The linear scalar differential equation with several delays

\[x'(t) = - \sum_{i=1}^{N} b_i(t)x(t - \tau_i(t)) \]

is investigated, where \(b_i(t) \in C(\mathbb{R}^+, \mathbb{R}) \) and \(\tau_i(t) \in C(\mathbb{R}^+, \mathbb{R}^+) \) for \(i = 1, 2, \ldots, N \). Using fixed point theory, some new conditions for asymptotic stability of the zero solution are established. For \(N = 1 \), our theory improves the results in the earlier publications. For \(N = 2 \), two examples, which the results in the literature can not be applied to, are given to show the feasibility and effectiveness of our result.

Address:
Chuhua Jin
Faculty of Applied Mathematics
Guangdong University of Technology
Guangzhou, Guangdong 510006
P.R. China
E-mail: jinchuhua@tom.com

Address:
Jiaowan Luo
School of Mathematics
and Information Science
Guangzhou University
Guangzhou, Guangdong 510006
P.R. China
E-mail: mathluo@yahoo.com