On the derived length of Lie solvable group algebras

By TIBOR JUHÁSZ (Debrecen)

Dedicated to Professor Adalbert Bovdi on his 70th birthday

Abstract. Let G be a nilpotent group with cyclic commutator subgroup of order p^n and let F be a field of characteristic p. It is shown here that the Lie derived length of the group algebra FG is at most $\lceil \log_2(p^n + 1) \rceil$. Furthermore, this bound is achieved if and only if one of the following conditions is satisfied: (i) p is odd; (ii) $p = 2$ and $n \leq 2$; (iii) $p = 2$, $n \geq 3$ and the nilpotency class of G is at most n.

1. Introduction

Let G be a group and F a field. The group algebra FG may be considered as a Lie algebra, with the usual bracket operation. Define the Lie derived series and the strong Lie derived series of the group algebra FG respectively as follows: let $\delta^{(0)}(FG) = \delta^{(0)}(FG) = FG$ and

$\delta^{[n+1]}(FG) = [\delta^{[n]}(FG), \delta^{[n]}(FG)]$,

$\delta^{(n+1)}(FG) = [\delta^{(n)}(FG), \delta^{(n)}(FG)] FG$,

where $[X, Y]$ is the additive subgroup generated by all Lie commutators $[x, y] = xy - yx$ with $x \in X$ and $y \in Y$. We say that FG is Lie solvable if there exists $m \in \mathbb{N}$ such that $\delta^{[m]}(FG) = 0$ and the number

Mathematics Subject Classification: 16S34, 17B30.

Key words and phrases: group algebras, Lie derived length.
$dl_L(FG) = \min\{m \in \mathbb{N} \mid \delta^{[m]}(FG) = 0\}$ is called the Lie derived length of FG. Similarly, FG is said to be strongly Lie solvable of derived length $dl_L(FG) = m$ if $\delta^{(m)}(FG) = 0$ and $\delta^{(m-1)}(FG) \neq 0$. According to a result of Passi, Passman and Sehgal \cite{6} a group algebra FG is Lie solvable if and only if one of the following conditions holds: (i) G is abelian; (ii) $\text{char}(F) = p$ and the commutator subgroup G' of G is a finite p-group; (iii) $\text{char}(F) = 2$ and G has a subgroup H of index 2 whose commutator subgroup H' is a finite 2-group. It is easy to check that a group algebra FG is strongly Lie solvable if either G is abelian or $\text{char}(F) = p$ and G' is a finite p-group.

Let G be a group with commutator subgroup of order p^n and $\text{char}(F) = p$. Shalev \cite{8} showed that

$$dl_L(FG) \leq \lceil \log_2(2t(G')) \rceil,$$

where $t(G')$ denotes the nilpotent index of the augmentation ideal of FG' and $\lceil r \rceil$ the upper integral part of a real number r. Moreover, Lemma 2.2 in \cite{8} states that if G is nilpotent of class 2 then $dl_L(FG) \leq \lceil \log_2(t(G') + 1) \rceil$.

In particular, according to Proposition 2.3 in \cite{8}, if G is nilpotent of class 2 and G' is cyclic of order p^n, then

$$dl_L(FG) = \lceil \log_2(p^n + 1) \rceil.$$

In this paper our goal is to generalize the above results of Shalev for the case when the nilpotency class of G is not necessary 2. We obtain the following.

Theorem 1. Let G be a nilpotent group with cyclic commutator subgroup of order p^n and let F be a field of characteristic p. Then $dl_L(FG) \leq \lceil \log_2(p^n + 1) \rceil$ with equality if and only if one of the following conditions holds:

(i) p is odd;
(ii) $p = 2$ and G' is of order less than 8;
(iii) $p = 2$, $n \geq 3$ and G has nilpotency class at most n.

Moreover, if $\text{char}(F) = 2$ we can extend our result as follows.
Corollary 1. Let G be a nilpotent group with commutator subgroup of order 2^n and let F be a field of characteristic 2. Then $\text{dl}_L(FG) = n + 1$ if and only if one of the following conditions holds:

(i) G' is the noncyclic group of order 4 and $\gamma_3(G) \neq 1$;
(ii) G' is cyclic of order less than 8;
(iii) G' is cyclic, $n \geq 3$ and G has nilpotency class at most n.

In this paper $\omega(FG)$ denotes the augmentation ideal of FG; for a normal subgroup $H \subseteq G$ we understand by $I(H)$ the ideal $FG \cdot \omega(FH)$. For $x, y, x_1, x_2, \ldots, x_n \in G$ let $x^y = y^{-1}xy$, $(x, y) = x^{-1}x^y$, and the commutator (x_1, x_2, \ldots, x_n) is defined inductively to be $((x_1, x_2, \ldots, x_{n-1}), x_n)$. By $\zeta(G)$ we mean the center of the group G, by $\gamma_n(G)$ the n-th term of the lower central series of G with $\gamma_1(G) = G$. Furthermore, denote by C_n the cyclic group of order n. The n-th term of the upper Lie power series of FG is denoted by $(FG)^{(n)}$ which is the associative ideal generated by all Lie commutators $[x, y]$ with $x \in FG^{(n-1)}$ and $y \in FG$, where $FG^{(1)} = FG$.

We shall use freely the identities

$$[x, yz] = [x, y]z + y[x, z], \quad [xy, z] = x[y, z] + [x, z]y,$$

and for units a, b, c the commutator identities

$$(a, bc) = (a, c)(a, b)^c = (a, c)(a, b)(a, b, c);$$

$$(ab, c) = (a, c)^b(b, c) = (a, c)(a, c, b)(b, c),$$

and that $[a, b] = ba((a, b) - 1)$.

2. Preliminaries

We begin with a statement of independent interest about the strong Lie derived length of group algebras which generalizes the Corollary 4 of Bagiński’s paper [1].

Proposition 1. Let G be a nilpotent group whose commutator subgroup G' is a finite p-group and let $\text{char}(F) = p$. If $\gamma_3(G) \subseteq (G')^p$ then

$$\text{dl}_L(FG) = \lceil \log_2(t(G') + 1) \rceil.$$
Proof. We show by induction on \(n \) that
\[
\delta^{(n)}(FG) \subseteq (FG)^{(2^n)} \quad \text{for all } n \geq 0.
\]
Evidently, \(\delta^{(0)}(FG) = (FG)^{(1)} \) and assume that \(\delta^{(n)}(FG) \subseteq (FG)^{(2^n)} \) for some \(n \). By elementary properties of upper Lie power series,
\[
\delta^{(n+1)}(FG) = [\delta^{(n)}(FG), \delta^{(n)}(FG)] \subseteq [(FG)^{(2^n)}, (FG)^{(2^n)}] \subseteq (FG)^{(2^{n+1})} = (FG)^{(2^{n+1})}.
\]

In view of \(\gamma_3(G) \subseteq (G')^p \), Theorem 3.1(i) from [3] states that \((FG)^{(2^n)} = \mathcal{J}(G')^{2^n-1} \). Furthermore, Lemma 2.2 in [7] asserts \(\mathcal{J}(G')^{2^n-1} \subseteq \delta^{(n)}(FG) \) for all \(n \geq 1 \) and we have \(\delta^{(n)}(FG) = \mathcal{J}(G')^{2^n-1} \). It is easy to see that \(\delta^{(n)}(FG) = 0 \) if and only if \(2^n - 1 \geq t(G') \), therefore \(n \geq \log_2(t(G') + 1) \), which implies the statement. \(\square \)

Remark 1. (i) Since \(\delta^{[n]}(FG) \subseteq \delta^{(n)}(FG) \) for all \(n \), Proposition 1 yields an upper bound on the Lie derived length. Furthermore, if \(G \) is nilpotent with cyclic commutator subgroup of order \(p^n \), then the condition \(\gamma_3(G) \subseteq (G')^p \) holds and thus
\[
dl_L(FG) \leq \lceil \log_2(p^n + 1) \rceil.
\]

But, as we will see, the equality does not always hold.

(ii) As the following examples show, Proposition 1 breaks down without the condition \(\gamma_3(G) \subseteq (G')^p \):

- Let \(G \) be a group with \(G' = C_2 \times C_2 \) such that \(\gamma_3(G) \neq 1 \) and let \(\text{char}(F) = 2 \). Then \(\gamma_3(G) \not\subseteq (G')^2 \) and, by Theorem 3 and Theorem 6 from [5], \(\text{dl}_L(FG) > 2 \). So \(\text{dl}_L(FG) \neq \lceil \log_2(t(G') + 1) \rceil \), because now \(\lceil \log_2(t(G') + 1) \rceil = 2 \).

- Let \(G \) be a group with \(G' = C_3 \times C_3 \times C_3 \) such that \(\gamma_3(G) \neq 1 \) and let \(\text{char}(F) = 3 \). Then \(\gamma_3(G) \not\subseteq (G')^3 \) and, by Theorem 2.3 from [7], \(\text{dl}_L(FG) > 3 \). It follows that \(\text{dl}_L(FG) \neq \lceil \log_2(t(G') + 1) \rceil \), because \(\lceil \log_2(t(G') + 1) \rceil = 3 \).
The next lemma will be used in the proof of the theorem.

Lemma 1. Let G be a nilpotent group with cyclic commutator subgroup of order p^n and let $\text{char}(F) = p$. Then for all $m, k \geq 1$

(i) $[\omega^m(FG'), \omega(FG)] \subseteq \mathfrak{I}(G')^{m+p-1}$;

(ii) $[\mathfrak{I}(G')^m, \mathfrak{I}(G')^k] \subseteq \mathfrak{I}(G')^{m+k+1}$.

Proof. (i) We use induction on m. For every $y \in G'$ and $g \in G$ we have

$[y - 1, g - 1] = [y, g] = gy((y, g) - 1) \in \mathfrak{I}(\gamma_3(G)) \subseteq \mathfrak{I}(G')^p$.

This shows that the statement (i) holds for $m = 1$, because the elements of the form $g - 1$ with $1 \neq g \in G$ constitute an F-basis of $\omega(FG)$.

Now, assume that $[\omega^m(FG'), \omega(FG)] \subseteq \mathfrak{I}(G')^{m+p-1}$ for some m. Then

$[\omega^{m+1}(FG'), \omega(FG)]$

$\subseteq \omega^m(FG') [\omega(FG'), \omega(FG)] + [\omega^m(FG'), \omega(FG)] \omega(FG')$

$\subseteq \omega^m(FG') \mathfrak{I}(G')^p + \mathfrak{I}(G')^{m+p-1} \omega(FG') \subseteq \mathfrak{I}(G')^{m+p},$

and the proof of (i) is complete.

(ii) The statement (ii) is a consequence of (i), because

$\mathfrak{I}(G') = \omega(FG)\omega(FG') + \omega(FG')$.

Let G be a group with commutator subgroup $G' = \langle x \mid x^{2^n} = 1 \rangle$, where $n \geq 3$. It is well known that the automorphism group $\text{aut}(G')$ of G' is a direct product of the cyclic group $\langle \alpha \rangle$ of order 2 and the cyclic group $\langle \beta \rangle$ of order 2^{n-2} where the action of these automorphisms on G' is given by $\alpha(x) = x^{-1}$, $\beta(x) = x^5$. For $g \in G$, let τ_g denote the restriction to G' of the inner automorphism $h \mapsto h^g$ of G. The map $G \to \text{aut}(G)$, $g \mapsto \tau_g$ is a homomorphism whose kernel coincides with the centralizer $C = C_G(G')$. Clearly, the map $\varphi : G/C \to \text{aut}(G')$ given by $\varphi(gC) = \tau_g$ is a monomorphism.

The subset

$G_\beta = \{g \in G \mid \varphi(gC) \in \langle \beta \rangle \}$

of G will play an important role in the sequel. It is easy to check that G_β is a subgroup of index not greater than 2 and $g \in G_\beta$ if and only if $x^g = x^{5^i}$ for some $i \in \mathbb{Z}$.
Lemma 2. Let G be a group with cyclic commutator subgroup of order 2^n, where $n \geq 3$ and let $\text{char}(F) = 2$. Then

(i) $(y,g) \in (G')^4$ for all $y \in G'$ and $g \in G_{\beta}$;

(ii) $[\omega^m(FG'), \omega(FG_{\beta})] \subseteq I(G')^m + 3$.

Proof. Let $g \in G_{\beta}$ and $y \in G'$.

(i) Clearly, $(y,g) = y^{-1}y^g = y^{-1} + 5i$ for some $i \geq 0$ and $-1 + 5i \equiv 0 \pmod{4}$. Therefore, $(y,g) \in (G')^4$.

(ii) Using (i) we have that $[y^{-1}, g^{-1}] = [y, g] = gy((y, g) - 1) \in I(G')^4$, from which (ii) follows for $m = 1$. One can now finish the proof by induction, as in Lemma 1(i). \hfill \Box

Lemma 3. Let G be a group with commutator subgroup $G' = \langle x \mid x^{2^n} = 1 \rangle$, where $n \geq 3$. Then the following are equivalent:

(i) $G_{\beta} = G$.

(ii) G has nilpotency class at most n.

Proof. First of all, note that G is a nilpotent group of class at most $n + 1$.

(i) \Rightarrow (ii) By Lemma 2(i), $\gamma_3(G) \subseteq (G')^4$, so $|\gamma_2(G)/\gamma_3(G)| \geq 4$ and the class of G is at most n.

(ii) \Rightarrow (i) Suppose that G has nilpotency class at most n, but $G_{\beta} \neq G$. We claim that $x^{2k-2} \in \gamma_k(G)$ for all $k \geq 2$. Indeed, this is clear for $k = 2$ and assume its truth for some $k \geq 2$. If $g \in G \setminus G_{\beta}$ then $(x^{2k-2}, g) \in \gamma_{k+1}(G)$ and $(x^{2k-2}, g) = x^{2k-2}(-1 + 5i) = (x^{2k-1})^j$ with some i and odd j. This means that $x^{2k-1} \in \gamma_{k+1}(G)$, as desired. Therefore, $\gamma_{n+1}(G) \neq 1$, which is a contradiction. \hfill \Box

Lemma 4. Let G be a group with commutator subgroup $G' = \langle x \mid x^{2^n} = 1 \rangle$, where $n \geq 3$. If G has nilpotency class $n + 1$ then $(g, h) \in (G')^2$ for all $g, h \in G_{\beta}$.

Proof. If the lemma were not true we could choose the elements $g, h \in G_{\beta}$ so that $(g, h) = x$. By definition of G_{β} we may additionally
assume that \((g, x) = 1\). Lemma 3 states that \(G \setminus G_\beta \neq \emptyset\); let \(y\) be in \(G \setminus G_\beta\). Evidently, \((g, y) = x^i\) for some \(i\). Using the equalities
\[
g^h = gx, \quad g^{h-1} = g(x^{-1})^{h-1}, \quad g^y = gx^i, \quad g^{y^{-1}} = g(x^{-i})y^{-1}
\]
it is easy to check
\[
g = g^{(h, y)} = g^{h^{-1}y^{-1}hy} = (g(x^{-1})^{h^{-1}}y^{-1}hy = g^{y^{-1}hy}x^{-1}
\]
which is a contradiction. Indeed, keeping in mind that \((x, y) = x^{-1-5j}\in \langle x^2 \rangle \setminus \langle x^4 \rangle\) and \((x^{-i}, h^y) = x^{i(1-5j)}\in \langle x^4 \rangle\),
thus \((x, y)(x^{-i}, h^y) \neq 1\).

The author wishes to thank C. BAGIŃSKI for the elementary proof of the previous lemma.

Lemma 5. Let \(G\) be a group with commutator subgroup \(G' = \langle x \mid x^{2^n} = 1 \rangle\), where \(n \geq 3\) and let \(\text{char}(F) = 2\). If \(G\) has nilpotency class \(n + 1\) then \(\text{dl}_L(FG) \leq n\).

Proof. Clearly, the set of the Lie commutators \([a, b]\) with \(a, b \in G\) spans the \(F\)-space \(\delta^{[1]}(FG)\). Since \([a, b] = g^h + g\) with \(g = ba\) and \(h = b\),
while of course \(g^h + g = [a, b]\) with \(a = h^{-1}g\) and \(b = h\) whenever \(g, h \in G\),
this spanning set for \(\delta^{[1]}(FG)\) can also be described as the set of the elements \(g^h + g\) with \(g, h \in G\). It follows that the Lie commutators
\([g_1^{h_1} + g_1, g_2^{h_2} + g_2]\), where \(g_1, g_2, h_1, h_2 \in G\), span \(\delta^{[2]}(FG)\). We shall compute these Lie commutators. It is easy to check that
\[
[g_1^{h_1} + g_1, g_2^{h_2} + g_2] = g_2g_1\left(((g_1, g_2) + 1)((g_2, h_2) + 1)((g_1, h_1) + 1) + (g_2, h_2)((g_2, h_2, g_1) + 1)((g_1, h_1) + 1) + (g_1, g_2)((g_1, h_1, g_2) + 1)((g_2, h_2) + 1) \right) \quad (1)
\]

Firstly, if neither \(g_1\) nor \(g_2\) are in \(G_\beta\) then
\[
[g_1^{h_1} + g_2, g_2^{h_2} + g_2] = b_{g_3} \quad (2)
\]
for some $b \in G_\beta$ and $g_3 \in \omega^3(FG')$. Indeed, it is clear from the definition of G_β that then $g_2 g_1 \in G_\beta$. Furthermore, the second factor on the right-hand side of (1) always belongs to $\omega^3(FG')$, because $\gamma_3(G) \subseteq (G')^2$.

Secondly, if g_1 or g_2, say g_1, belongs to G_β, then we claim that

$$[g_1^{h_1} + g_1 g_2^{h_2} + g_2] = g_4$$

for some $g_4 \in \omega^4(FG')$ and $g \in G$.

For $g_1 \in G_\beta$, Lemma 2(i) asserts $(g_2, h_1, g_1) \in (G')^4$, therefore the right-hand side of (1) can be written as

$$[g_1^{h_1} + g_1 g_2^{h_2} + g_2] = g_2 g_1 \left(((g_1, g_2) + 1) ((g_1, h_1) + 1) + (g_1, g_2)(g_1, h_1) (g_1, h_1, g_2) + 1 \right) + g_2 g_1 g_4$$

for some $g_4 \in \omega^4(FG')$. In order to prove (3) it will be sufficient to show that the element for some $g_4 \in \omega^4(FG')$. In order to prove (3) it will be sufficient to show that the element

$$\theta = ((g_1, g_2) + 1) ((g_1, h_1) + 1) + (g_1, g_2)(g_1, h_1) (g_1, h_1, g_2) + 1$$

from the right-hand side of (4) belongs to $\omega^3(FG')$.

This is clear if g_2 also belongs to G_β, because then by Lemma 4 and Lemma 2(i) both summands of θ are in $\omega^3(FG')$. Furthermore, if $g_2 \notin G_\beta$, then $x^{g_2} = x^{-g_1}$ for some l and we distinguish the following three cases:

Case 1: $(g_1, h_1) \in (G')^2$. Then $(g_1, h_1, g_2) = (g_1, h_1)^{-1}-5^{g_1} \in (G')^4$ and $\theta \in \omega^3(FG')$.

Case 2: $(g_1, g_2) \in (G')^2$. By the well-known Hall–Witt identity,

$$(g_1, h_1, g_2)^{h_1^{-1}} (g_1^{-1}, g_2^{-1}, g_1)^{g_2} (g_2, g_1^{-1}, h_1^{-1}) g_1 = 1.$$}

Lemma 2(i) ensures that the second factor on the left-hand side belongs to $(G')^4$ and this is true for the last factor too, because

$$ (g_2, g_1^{-1}, h_1^{-1}) = \left((g_1, g_2)^{g_1^{-1}}, h_1^{-1} \right) = \left((g_1, g_2)^{g_1^{-1}} \right)^{-1} (g_1, g_2) g_1^{-1} h_1^{-1} = (g_1, g_2)^{2^l}.$$
for some i. This means that $(g_1, h_1, g_2) \in (G')^4$, which proves $\vartheta \in \omega^3(FG')$.

Case 3: $(g_1, h_1) \notin (G')^2$ and $(g_1, g_2) \notin (G')^2$. Then $\langle (g_1, h_1) \rangle = \langle (g_1, g_2) \rangle = G'$ and $(g_1, g_2) = (g_1, h_1)^k$ for some odd k. With the notation $y = (g_1, h_1)$ ϑ can be written as

$$\vartheta = (y^k + 1)(y + 1) + y^{k+1}(y^{-5^l} - 1) = y^{k-5^l} + 1 + y^{y-1 + 1}.$$

Of course, if $k \equiv 1 \pmod{4}$ then $y^{-5^l} - 1 + 1$ and $y^{y-1 + 1}$ are in $\omega^4(FG')$, therefore $\vartheta \in \omega^4(FG')$. Otherwise, if $k \equiv 3 \pmod{4}$ then $y^{y-1 + 1} \in \omega^4(FG')$ which implies that

$$y(y^{k-1} + 1) = y((y^{k-3} + 1)(y^2 + 1) + (y^{k-3} + 1) + (y^2 + 1))$$

$$\equiv y(y^2 + 1) \equiv y^2 + 1 \pmod{\omega^3(FG')}.$$

Similarly, we can obtain that

$$y^{k-5^l} + 1 = (y^{k-5^l} - 2 + 1)(y^2 + 1) + (y^{k-5^l} - 2 + 1) + (y^2 + 1)$$

$$\equiv y^2 + 1 \pmod{\omega^3(FG')}.$$

Hence

$$\vartheta = y^{k-5^l} + 1 + y^{y-1 + 1} \equiv 2(y^2 + 1) \equiv 0 \pmod{\omega^3(FG')}$$

which completes the checking of (3).

Let S be the additive subgroup generated by all elements of the form $g_2 \eta_4$ and $b \eta_3$, where $g \in G$, $b \in G$ and $\eta_3 \in \omega^3(FG')$, $\eta_4 \in \omega^4(FG')$. We claim that $[S, S] \subseteq \mathcal{Z}(G')^8$. Indeed, the additive subgroup $[S, S]$ can be spanned by some Lie commutators of the forms $[g \eta_3, h \eta_3]$ and $[b \eta_3, b_2 \eta_3]$ with $g \in G, b_1, b_2 \in G$, $\eta_3, \eta_3 \in \omega^3(FG')$, $\eta_4 \in \omega^4(FG')$. Furthermore, by Lemma 1(i),

$$[g \eta_3, h \eta_3] = g[\eta_3, h \eta_3] + [g, h \eta_3] \eta_3$$

$$= g[\eta_3, h + 1] \eta_3 + h g((g, h) + 1) \eta_3 \eta_4 + h[g + 1, \eta_3] \eta_4 \in \mathcal{Z}(G')^8,$$

and by Lemma 2(ii) and Lemma 4,

$$[b \eta_3, b_2 \eta_3] = b_1[b \eta_3, b_2 \eta_3] + [b_1, b_2 \eta_3] \eta_3$$

$$= b_1[b \eta_3, b_2 + 1] \eta_3 + b_2[b_1 + 1, \eta_3] \eta_3 + b_1 b_2((b_1, b_2) + 1) \eta_3 \eta_3.$$
also belongs to $\mathcal{I}(G')^8$. Therefore, $[S, S] \subseteq \mathcal{I}(G')^8$.

From (2) and (3) we get $\delta^{[2]}(FG) \subseteq S$, so we have

$$\delta^{[3]}(FG) = \left[\delta^{[2]}(FG), \delta^{[2]}(FG) \right] \subseteq [S, S] \subseteq \mathcal{I}(G')^8.$$

Now, we use induction on k to show that

$$\delta^{[k]}(FG) \subseteq \mathcal{I}(G')^{2^k} \quad \text{for all} \quad k \geq 3. \quad (5)$$

Indeed, assuming the validity of (5) for some $k \geq 3$ we have

$$\delta^{[k+1]}(FG) = \left[\delta^{[k]}(FG), \delta^{[k]}(FG) \right] \subseteq \left[\mathcal{I}(G')^{2^k}, \mathcal{I}(G')^{2^k} \right] \subseteq \mathcal{I}(G')^{2^{k+1}}$$

and this proves the truth of (5) for every $k \geq 3$.

Keeping in mind that G' has order 2^n, (5) implies that $\delta^{[n]}(FG) = 0$.

Hence $dl_L(FG) \leq n$ and the proof is complete. \hfill \square

Lemma 6. Let G be a nilpotent group with commutator subgroup $G' = \langle x \mid x^{p^n} = 1 \rangle$, $\text{char}(F) = p$ and assume that one of the following conditions holds:

(i) $p = 2$, $n \geq 3$ and G has nilpotency class at most n;

(ii) p is odd.

Then $dl_L(FG) = \lceil \log_2(p^n + 1) \rceil$.

Proof. Since G' is cyclic of order p^n, we can choose $a, b \in G$ such that $(a, b) = x$. First of all, we claim that

$$[b^l a^m, b^s a^t] \equiv (ms - lt) b^{l+s} a^{m+t} (x - 1) \pmod{\mathcal{I}(G')^2} \quad (6)$$

for every $l, s, m, t \in \mathbb{Z}$. Indeed, an easy computation yields

$$[b^l a^m, b^s a^t] = b^s a^t b^l a^m ((b^l a^m, b^s a^t) - 1)$$

$$= b^{l+s} a^{m+t} (a^t, b^l)^m ((b^l a^m, b^s a^t) - 1) \quad (7)$$

and

$$\equiv b^{l+s} a^{m+t} ((b^l a^m, b^s a^t) - 1) \pmod{\mathcal{I}(G')^2},$$

and

$$\equiv x^{ms-lt} \pmod{(G')^p},$$

$$\equiv x^{ms-lt} \pmod{(G')^p}.$$
because $\gamma_3(G) \subseteq (G')^p$. Thus $(b^la^m, b^sa^t) = x^{ms-lt+pi}$ for some i. In view of the identity $uv - 1 = (u - 1)(v - 1) + (u - 1) + (v - 1)$, we have

$$(b^la^m, b^sa^t) - 1 \equiv (ms - lt + pi)(x - 1) \equiv (ms - lt)(x - 1) \pmod{(G')^2}$$

and putting this into (7) we obtain (6).

Now, let $k \geq 1$, $l, m, s, t \in \mathbb{Z}$, $z_1, z_2 \in \mathcal{I}(G')^{2k}$ and set

$$f_k(l, m, s, t, z_1, z_2) = [b^la^m(x - 1)^{2k-1} + z_1, b^sa^t(x - 1)^{2k-1} + z_2].$$

We shall show that

$$f_k(l, m, s, t, z_1, z_2) \equiv (ms - lt)b^{l+s}a^{m+t}(x - 1)^{2k+1-1} \pmod{(G')^{2k+1}}. \quad (8)$$

Lemma 1(ii) ensures that the elements $[b^la^m(x - 1)^{2k-1}, z_2], [z_1, z_2]$ and $[z_1, b^sa^t(x - 1)^{2k-1}]$ belong to $\mathcal{I}(G')^{2k+1}$, thus

$$f_k(l, m, s, t, z_1, z_2) \equiv [b^la^m(x - 1)^{2k-1}, b^sa^t(x - 1)^{2k-1}] \pmod{(G')^{2k+1}}.$$

In the case $p = 2$, Lemma 3 forces $b^la^m, b^sa^t \in G_\beta$, so we may apply Lemma 2(ii) to obtain that

$$(b^la^m(x - 1)^{2k-1}], [(x - 1)^{2k-1}, b^sa^t] \in \mathcal{I}(G')^{2k+1}.$$

Furthermore, for $p > 2$ the above inclusion follows from Lemma 1(i). This implies that

$$f_k(l, m, s, t, z_1, z_2) \equiv [b^la^m, b^sa^t](x - 1)^{2k+1-2} \pmod{(G')^{2k+1}},$$

which, together with (6), proves (8).

Define the following three series inductively by:

$$u_0 = a, \quad v_0 = b, \quad w_0 = b^{-1}a^{-1},$$
and, for \(k > 0 \),
\[
u_{k+1} = [u_k, v_k], \quad v_{k+1} = [u_k, w_k], \quad w_{k+1} = [w_k, v_k].
\]
Obviously, the \(k \)-th elements of these series belong to \(\delta^{[k]}(FG) \). By induction on \(k \) we show for odd \(k \) that
\[
u_k \equiv \pm ba(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}};
\]
\[
v_k \equiv \pm b^{-1}(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}};
\]
\[
w_k \equiv \pm a^{-1}(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}},\]
(9)
and if \(k \) is even then
\[
u_k \equiv \pm a(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}};
\]
\[
v_k \equiv \pm b(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}};
\]
\[
w_k \equiv \pm b^{-1}a^{-1}(x - 1)^{2^k - 1} \pmod{\mathcal{I}(G')^{2^k}}.\]
(10)
Evidently, \(u_1 = [a, b] = ba(x - 1) \), and by (6) we have
\[
v_1 = [a, b^{-1}a^{-1}] \equiv -b^{-1}(x - 1) \pmod{\mathcal{I}(G')^2},
\]
and \(w_1 = [b^{-1}a^{-1}, b] \equiv -a^{-1}(x - 1) \pmod{\mathcal{I}(G')^2} \). Therefore (9) holds for \(k = 1 \).

Now, assume that (9) is true for some odd \(k \). According to (8) the congruences
\[
u_{k+1} = \pm f_k(1, 1, -1, 0, u_k', v_k')
\equiv \pm (-1)a(x - 1)^{2^{k+1} - 1} \pmod{\mathcal{I}(G')^{2^{k+1}}};
\]
\[
v_{k+1} = \pm f_k(1, 1, 0, -1, u_k', v_k')
\equiv \pm b(x - 1)^{2^{k+1} - 1} \pmod{\mathcal{I}(G')^{2^{k+1}}};
\]
\[
w_{k+1} = \pm f_k(0, -1, -1, 0, u_k', v_k')
\equiv \pm b^{-1}a^{-1}(x - 1)^{2^{k+1} - 1} \pmod{\mathcal{I}(G')^{2^{k+1}}}
\]
hold, where \(u_k', v_k', w_k' \) are suitable elements from \(\mathcal{I}(G')^{2^k} \). Similarly,
On the derived length of Lie solvable group algebras

supposing the truth of (10) for some even \(k \) we see

\[
\begin{align*}
 u_{k+1} &= \pm f_k(0, 1, 1, 0, u_k', v_k') \\
 &\equiv \pm ba(x - 1)^{2^{k+1}-1} \pmod{\mathfrak{J}(G')^{2^{k+1}}}; \\
 v_{k+1} &= \pm f_k(0, 1, -1, -1, u_k', v_k') \\
 &\equiv \pm (-1)b^{-1}(x - 1)^{2^{k+1}-1} \pmod{\mathfrak{J}(G')^{2^{k+1}}}; \\
 w_{k+1} &= \pm f_k(-1, -1, 1, 0, u_k', v_k') \\
 &\equiv \pm (-1)a^{-1}(x - 1)^{2^{k+1}-1} \pmod{\mathfrak{J}(G')^{2^{k+1}}}.
\end{align*}
\]

So, (9) and (10) are valid for any \(k > 0 \).

Assume that \(k < \lceil \log_2(p^n + 1) \rceil \). Then \(2^k - 1 < p^n \) and the elements \(u_k, v_k, w_k \) are nonzero in \(\delta[k](FG) \), thus \(dL(FG) \geq \lceil \log_2(p^n + 1) \rceil \).

At the same time, Remark 1(i) says that \(dL(FG) \leq \lceil \log_2(p^n + 1) \rceil \). \(\square \)

3. Proofs of Theorem 1 and Corollary 1

Proof of Theorem 1. For \(p = 2 \) and \(n < 3 \) the statement is a consequence of Remark 1(i) and Theorem 3 in [5]. In the other cases Lemma 5 and Lemma 6 state the required result. The proof is complete. \(\square \)

Proof of Corollary 1. Clearly, if \(G' \) is cyclic the statement immediately follows from Theorem 1. Now, assume that \(G' \) is noncyclic and \(\delta[n](FG) \neq 0 \). We know from [2] that \(FG \) is Lie nilpotent, and as we have already seen, \(\delta[n](FG) \subseteq (FG)^{(2^n)} \). Thus \((FG)^{(2^n)} \neq 0 \) and Theorem 1 of [4] states that \(G' = C_2 \times C_2 \) and \(\gamma_3(G) \neq 1 \). Conversely, if \(G' = C_2 \times C_2 \) then \(t(G') = 3 \) and \(dL(FG) \leq \lceil \log_2(2 \cdot 3) \rceil = 3 \). Furthermore, when \(\gamma_3(G) \neq 1 \), Theorem 3 in [5] says that \(dL(FG) \neq 2 \). Therefore \(dL(FG) = 3 \) and the corollary is proved. \(\square \)

Acknowledgements. The author would like to thank C. Bagiński and L. G. Kovács for their valuable comments and suggestions.
References

TIBOR JUHÁSZ

INSTITUTE OF MATHEMATICS
UNIVERSITY OF DEBRECEN
H-4010 DEBRECEN, P.O. BOX 12
HUNGARY

E-mail: juhaszt@math.klte.hu

(Received March 9, 2005; revised June 17, 2005)