Title: Mean invariance identity

Author(s): Janusz Matkowski

For a continuous and increasing function \(f \) in a real interval \(I \), and a bivariable mean \(P \) defined in \(I^2 \), we prescribe a pair of bivariable means \(M \) and \(N \) such that the quasiarithmetic mean \(A_f \) generated by \(f \) is invariant with respect to the mean-type mapping \((M, N) \). This allows to find effectively the limit of the iterates of the mean-type mapping \((M, N) \). The means \(M \) and \(N \) are equal iff \(P \) is the arithmetic mean \(A \); they are symmetric iff so is \(P \). Treating \(f \) and \(P \) as the parameters, we obtain the family of all pairs of means \((M, N) \) such that the quasiarithmetic mean \(A_f \) is invariant with respect to \((M, N) \). In particular, we indicate the function \(f \) and the mean \(P \) such that the invariance identity \(A_f \circ (M, N) = A_f \) coincides with the equality \(G \circ (H, A) \), where \(G \) and \(H \) are the geometric and harmonic means, equivalent to the classical Pythagorean harmony proportion.

Address:
Janusz Matkowski
Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Szafrana 4A
PL 65-516 Zielona Góra
Poland