Title: Effective results for hyper- and superelliptic equations over number fields

Author(s): Attila Bérczes, Jan-Hendrik Evertse and Kálmán Győry

Let \(f \) be a polynomial with coefficients in the ring \(\mathcal{O}_S \) of \(S \)-integers of a given number field \(K \), \(b \) a non-zero \(S \)-integer, and \(m \) an integer \(\geq 2 \). Suppose that \(f \) has no multiple zeros. We consider the equation \((*)\) \(f(x) = by^m \) in \(x, y \in \mathcal{O}_S \). In the present paper we give explicit upper bounds in terms of \(K, S, b, f, m \) for the heights of the solutions of \((*)\). Further, we give an explicit bound \(C \) in terms of \(K, S, b, f \) such that if \(m > C \) then \((*)\) has only solutions with \(y = 0 \) or a root of unity. Our results are more detailed versions of work of Trelina, Brindza, and Shorey and Tijdeman. The results in the present paper are needed in a forthcoming paper of ours on Diophantine equations over integral domains which are finitely generated over \(\mathbb{Z} \).

Address:
Attila Bérczes
Institute of Mathematics
University of Debrecen
H-4010 Debrecen, P.O. Box 12
Hungary

Address:
Jan-Hendrik Evertse
Universiteit Leiden
Mathematisch Instituut
Postbus 9512, 2300 RA Leiden
The Netherlands

Address:
Kálmán Győry
Institute of Mathematics
University of Debrecen
H-4010 Debrecen, P.O. Box 12
Hungary