Title: The convergence of the sequences coding the ground model reals

Author(s): Miloš S. Kurilić and Aleksandar Pavlović

We investigate the convergence λ_1 on a complete Boolean algebra \mathbb{B} defined in the following way: a sequence $x = (x_n : n \in \omega)$ in \mathbb{B} converges to the point $\limsup x$ of \mathbb{B}, if in each generic extension $V_\mathbb{B}[G]$ the real coded by the name $\tau_x = \{\langle n, x_n \rangle : n \in \omega\}$ belongs to the ground model V; otherwise, x has no limit points. It is shown that λ_1 generates the same topology as the convergence λ_4, generalizing the sequential convergence on the Aleksandrov cube and that for a c.B.a. \mathbb{B} the following conditions are equivalent: (1) The algebra \mathbb{B} is $(\omega, 2)$-distributive; (2) The $(L2)$-closure of λ_1, $\tilde{\lambda}_1$, is a topological convergence; (3) $\tilde{\lambda}_1 = \lambda_4$; (4) $\lambda_1 = \lambda_4$; and, for the algebras satisfying $\text{hcc}(\mathbb{B}) > c$, (5) λ_1 is a weakly topological convergence. Also, it is shown that the convergence λ_1 is not weakly topological, if forcing by \mathbb{B} produces splitting reals.

Address:
Milos S. Kurillic
Department of Mathematics and Informatics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Serbia

Address:
Aleksandar Pavlović
Department of Mathematics and Informatics
University of Novi Sad
Trg Dositeja Obradovića 4
21000 Novi Sad
Serbia