Let $A = \{a_1 < a_2 < \cdots \}$ be a set of nonnegative integers, and hA be the set of all sums of h not necessarily distinct elements of A. The set A is a \textit{subbasis of order} h if hA contains an infinite arithmetic progression. Furthermore, for any set P of integers, a sequence $B = \{b_1, b_2, \ldots \}$ is defined as a \textit{P-perturbation of} A if $b_n - a_n \in P$ for all n. Let \mathbb{Z}_0 be the set of nonnegative integers. In this paper, we prove that: (i) for any integers k, l with $0 \leq k < l$, every $\{k, l\}$-perturbation of \mathbb{Z}_0 is a subbasis of order 2; (ii) for every positive integer k, every $\{0, 3k - 1, 3k\}$-perturbation of \mathbb{Z}_0 is a subbasis of order 4. This extends a result of John R. Burke and William A. Webb [1]. Related conjectures are also posed in the paper.

\textbf{Address:}
Jin-Hui Fang
Department of Mathematics
Nanjing University of Information Science and Technology
10044 Nanjing, Jiangsu
China