), with \(a > 0 \) and \(0 < b < 1 \), we represent each \(n \)-cycle by the composition (or word) in \(f \) and \(g \) corresponding to the cycle’s point of least magnitude (or perigee). These representations are partitioned into equivalence classes using simple combinatorial criteria. Associated with each \(n \)-cycle are \(n \) polynomials in \(a \) and \(b \) whose values at a special value of \(a \) are partially ordered. An example is given showing that, for fixed \(b \), the perigee word of an \(n \)-cycle is a function of \(a \); but the ordering of the polynomial values enables us to prove that the maximal perigee word in each equivalence class is independent of the parameters \(a \) and \(b \).

Address:
Dixon J. Jones
5112 Fairchild Ave
Fairbanks, Alaska
USA 99709-4523