Soluble groups with many 2-generator torsion-by-nilpotent subgroups

By NADIR TRABELSI (Sétif)

Abstract. We prove in this paper that a finitely generated soluble group in which every infinite subset contains a pair of distinct elements x, y such that $\langle x, y \rangle$ is torsion-by-nilpotent (respectively, $\langle x, x^y \rangle$ is Chernikov-by-nilpotent), is itself torsion-by-nilpotent (respectively, finite-by-nilpotent).

1. Introduction and results

Following a question of Erdős, B. H. Neumann proved in [18] that a group is centre-by-finite if, and only if, every infinite subset contains a commuting pair of distinct elements. Since this result, problems of similar nature have been the object of many papers (for example [1]–[7], [10], [15]–[17], [21]–[23]). In particular, in [15] Lennox and Wiegold considered the class (Ω, ∞) of groups in which every infinite subset contains two distinct elements generating an Ω-group, where Ω is a given class of groups. They characterised finitely generated soluble groups which belong to (Ω, ∞) when Ω is the class of polycyclic, or nilpotent, or coherent groups. Here we will consider the class (Ω, ∞), when Ω is the class \mathcal{TN} of torsion-by-nilpotent groups, or the class \mathcal{CN} of Chernikov-by-nilpotent groups, and we will prove the following results:

Mathematics Subject Classification: 20F16.
Key words and phrases: finitely generated soluble groups, finite-by-nilpotent groups, infinite subsets, Chernikov groups, torsion groups.
I would like to thank the referee whose comments improved the exposition of this paper.
Theorem 1. Let G be a finitely generated soluble group in the class $(T\mathcal{N}, \infty)$. Then G is torsion-by-nilpotent.

Let k be a positive integer and let \mathcal{N}_k be the class of nilpotent groups of class at most k. In [2], Abdollahi and Taeri proved that a finitely generated metabelian group G is in (\mathcal{N}_k, ∞) if, and only if, $G/Z_k(G)$ is finite; and a finitely generated soluble group G is in the class (\mathcal{N}_k, ∞), if and only if, G belongs to $\mathcal{F}\mathcal{N}^{(2)}_k$, where \mathcal{F} is the class of finite groups and $\mathcal{N}^{(2)}_k$ denotes the class of groups whose 2-generated subgroups are nilpotent of class at most k. Also let \mathcal{E}_k be the class of k-Engel groups. In [16], Longobardi proved that if G is a finitely generated locally graded group in the class (\mathcal{E}_k, ∞), then G belongs to $\mathcal{F}\mathcal{E}_k$. Combining the results of [2], [16], and Theorem 1, we shall obtain the following consequences.

Corollary 2. Let k be a positive integer.

(i) A finitely generated soluble group G is in the class $(T\mathcal{N}_k, \infty)$ if and only if G belongs to $T\mathcal{N}^{(2)}_k$.

(ii) A finitely generated metabelian group G is in the class $(T\mathcal{N}_k, \infty)$ if and only if G belongs to $T\mathcal{N}_k$.

(iii) A finitely generated soluble group G is in the class $(T\mathcal{E}_k, \infty)$ if and only if G belongs to $T\mathcal{E}_k$.

In the Chernikov-by-nilpotent case, we weaken the hypothesis by considering the class $(\mathcal{C}\mathcal{N}, \infty)^*$ of groups in which every infinite subset contains two distinct elements x, y such that $\langle x, x^y \rangle$ is in $\mathcal{C}\mathcal{N}$. More precisely, we will prove the following result:

Theorem 3. Let G be a finitely generated soluble group in the class $(\mathcal{C}\mathcal{N}, \infty)^*$. Then G is finite-by-nilpotent.

Note that Theorem 3 improves the result of [22, Proposition 2], where it is proved that a finitely generated soluble group in the class $(\mathcal{F}\mathcal{N}, \infty)$ is finite-by-nilpotent.

Let k be a positive integer and let $\mathcal{E}_k(\infty)$ be the class of groups in which every infinite subset contains two distinct elements x, y such that $[x, k, y] = 1$. In [1], Abdollahi proved that a finitely generated metabelian group G is in $\mathcal{E}_k(\infty)$ if, and only if, $G/Z_k(G)$ is finite, and if G is a finitely
generated soluble group in the class $\mathcal{E}_k(\infty)$, then there exists an integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite. Note that $(\mathcal{N}_k, \infty)^*$ is contained in $\mathcal{E}_{k+1}(\infty)$. Combining the results of [1], [2], [16] and Theorem 3, we shall obtain the following consequences.

Corollary 4. Let k be a positive integer.
(i) If G is a finitely generated soluble group in the class $(\mathcal{CN}_k, \infty)^*$, then there is an integer $c = c(k)$, depending only on k, such that $G/Z_c(G)$ is finite.
(ii) A finitely generated metabelian group is in the class $(\mathcal{CN}_k, \infty)^*$ if and only if $G/Z_{k+1}(G)$ is finite.

Corollary 5. Let k be a positive integer.
(i) A finitely generated soluble group G is in the class (\mathcal{CN}_k, ∞) if and only if G belongs to $\mathcal{F}\mathcal{N}_k^{(2)}$.
(ii) A finitely generated metabelian group G is in the class (\mathcal{CN}_k, ∞) if and only if $G/Z_k(G)$ is finite.
(iii) A finitely generated soluble group G is in the class (\mathcal{CE}_k, ∞) if and only if G belongs to $\mathcal{F}\mathcal{E}_k$.

2. Proof of the results

To prove our theorems, we will use recent results of **Endimioni** and **Traustasson** [9] on torsion-by-nilpotent groups.

Lemma 6. Let $c > 0$ be an integer and let G be a group in $\mathcal{N}_c T$. If G belongs to $(T\mathcal{N}_c, \infty)$ then it is in $(T\mathcal{N}_c, \infty)$.

Proof. Let $x, y \in G$ such that $\langle x, y \rangle \in T\mathcal{N}$. Clearly $\langle x, y \rangle$ belongs also to $\mathcal{N}_c T$ and the set of its torsion elements is a subgroup T. Hence $\langle x, y \rangle / T$ is a torsion-free nilpotent group which belongs to $\mathcal{N}_c T$. It follows from [19, Lemma 6.33] that $\langle x, y \rangle / T \in \mathcal{N}_c$, so $\langle x, y \rangle \in T\mathcal{N}_c$. Consequently, if G belongs to $(T\mathcal{N}_c, \infty)$, then it is in $(T\mathcal{N}_c, \infty)$. \hfill \Box

Lemma 7. Let G be a soluble group in the class $(T\mathcal{N}, \infty)$. If G is abelian-by-torsion then it is torsion-by-abelian.
Proof. By Lemma 6, G belongs to $(\mathcal{T}A, \infty)$, where \mathcal{A} denotes the class of abelian groups. First of all, we show that the set of torsion elements of G is a subgroup. Let $x, y \in G$ be two elements of finite order. Then $H = \langle x, y \rangle$ is a finitely generated soluble group which belongs to \mathcal{AT}, so it is abelian-by-finite. Clearly we may assume H infinite. Therefore H has a torsion-free normal abelian subgroup A of finite index. Let $1 \neq a \in A$ and let $h \in H$, then the subset $\{a^ih : i > 0\}$ is infinite. By the property $(\mathcal{T}A, \infty)$, there are two distinct positive integers i, j such that $\langle a^ih, a^j h \rangle \in \mathcal{T}A$, so $\langle a^{i-j}, a^j h \rangle \in \mathcal{T}A$. Hence $\langle a^{i-j}, a^j h \rangle^m = 1$ for some positive integer m. Since A is abelian and normal in H we obtain $[a, h] = 1$, and this gives $[a, h] = 1$ as A is torsion-free. It follows that A is contained in the centre of H. So H is a centre-by-finite group. Thus, by a result of Schur [19, Theorem 4.12], H' is finite and therefore H is a finitely generated finite-by-abelian group. This contradicts the fact that H is infinite. Consequently, H is a finite group, so xy^{-1} is of finite order. This means that the elements of finite order in G form a subgroup T, as claimed. Now G/T is a torsion-free group in the class $(\mathcal{T}A, \infty)$. So G/T belongs to (\mathcal{A}, ∞). It follows by the result of B. H. Neumann [18] that G/T is centre-by-finite. Thus G/T is finite-by-abelian and, therefore, G is torsion-by-abelian, as required.

Lemma 8. Let G be a finitely generated abelian-by-nilpotent group with abelian Fitting subgroup A and let $x \in G$. Suppose that for each $a \in A$, there are integers $n \geq 0$, $m_1 > 0$ and $m_2 > 0$ such that $[a, x^{m_1} x^{m_2}] = 1$. Then there is a positive integer d, depending only on G, such that $x^d \in A$.

Proof. Since G is a finitely generated abelian-by-nilpotent group, we may therefore apply a result of Lennox and Roseblade [14, Theorem B], which asserts that in a finitely generated abelian-by-nilpotent group G, there is a positive integer d, depending only on G, such that for all $i > 0$ and for all g in G the inclusion $C_G(g^i) \leq C_G(g^d)$ holds. We firstly show by induction on n that if a is an element of A satisfying the hypothesis of the lemma, then $[a, x^n x^d] = 1$. If $n = 0$, then we have $[a, x^{m_1}] = 1$ hence $[a, x^d] = 1$, as desired. Now assume that $n > 0$ and $[a, x^{m_1}, x^{m_2}] = 1$. So we obtain $[a, x^{m_1}, x^{m_2}, x^d] = 1$. Now $\langle a, x \rangle$ being metabelian, it is easy to see that $[a, x^i, x^j] = [a, x^j, x^i]$ for any integers i, j. Thus we get

\[[a, x^i, x^j] = [a, x^j, x^i] \]
that \([a, x^d, x^{m_1} x^{m_2}] = 1 \), and by the inductive hypothesis we obtain \([a, n+1 x^d] = 1 \), as required.

Now consider the subgroup \(K = \langle A, x \rangle \). Since \(G/A \) is nilpotent, \(K \) is subnormal in \(G \). For every \(y \in K \), there exist \(a \in A \) and an integer \(r \) such that \(y = x^r a \). As we have just shown, there is a positive integer \(d \) such that \([a, n+1 x^d] = 1 \) for some non-negative integer \(n \), so \(y^n x^d \) and \(x^r a, n+1 x^d \) are left Engel elements of \(K \). Since \(K \) is soluble, the set of its left Engel elements coincides with its Hirsch–Plotkin radical \(A_1 \) [19, Theorem 7.34], so \(x^d \in A_1 \). Since \(K \) is subnormal in \(G \), \(A_1 \) is a subnormal locally nilpotent subgroup in \(G \). So \(A_1 \) is contained in the Hirsch–Plotkin radical of \(G \) [20, 12.1.4]. Now \(G \) is a finitely generated abelian-by-nilpotent group, so it satisfies the maximal condition on normal subgroups [12]. Therefore the Hirsch–Plotkin radical of \(G \) coincides with its Fitting subgroup, hence \(x^d \in A \) as claimed. \(\square \)

Proof of Theorem 1. Let \(G \) be a finitely generated soluble group in the class \((TN, \infty)\). To prove that \(G \) is torsion-by-nilpotent, we proceed by induction on the derived length \(d \) of \(G \). If \(d = 1 \) there is nothing to prove, so we can assume \(d > 1 \). By the inductive hypothesis, \(G/G^{(d-1)} \) is torsion-by-nilpotent. Thus \(G \) is in the class \((AT)N\), and by Lemma 7 it belongs to \(T(AN) \). Therefore, we may suppose \(G \) abelian-by-nilpotent, so \(G \) satisfies the maximal condition on normal subgroups [12] and \((TN, \infty)\) is a quotien closed class, we may assume that \(G \) is a just-non-(torsion-by-nilpotent) group, that is, \(G \notin TN \) but every proper quotient of \(G \) is torsion-by-nilpotent. In [9, Corollary 1.3], it is proved that if \(H \) is a normal subgroup of a locally soluble group \(G \) such that \(H \) and \(G/H' \) are torsion-by-nilpotent, then \(G \) is torsion-by-nilpotent. It follows that every normal torsion-by-nilpotent subgroup of \(G \) is abelian. In particular, the Fitting subgroup \(A \) of \(G \), is abelian. Moreover, it is easy to see that any normal torsion subgroup of \(G \) must be trivial. Thus \(A \) is torsion-free. Let \(1 \neq a \in A \) and let \(xA \) be an element of infinite order in \(G/A \). Then the subset \(\{ x^i a : i > 0 \} \) is infinite. Hence there exist two positive integers \(i, j \) such that \(\langle x^i a, x^j a \rangle \) is torsion-by-nilpotent. So \(\langle x^i a, x^{i-j} \rangle \) is torsion-by-nilpotent. Then there is an integer \(n \geq 0 \) such that \(\gamma_{n+1}(\langle x^i a, x^{i-j} \rangle) \) is a torsion group. If \(n = 0 \), then \(\langle x^i a, x^{i-j} \rangle \) is a torsion group. So \((x^i a)^m = 1 \) for some positive integer \(m \). Hence \(x^{im} \in A \), this is a contradiction and so
Thus there is a positive integer \(m \) such that \([a, x^{i-j}]^m = 1 \). Hence \([a, x^{i-j}] = 1\) as \(A \) is torsion-free. It follows by Lemma 8 that there exists a positive integer \(d \) such that \(x^d \in A \), this is a contradiction and so \(G/A \) is a torsion group. Therefore \(G \) is abelian-by-finite, so by Lemma 7 \(G \) is torsion-by-abelian, a contradiction which completes the proof.

Proof of Corollary 2. Let \(k \) be a positive integer.

(i) If \(G \) is a finitely generated soluble group in \((TN_k, \infty)\), then from Theorem 1, \(G \) is torsion-nilpotent. Thus \(G \) has a torsion subgroup \(T \). Clearly \(G/T \) is in \((TN_k, \infty)\), hence \(G/T \) being torsion-free is in \((N_k, \infty)\). So by [2], \(G/T \in FN^{(2)}_k \). Consequently, \(G \in TN^{(2)}_k \), as required. It is easy to see that if \(G \) is in \(TN^{(2)}_k \), then it belongs to \((TN_k, \infty)\).

(ii) If \(G \) is a finitely generated metabelian group in \((TN_k, \infty)\), then as in (i) there is a torsion normal subgroup \(T \) such that \(G/T \) is a finitely generated metabelian group in \((N_k, \infty)\). So by [2], \(G/T \in FN_k \). Thus \(G \in TN_k \), as required. The converse is obvious.

(iii) Let \(G \) be a finitely generated soluble group in the class \((T \mathcal{E}_k, \infty)\). Since soluble Engel groups are locally nilpotent [20, 12.3.3], \(G \) belongs to \((TN, \infty)\). It follows, by Theorem 1, that \(G \) is torsion-nilpotent. Let \(T \) be the torsion subgroup of \(G \). So \(G/T \) is a torsion-free group in the class \((T \mathcal{E}_k, \infty)\). We deduce that \(G/T \) is in \((\mathcal{E}_k, \infty)\). It follows, from [16], that \(G/T \) is in \(\mathcal{F}E_k \). Thus \(G \) is in \(T \mathcal{E}_k \). The converse is obvious.

Lemma 9. Let \(G \) be a finitely generated soluble group in the class \((CN, \infty)^*\). Then \(G \) is nilpotent-by-finite.

Proof. Let \(G \) be a finitely generated soluble group in the class \((CN, \infty)^*\). By [8, Corollary 2] \(G \) is nilpotent-by-finite if, and only if, for each 2-generator subgroup \(H \), the factor group \(H/H'' \) is nilpotent-by-finite. It follows that we may assume \(G \) metabelian. Since \((CN, \infty)^*\) is a quotient closed class of groups and finitely generated nilpotent-by-finite groups are finitely presented, it follows, by [19, Lemma 6.17], that we may suppose that \(G \) is a just-non-(nilpotent-by-finite) group. In [13, Lemma 2.1] it is proved that the fitting subgroup \(A \) of \(G \) is therefore abelian and either \(A \) is torsion-free, or it is an elementary abelian \(p \)-group of infinite rank for some prime \(p \). Let \(1 \neq a \in A \) and let \(xA \) be an element of infinite order in \(G/A \). Then the subset \(\{x^ia : i > 0\} \) is infinite. Hence there exist two positive
There exists a positive integer \(m \) in finite. So there are two positive integers \(i, j \) such that \(\langle (x^i a)^{x^j a}, x^i a \rangle = \langle [x^j a, x^i a], x^i a \rangle \) is Chernikov-by-nilpotent. Using the facts that \(A \) is abelian and normal in \(G \) we have \([x^j a, x^i a] = [x^j, a][a, x^i] = [a, x^{-j}]^{x^j}[a, x^i] = [a, x^i x^{-j}]^{x^j} = [a^{x^j}, x^{-j}]\). Set \(H = \langle [a^{x^j}, x^{-j}], x^i a \rangle \), then there is an integer \(n \geq 0 \) such that \(\gamma_{n+1}(H) \) is a Chernikov group. On the other hand \(\gamma_2(H) \) is contained in \(A \) as \(G \) is metabelian. If \(n = 0 \), then \(H \) is finite since Chernikov groups are locally finite. So \((x^i a)^m = 1\) for some positive integer \(m \). Hence \(x^m \in A \), this is a contradiction and so \(n > 0 \). It follows that \(\gamma_{n+1}(H) \) is a Chernikov subgroup of \(A \).

Suppose that \(A \) is torsion-free. Then \(\gamma_{n+1}(H) = 1 \) and hence \([a^{x^j}, x^{-j}, n, x^i a] = 1\), so \([a, x^{-j}, n, x^i] = 1\). By Lemma 8 there is, therefore, a positive integer \(d \) such that \(x^d \in A \), and this contradicts the fact that \(xA \) is of infinite order.

It follows that we may assume that \(A \) is an elementary abelian \(p \)-group. So \(\gamma_{n+1}(H) \) is a Chernikov and an elementary abelian \(p \)-group, hence finite. Thus \(H \) is finite-by-nilpotent, so \(H \) is nilpotent-by-finite. Therefore there exists a positive integer \(m \) such that \([a^{x^j}, x^{-j}, n+1, (x^i a)^m] = 1\), so \([a, x^{-j}, n+1, x^m] = 1\). This gives, by Lemma 8, that \(x^d \in A \), for some positive integer \(d \), a contradiction which completes the proof.

Corollary 10. Let \(G \) be a finitely generated soluble group. Then, \(G \in (CN, \infty)^* \) if and only if \(G \in (FN, \infty)^* \).

Proof. Let \(G \) be a finitely generated soluble group in the class \((CN, \infty)^*\). By Lemma 9, \(G \) is nilpotent-by-finite. So \(G \) satisfies max, the maximal condition on subgroups. Since Chernikov groups are locally finite, it follows that \(G \) is in the class \((FN, \infty)^*\). □

Lemma 11. Let \(G \) be a finitely generated abelian-by-finite group in the class \((FN, \infty)^*\). Then \(G \) is finite-by-nilpotent.

Proof. Let \(A \) be a normal abelian subgroup of finite index in \(G \). Since \(G \) is finitely generated, we may assume that \(A \) is torsion-free. Let \(x \in G \) and let \(a \in A \) of infinite order. Then the subset \(\{a^i x : i > 0\} \) is infinite. So there are two positive integers \(i, j \) such that \(\langle [a^j x, a^j x], a^j x \rangle \in FN \). Hence \(\langle [a^{-j}, x]^x, a^j x \rangle \in FN \), and therefore \(\langle [a^{-j}, x], xa^i \rangle \in FN \). Thus there exist two positive integers \(m, n \) such that \([a^{j-i}, x, na^i]^m = [a, x, na^i]^{(j-i)m} = [a, x, na]^{(j-i)m} = 1 \). Since \(A \) is torsion-free, we obtain
\[a_{n+1}x \] = 1. It follows that \(a \) is a right Engel element of \(G \). Since \(G \) satisfies max, the set of its right Engel elements coincides with a term of the upper central series \([20, 12.3.7]\). Hence \(A \leq Z_k(G) \) for some integer \(k > 0 \). So \(G/Z_k(G) \) is finite and this gives that \(G \) is finite-by-nilpotent \([11]\). □

Proof of Theorem 3. Let \(G \) be a finitely generated soluble group in the class \((CN, \infty)^*\). It follows, from Lemma 9 and Corollary 10, that \(G \) is a nilpotent-by-finite group in the class \((FN, \infty)^*\). Then \(G \) satisfies max. It is proved in \([9, \text{Theorem 1.1}]\) that if \(\Omega \) is a class of groups which is closed under taking subgroups and quotients and if all metabelian groups of \(\Omega \) are torsion-nilpotent, then all soluble groups of \(\Omega \) are torsion-nilpotent.

So, by taking \(\Omega \) to be the class of groups in \((FN, \infty)^*\) which satisfy max, we may assume \(G \) metabelian. Since \(G \) is a finitely generated nilpotent-by-finite group, there is a normal torsion-free subgroup \(H \) such that \(H \in \mathcal{N}_c \) and \(|G/H| = d \) for some positive integers \(c, d \). We prove that \(G \in FN \) by induction on \(c \). From Lemma 11, this is true if \(c = 1 \). Assume that \(c > 1 \). Clearly \(G/\gamma_c(H) \in \mathcal{N}_{c-1}\mathcal{F} \), so by the inductive hypothesis we have that \(G/\gamma_c(H) \in \mathcal{FN} \). Thus there are two positive integers \(m, n \) such that \((\gamma_{n+1}(G))^m \leq \gamma_c(H)\), so \([\gamma_{n+1}(G)]^m, H] = 1 \). Now \(\gamma_{n+1}(G) \) is abelian as \(G \) is metabelian. Hence \([\gamma_{n+1}(G)]^m, H] = [\gamma_{n+1}(G), H]^m = 1 \), and this gives \(\gamma_{n+1}(G), H] = 1 \) since \(H \) is torsion-free. It follows that \([H, G] \leq \gamma_c(H) \). It is proved in \([9, \text{Lemma 2.1}]\) that if \(H, K \) are normal subgroups of a group \(G \) and if for some integer \(n > 0 \) we have \([H, G] \leq K\), then for any integer \(c > 0 \) we have \(\gamma_c(H)_{c(\gamma_{n-1}+1)} \leq [K, c^{-1}H] \). By taking \(K = \gamma_c(H) \), we obtain \([\gamma_c(H)_{c(\gamma_{n-1}+1)} \leq [\gamma_c(H)_{c^{-1}H} \leq \gamma_{c+1}(H) = 1 \). It follows that \([\gamma_c(H)_{c(\gamma_{n-1}+1)} = 1 \), and this means that \(\gamma_c(H) \leq Z_{c(\gamma_{n-1})+1} \). Since \(G/\gamma_c(H) \in \mathcal{FN} \), then \(G/Z_{c(\gamma_{n-1}+1)}(G) \in \mathcal{FN} \), which implies that \(G \in \mathcal{FN} \), as required.

Proof of Corollary 4. Let \(k \) be a positive integer and let \(G \) be a finitely generated soluble group in \((CN_k, \infty)^*\). From Theorem 3, \(G \) is finite-by-nilpotent. Thus \(G \) contains a normal finite subgroup \(H \) such that \(G/H \) is nilpotent and finitely generated, so its torsion subgroup \(T/H \) is finite, and consequently \(T \) is finite. Clearly \(G/T \) is in \((CN_k, \infty)^*\), so \(G/T \), being torsion-free, is in \((N_k, \infty)^*\). Since \((N_k, \infty)^*\) is contained in \(\mathcal{E}_{k+1}(\infty) \), we can deduce that:

(i) \(G/T \) is a finitely generated soluble group in \(\mathcal{E}_{k+1}(\infty) \), so by \([1,
Theorem 3], there exists an integer \(c = c(k) \), depending only on \(k \), such that \((G/T)/Z_c(G/T) \) is finite. So, by [11, Theorem 1] we obtain that \(\gamma_{c+1}(G/T) = \gamma_{c+1}(G)T/T \) is finite. Since \(T \) is finite, it follows that \(\gamma_{c+1}(G) \) is finite. Thus by [11, 1.5] we get that \(G/Z_c(G) \) is finite.

(ii) \(G/T \) is a finitely generated metabelian group in \(\mathcal{E}_{k+1}(\infty) \), so by [1, Theorem 2], \((G/T)/Z_{k+1}(G/T) \) is finite. Hence by [11, Theorem 1] we obtain that \(\gamma_{k+2}(G/T) = \gamma_{k+2}(G)T/T \) is finite. Since \(T \) is finite, it follows that \(\gamma_{k+2}(G) \) is finite. So by [11, 1.5] we deduce that \(G/Z_{k+1}(G) \) is finite.

Proof of Corollary 5. Note that if \(G \) is a finitely generated soluble group in the class \((\mathcal{CN}, \infty) \), then by Theorem 3 it satisfies max. Therefore Corollary 5 follows from Corollary 2 and the fact that finitely generated torsion soluble groups are finite.

References

102 N. Trabelsi : Finitely generated soluble groups

NADIR TRABELSI
DÉPARTEMENT DE MATHÉMATIQUES
FACULTÉ DES SCIENCES
UNIVERSITÉ FERHAT ABBAS
SETIF 19000
ALGÉRIE

E-mail: trabelsi.]@yahoo.fr

(Received September 18, 2003; revised March 16, 2004)