Let \(q \) be an odd positive integer and \(P \in F_2[z] \) be of order \(q \) and such that \(P(0) = 1 \). We denote by \(\mathcal{A} = \mathcal{A}(P) \) the unique set of positive integers satisfying \(\sum_{n=0}^{\infty} p(\mathcal{A}, n) z^n \equiv P(z) \pmod{2} \), where \(p(\mathcal{A}, n) \) is the number of partitions of \(n \) with parts in \(\mathcal{A} \). In [?], it is proved that if \(A(P, x) \) is the counting function of the set \(\mathcal{A}(P) \) then \(A(P, x) \ll x (\log x)^{-r/\varphi(q)} \), where \(r \) is the order of 2 modulo \(q \) and \(\varphi \) is the Euler’s function. In this paper, we improve on the constant \(c = c(q) \) for which \(A(P, x) \ll x (\log x)^{-c} \).